-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfitsstat.py
285 lines (215 loc) · 8.31 KB
/
fitsstat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""Functions for FITS image stats and display.
Examples
--------
>>> import fitsstat
Print all *CORR* header values in *raw.fits primary header:
>>> fitsstat.pretty_hdr('*raw.fits', 'CORR')
Calculate statistics for SCI and ERR, and save to file:
>>> with open('stat.log', 'w') as fout:
... fitsstat.imstat('im.fits', extname=('SCI','ERR'), fout=fout)
Plot histograms for ext=('sci',1) for 2 images between 0.1 and 10.0 counts:
>>> fitsstat.imhist('im1.fits', 'im2.fits', z1=0.1, z2=10.0)
"""
from __future__ import print_function, division
# STDLIB
import glob
import os
import sys
# THIRD-PARTY
import matplotlib.pyplot as plt
import numpy as np
from astropy.io import fits as pyfits
__author__ = 'Pey Lian Lim'
__organization__ = 'Space Telescope Science Institute'
def pretty_hdr(files_str, hdr_str, ext='PRIMARY', fout=sys.stdout):
"""Print header keywords and values to screen.
Values will be truncated to match column widths.
This is for quick check only.
Parameters
----------
files_str : string
File(s) to print. Can have wildcards.
hdr_str : string
Header keyword(s) to print.
No need for wildcards. Partial match will yield result.
Use first image as template to get pretty table.
ext : int or string or tuple
FITS extension.
fout : output stream
Print info to screen by default.
"""
all_im = glob.glob(files_str)
assert len(all_im) > 0, 'No files found.'
line = '{:15s} '.format('IMAGE')
im = all_im[0]
all_keys = []
for key in pyfits.getheader(im, ext):
if hdr_str in key:
all_keys.append(key)
line += '{:10s} '.format(key[:10])
fout.write(line[:-1] + '\n')
for im in all_im:
im_hdr = pyfits.getheader(im, ext)
line = '{:15s} '.format(os.path.basename(im[:15]))
for key in all_keys:
if key in im_hdr:
val = str(im_hdr[key])
else:
val = '--'
line += '{:10s} '.format(val[:10])
fout.write(line[:-1] + '\n')
def imstat(image1, extname_filter=None, extver_filter=None, fout=sys.stdout):
"""Compute image statistics for each extension.
Parameters
----------
image1 : string
Input FITS image.
extname_filter : list of string
Only consider EXTNAME listed here.
Case sensitive.
extver_filter : list of int
Only consider EXTVER listed here.
fout : output stream
Print info to screen by default.
"""
im_name = os.path.basename(image1)
fout.write(
'{:9s} {:7s} {:3s} {:>10s} {:>10s} {:>10s} {:>10s} {:>10s}\n'.format(
'IMAGE', 'EXTNAME', 'VER', 'NPIX', 'MEAN', 'STDDEV', 'MIN', 'MAX'))
with pyfits.open(image1) as pf:
for ext in pf:
imdata = ext.data
im_extname = ext.name
im_extver = ext._extver
if ((imdata is not None) and
(extname_filter is None or im_extname in extname_filter) and
(extver_filter is None or im_extver in extver_filter)):
im_npix = imdata.size
im_mean = imdata.mean()
stddev = imdata.std()
im_min = imdata.min().astype('float')
im_max = imdata.max().astype('float')
fout.write('{:9s} {:7s} {:3d} {:10d} {:10.3E} {:10.3E} '
'{:10.3E} {:10.3E}\n'.format(
im_name[:9], im_extname[:7], im_extver, im_npix, im_mean,
stddev, im_min, im_max))
def imhist(*args, **kwargs):
"""Display histogram of FITS image.
If multiple images are given, all histograms appear in the same plot.
+-----------+-------------------------------------------------------+
| Keyword | Explanation |
+-----------+-------------------------------------------------------+
|ext | Extension ID as accepted by PyFITS. Default is SCI,1. |
+-----------+-------------------------------------------------------+
|bins | Number of bins in histogram. Default is 512. |
+-----------+-------------------------------------------------------+
|z1 | Lower limit of data to consider. Default is min. |
+-----------+-------------------------------------------------------+
|z2 | Upper limit of data to consider. Default is max. |
+-----------+-------------------------------------------------------+
|log | Plot Y in log scale. Default is False. |
+-----------+-------------------------------------------------------+
|legend_loc | Legend loc as accepted by Matplotlib. Default is best.|
+-----------+-------------------------------------------------------+
|save_plot | Save plot in given file name. Default is None. |
+-----------+-------------------------------------------------------+
|show_plot | Show plot on screen. Default is True. |
+-----------+-------------------------------------------------------+
Parameters
----------
*args:
FITS image(s).
**kwargs:
Keywords as defined in the table above.
"""
assert len(args) > 0, 'No input image given.'
ext = kwargs.get('ext', ('SCI',1))
bins = kwargs.get('bins', 512)
log = kwargs.get('log', False)
min_z1 = 999999
max_z2 = -999999
fig, ax = plt.subplots()
for image1 in args:
im_name = os.path.basename(image1)
im_data = pyfits.getdata(image1, ext)
z1 = kwargs.get('z1', im_data.min())
z2 = kwargs.get('z2', im_data.max())
min_z1 = min(min_z1, z1)
max_z2 = max(max_z2, z2)
mask = np.where((im_data >= z1) & (im_data <= z2))
assert len(mask[0]) > 0, '{} has no data within [{}, {}]'.format(
im_name, z1, z2)
ax.hist(im_data[mask], bins=bins, histtype='step', log=log,
label=im_name)
ax.set_xlim(min_z1, max_z2)
if log:
ax.set_ylim(ymin=1)
ax.set_xlabel('Pixel values')
ax.set_ylabel('# Pixels')
ax.set_title('EXT = {}'.format(ext))
ax.legend(loc=kwargs.get('legend_loc', 'best'))
plt.draw()
if kwargs.get('save_plot', None):
plt.savefig(save_plot)
if not kwargs.get('show_plot', True):
plt.close()
def has_nan(image, verbose=True):
"""Check for invalid numbers in FITS image data.
Extensions with no data (e.g., primary header) are skipped.
Parameters
----------
image : str
FITS image name.
verbose : bool, optional
Print information to screen.
Returns
-------
status : bool
True if any of the data extensions has nan or inf, else False.
Examples
--------
This file has nan values in EXT 5:
>>> has_nan('/grp/hst/cdbs/jref/tam17023j_drk.fits')
/grp/hst/cdbs/jref/tam17023j_drk.fits EXT (ERR,2)
nan/inf found at
IRAF X,Y = 1312, 189
IRAF X,Y = 1312, 190
IRAF X,Y = 1312, 191
IRAF X,Y = 1312, 192
IRAF X,Y = 1312, 193
IRAF X,Y = 1312, 194
IRAF X,Y = 1312, 195
IRAF X,Y = 1312, 196
IRAF X,Y = 1312, 197
IRAF X,Y = 1312, 198
IRAF X,Y = 1312, 199
IRAF X,Y = 2589, 367
IRAF X,Y = 1057, 830
IRAF X,Y = 1057, 1116
IRAF X,Y = 1457, 1754
True
This file does not have nan or inf in all data extensions:
>>> has_nan('/grp/hst/cdbs/jref/tam17023j_drk.fits')
/grp/hst/cdbs/jref/tam17023j_drk.fits OK
False
"""
status = found = False
with pyfits.open(image) as pf:
for ext in pf:
if ext.is_image and ext.data is not None:
mask = ~np.isfinite(ext.data)
found = np.any(mask)
if found:
if not status:
status = found
if verbose:
print('{0} EXT ({1},{2})'.format(
image, ext.name, ext._extver))
print(' nan/inf found at')
for y, x in zip(*np.where(mask)):
print(' IRAF X,Y = {0:6d},{1:6d}'.format(x+1, y+1))
else:
break
if not status and verbose:
print(image, 'OK')
return status