-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqa.py
291 lines (246 loc) · 10.5 KB
/
qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
import time
import argparse
import math
import logging
from functools import partial
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
from mlx.utils import tree_flatten
from utils import load_squad, init_logger, preprocess_tokenize_function, get_answers
from model import load_model_tokenizer
def main(args):
model, tokenizer = load_model_tokenizer(
hf_model=args.model_str, weights_pretrain_path=args.weights_pretrain)
if not args.infer:
print("Loading datasets...")
train_ds, valid_ds, test_ds = load_processed_datasets(tokenizer, args.dataset_size)
# set logger after loading squad
init_logger(args.log)
if args.train:
print(f"Training for {args.n_epoch} epochs and {args.n_iters or "all"} iters...")
train(model, train_ds, valid_ds, loss_fn, args)
print(f"Saving fine-tuned weights to {args.weights_finetuned}")
mx.savez(args.weights_finetuned, **dict(tree_flatten(model.trainable_parameters())))
# Weights should exist after training
if not Path(args.weights_finetuned).is_file():
raise ValueError(
f"Fine-tuned weights file {args.weights_finetuned} is missing. "
"Use --train to learn and save fine-tuned weights."
)
model.load_weights(args.weights_finetuned, strict=True)
if args.test:
print("Checking test loss...")
test(model, test_ds, args.batch_size)
if args.infer:
assert args.question is not None and args.context is not None, (
"With --infer, must pass both --question and --context")
print("Running inference...")
infer(model, tokenizer, args.question, args.context, top_k=args.top_k)
def load_processed_datasets(tokenizer, dataset_size=None):
load_split = ("train" if dataset_size is None
else "train[:" + str(dataset_size) + "]")
train_ds, valid_ds, test_ds = load_squad(
load_split=load_split, tokenizer=tokenizer,
preproc_function=preprocess_tokenize_function,
test_valid_frac=0.2, test_frac=0.5, return_tuples=True, torch=False)
return train_ds, valid_ds, test_ds
def train(model, train_ds, valid_ds, loss_fn, args):
optimizer = optim.AdamW(learning_rate=1e-5)
mx.eval(model.parameters())
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(input_ids, token_type_ids, attention_mask, start_positions,
end_positions):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, input_ids, token_type_ids, attention_mask,
start_positions, end_positions)
optimizer.update(model, grads)
return loss
losses = []
tic = time.perf_counter()
for epoch in range(args.n_epoch):
logging.info(f"Epoch {epoch+1} of {args.n_epoch}...")
for it, batch in enumerate(batch_iterate(train_ds, batch_size=args.batch_size)):
if it == args.n_iters:
break
logging.debug(f"Iteration {it+1}...")
input_ids, token_type_ids, attention_mask, start_positions, end_positions = map(
mx.array,
(batch['input_ids'], batch['token_type_ids'], batch['attention_mask'],
batch['start_positions'], batch['end_positions'])
)
loss = step(input_ids, token_type_ids, attention_mask, start_positions, end_positions)
mx.eval(state)
losses.append(loss.item())
if (it + 1) % args.steps_per_report == 0:
logging.info("Running report...")
train_loss = np.mean(losses)
toc = time.perf_counter()
print(
f"Iter (batch) {it + 1}: "
f"Train loss {train_loss:.3f}, "
f"Train ppl {math.exp(train_loss):.3f}, "
f"It/sec {args.steps_per_report / (toc - tic):.3f}"
)
losses = []
tic = time.perf_counter()
if (it + 1) % args.steps_per_eval == 0:
logging.info("Checking validation loss...")
val_loss = eval_fn(valid_ds, model, batch_size=args.batch_size)
toc = time.perf_counter()
print(
f"Iter (batch) {it + 1}: "
f"Val loss {val_loss:.3f}, "
f"Val ppl {math.exp(val_loss):.3f}, "
f"Val took {(toc - tic):.3f}s, "
)
tic = time.perf_counter()
def test(model, test_ds, batch_size):
tic = time.perf_counter()
model.eval()
test_loss = eval_fn(test_ds, model, batch_size=batch_size)
toc = time.perf_counter()
print(
f"Test loss {test_loss:.3f}, "
f"Test ppl {math.exp(test_loss):.3f}, "
f"Test eval took {(toc - tic):.3f}s"
)
def infer(model, tokenizer, question, context, top_k=1):
tokenized_inputs = tokenizer(question, context, return_tensors="mlx")
start_logits, end_logits = model(**tokenized_inputs)
answers = get_answers(start_logits, end_logits, tokenized_inputs.sequence_ids(), top_k=top_k)
def get_answer_from_tokenized_inputs(tokenized_inputs, start, end):
tokens = tokenized_inputs["input_ids"][0, start: end + 1]
# tokenizer can't use MLX array as input
answer = tokenizer.decode(np.array(tokens))
return answer
print("# Context, Question:")
print(context, "\n")
print(question, "\n")
for answer in answers:
start = answer["start"]
end = answer["end"]
score = answer["score"]
answer = get_answer_from_tokenized_inputs(tokenized_inputs, start, end)
print("Answer: ", answer)
print("Score: ", score, "\n")
def batch_iterate(dataset, batch_size):
perm = np.random.default_rng(12345).permutation(len(dataset))
for s in range(0, len(dataset), batch_size):
ids = perm[s: s + batch_size]
yield dataset[ids]
def loss_fn(model, input_ids, token_type_ids, attention_mask, start_positions,
end_positions, reduction="mean"):
start_logits, end_logits = model(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask)
loss = compute_loss(start_logits, end_logits, start_positions, end_positions,
reduction=reduction)
return loss
def compute_loss(start_logits, end_logits, start_positions, end_positions, reduction="mean"):
slosses = nn.losses.cross_entropy(start_logits, start_positions, reduction=reduction)
elosses = nn.losses.cross_entropy(end_logits, end_positions, reduction=reduction)
loss = (slosses + elosses) / 2
return loss
def eval_fn(dataset, model, batch_size=8):
loss = 0
for s in range(0, len(dataset), batch_size):
batch = dataset[s: s + batch_size]
input_ids, token_type_ids, attention_mask, start_positions, end_positions = map(
mx.array,
(batch['input_ids'], batch['token_type_ids'], batch['attention_mask'],
batch['start_positions'], batch['end_positions'])
)
losses = loss_fn(model, input_ids, token_type_ids, attention_mask,
start_positions, end_positions, reduction="none")
losses_have_nans = mx.isnan(losses).any()
if losses_have_nans:
logging.debug(f"eval_fn() found NANs in losses: {losses}")
loss += mx.sum(losses).item()
logging.debug(f"eval_fn() final loss: {loss}")
logging.debug(f"eval_fn() len(dataset): {len(dataset)}")
return loss / len(dataset)
def build_parser():
def none_or_int(value):
if value == 'None':
return None
return int(value)
parser = argparse.ArgumentParser(description="Fine tune BERT for Q&A")
parser.add_argument(
"--train",
action="store_true",
help="Run fine-tune training and save weights to --weights_finetuned",
)
parser.add_argument(
"--model_str",
default="bert-base-cased",
help="Name of pre-trained BERT model for tokenizer and parameters",
)
parser.add_argument(
"--weights_pretrain",
default="weights/bert-base-cased.npz",
help="The path to the local pre-trained MLX model weights",
)
parser.add_argument(
"--weights_finetuned",
default="weights/tmp-fine-tuned.npz",
help="Path to save fine-tuned model weights, or to load weights for testing or inference",
)
parser.add_argument("--dataset_size", type=none_or_int, default=None,
help="Number of records to load for entire dataset. Default is None (full data)") # noqa
parser.add_argument("--batch_size", type=int, default=10, help="Minibatch size. Default is 10")
parser.add_argument(
"--n_iters", type=none_or_int, default=None, help="Stop early at this number of iterations, at each n_epoch. Default is None, which means number of iterations is set according to n_epoch and batch_size") # noqa
parser.add_argument("--n_epoch", type=int, default=1, help="Number of epochs to train for. Default is 1.") # noqa
parser.add_argument(
"--steps_per_report",
type=int,
default=5,
help="Number of training steps between loss reporting. Default is 5",
)
parser.add_argument(
"--steps_per_eval",
type=int,
default=10,
help="Number of training steps between validations. Default is 10",
)
parser.add_argument(
"--test",
action="store_true",
help="Evaluate on the test set after training, or after loading fine-tuned weights",
)
parser.add_argument(
"--infer",
action="store_true",
help="Run inference on --question and --context"
)
parser.add_argument(
"--question",
help="Run inference with this question. Must also pass --context"
)
parser.add_argument(
"--context",
help="Run inference on this context. Must also pass --question"
)
parser.add_argument(
"--top_k",
default=1,
type=int,
help="Number of top answers to return for --infer"
)
parser.add_argument(
"--log",
default="warning",
help="Set python logging level from: warn (default)"
)
return parser
if __name__ == '__main__':
parser = build_parser()
args = parser.parse_args()
if not any([args.train, args.test, args.infer]):
raise ValueError("Must select one of --train, --test, --infer")
main(args)