-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
90 lines (78 loc) · 4.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
from solver import *
from utils.helpers import *
def main(args):
"""
Run the experiment as many times as there
are seeds given, and write the mean and std
to as an empty file's name for cleaner logging
"""
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
#torch.backends.cudnn.deterministic=True
if len(args.seeds) > 1:
test_accs = []
base_name = args.experiment_name
for seed in args.seeds:
print('\n\n----------- SEED {} -----------\n\n'.format(seed))
set_torch_seeds(seed)
args.experiment_name = os.path.join(base_name, base_name+'_seed'+str(seed))
solver = ZeroShotKTSolver(args)
test_acc = solver.run()
torch.cuda.empty_cache()
test_accs.append(test_acc)
mu = np.mean(test_accs)
sigma = np.std(test_accs)
print('\n\nFINAL MEAN TEST ACC: {:02.2f} +/- {:02.2f}'.format(mu, sigma))
file_name = "mean_final_test_acc_{:02.2f}_pm_{:02.2f}".format(mu, sigma)
with open(os.path.join(args.log_directory_path, base_name, file_name), 'w+') as f:
f.write("NA")
else:
set_torch_seeds(args.seeds[0])
solver = ZeroShotKTSolver(args)
test_acc = solver.run()
print('\n\nFINAL TEST ACC RATE: {:02.2f}'.format(test_acc))
file_name = "final_test_acc_{:02.2f}".format(test_acc)
with open(os.path.join(args.log_directory_path, args.experiment_name, file_name), 'w+') as f:
f.write("NA")
if __name__ == "__main__":
import argparse
import numpy as np
from utils.helpers import str2bool
print('Running...')
parser = argparse.ArgumentParser(description='Welcome to the future')
parser.add_argument('--dataset', type=str, default='CIFAR10', choices=['SVHN', 'CIFAR10','FashionMNIST','CIFAR100'])
parser.add_argument('--total_n_pseudo_batches', type=float, default=8000)
parser.add_argument('--n_generator_iter', type=int, default=1, help='per batch, for few and zero shot')
parser.add_argument('--n_student_iter', type=int, default=5, help='per batch, for few and zero shot')
parser.add_argument('--batch_size', type=int, default=512, help='for few and zero shot')
parser.add_argument('--z_dim', type=int, default=100, help='for few and zero shot')
parser.add_argument('--student_learning_rate', type=float, default=5e-3)
parser.add_argument('--generator_learning_rate', type=float, default=1e-3)
parser.add_argument('--teacher_architecture', type=str, default='AlexNet')
parser.add_argument('--student_architecture', type=str, default='AlexNet_half')
parser.add_argument('--KL_temperature', type=float, default=1, help='>1 to smooth probabilities in divergence loss, or <1 to sharpen them')
parser.add_argument('--AT_beta', type=float, default=250, help='beta coefficient for AT loss')
parser.add_argument('--pretrained_models_path', nargs="?", type=str, default='/DB_ki/clean_thesis/ZeroShotKnowledgeTransfer/Pretrained/')
parser.add_argument('--datasets_path', type=str, default="/DB_ki/clean_thesis/ZeroShotKnowledgeTransfer/Datasets/")
parser.add_argument('--log_directory_path', type=str, default="/DB_ki/clean_thesis/ZeroShotKnowledgeTransfer/logs/")
parser.add_argument('--save_final_model', type=str2bool, default=0)
parser.add_argument('--save_n_checkpoints', type=int, default=0)
parser.add_argument('--save_model_path', type=str, default="/DB_ki/clean_thesis/ZeroShotKnowledgeTransfer/logs/Saves")
parser.add_argument('--seeds', nargs='*', type=int, default=[5,3,1])
parser.add_argument('--workers', type=int, default=4)
parser.add_argument('--use_gpu', type=str2bool, default=True, help='set to False to debug on cpu, using LeNets')
parser.add_argument('--anneal_factor', type=float, default=2.5, help='annealing factor')
parser.add_argument('--alpha', type=float, default=5, help='constraint factor')
args = parser.parse_args()
args.total_n_pseudo_batches = int(args.total_n_pseudo_batches)
if args.AT_beta > 0: assert args.student_architecture[:3] in args.teacher_architecture
args.log_freq = max(1, int(args.total_n_pseudo_batches / 100))
args.dataset_path = os.path.join(args.datasets_path, args.dataset)
args.use_gpu = args.use_gpu and torch.cuda.is_available()
args.device = torch.device('cuda') if args.use_gpu else torch.device('cpu')
args.experiment_name = 'ZeroShotKnowledgeTransfer_{}_{}_{}_gi{}_si{}_zd{}_plr{}_slr{}_bs{}_T{}_beta{}'.format(args.dataset, args.teacher_architecture, args.student_architecture, args.n_generator_iter, args.n_student_iter, args.z_dim, args.generator_learning_rate, args.student_learning_rate, args.batch_size, args.KL_temperature, args.AT_beta)
print('\nTotal data batches: {}'.format(args.total_n_pseudo_batches))
print('Logging results every {} batch'.format(args.log_freq))
print('\nRunning on device: {}'.format(args.device))
main(args)