forked from mikeshulman/narya
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlst.ml
85 lines (73 loc) · 3.17 KB
/
lst.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
open Testutil.Mcp
let () =
run @@ fun () ->
Testutil.Repl.def "List" "Type → Type" "A ↦ data [ nil. | cons. (x:A) (xs:List A) ]";
let uu, _ = synth "Type" in
let aa = assume "A" uu in
let a = assume "a" aa in
let la, _ = synth "List A" in
let a0 = check "nil." la in
let a1 = check "cons. a nil." la in
let a2 = check "cons. a (cons. a nil.)" la in
let a3 = check "cons. a (cons. a (cons. a nil.))" la in
let id00, _ = synth "Id (List A) nil. nil." in
let eq00 = check "nil." id00 in
let id11, _ = synth "Id (List A) (cons. a nil.) (cons. a nil.)" in
let eq11 = check "cons. (refl a) nil." id11 in
let id22, _ = synth "Id (List A) (cons. a (cons. a nil.)) (cons. a (cons. a nil.))" in
let eq22 = check "cons. (refl a) (cons. (refl a) nil.)" id22 in
(* Check that the induction principle has the right type *)
Testutil.Repl.def "List_ind"
"(A:Type) (P : List A → Type) (pn : P nil.) (pc : (a:A) (l:List A) → P l → P (cons. a l)) (l:List A) → P l"
"A P pn pc l ↦ match l [
| nil. ↦ pn
| cons. a l ↦ pc a l (List_ind A P pn pc l)
]";
let _, indty = synth "List_ind" in
let indty', _ =
synth
"(A:Type) (C : List A → Type) → C nil. → ((x:A) (xs: List A) → C xs → C (cons. x xs)) → (xs : List A) → C xs"
in
let () = equal indty indty' in
(* We can define concatenation by induction *)
let rconcat_ty = "(A:Type) → List A → List A → List A" in
let concat_ty, _ = synth rconcat_ty in
let rconcat = "A xs ys ↦ List_ind A (_ ↦ List A) ys (x _ xs_ys ↦ cons. x xs_ys) xs" in
let concat = check rconcat concat_ty in
let a0 = assume "a0" aa in
let a1 = assume "a1" aa in
let a2 = assume "a2" aa in
let a3 = assume "a3" aa in
let a4 = assume "a4" aa in
let ra01 = "cons. a0 (cons. a1 nil.)" in
let a01 = check ra01 la in
let ra234 = "cons. a2 (cons. a3 (cons. a4 nil.))" in
let a234 = check ra234 la in
let a01_234 = check (Printf.sprintf "((%s) : %s) A (%s) (%s)" rconcat rconcat_ty ra01 ra234) la in
let a01234 = check "cons. a0 (cons. a1 (cons. a2 (cons. a3 (cons. a4 nil.))))" la in
let () = equal_at a01_234 a01234 la in
(* And prove that it is unital and associative *)
let cc = Printf.sprintf "((%s) : %s)" rconcat rconcat_ty in
let concatlu_ty, _ =
synth (Printf.sprintf "(A:Type) (xs : List A) → Id (List A) (%s A nil. xs) xs" cc) in
let concatlu = check "A xs ↦ refl xs" concatlu_ty in
let concatru_ty, _ =
synth (Printf.sprintf "(A:Type) (xs : List A) → Id (List A) (%s A xs nil.) xs" cc) in
let concatru =
check
(Printf.sprintf
"A xs ↦ List_ind A (ys ↦ Id (List A) (%s A ys nil.) ys) (refl (nil. : List A)) (y ys ysnil ↦ cons. (refl y) ysnil) xs"
cc)
concatru_ty in
let concatassoc_ty, _ =
synth
(Printf.sprintf
"(A:Type) (xs ys zs : List A) → Id (List A) (%s A (%s A xs ys) zs) (%s A xs (%s A ys zs))"
cc cc cc cc) in
let concatassoc =
check
(Printf.sprintf
"A xs ys zs ↦ List_ind A (xs ↦ Id (List A) (%s A (%s A xs ys) zs) (%s A xs (%s A ys zs))) (refl (%s A ys zs)) (x xs IH ↦ cons. (refl x) IH) xs"
cc cc cc cc cc)
concatassoc_ty in
()