-
Notifications
You must be signed in to change notification settings - Fork 4
/
app.py
169 lines (136 loc) · 5.12 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
#import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
import devicetorch
from PIL import Image
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
DEVICE = devicetorch.get(torch)
pipe = None
global_image = None
def init():
global pipe
if pipe is None:
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device=DEVICE, dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to(DEVICE)
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to(DEVICE)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
#@spaces.GPU(duration=16)
def fill_image(prompt, image, model_selection, guidance_scale, steps):
init()
source = image["background"]
mask = image["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, DEVICE, True)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
guidance_scale=guidance_scale,
num_inference_steps=steps,
):
yield image, cnet_image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), binary_mask)
yield source, cnet_image
def clear_result():
return gr.update(value=None)
def set_img(image):
global global_image
global_image = image["background"]
def resize(image, size):
global global_image
size = (int(size) // 8) * 8
source = global_image.copy()
source.thumbnail((size, size), Image.LANCZOS)
resized_w, resized_h = source.size
resized_w = (resized_w // 8) * 8
resized_h = (resized_h // 8) * 8
source = source.crop((0, 0, resized_w, resized_h))
w, h = global_image.size
# canvas_size=(1024, 1024),
max = (w // 8) * 8
return gr.update(value=source, canvas_size=(w,h)), gr.update(maximum=max, visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
#css = """
#.gradio-container {
# width: 1024px !important;
#}
#"""
#with gr.Blocks(css=css, fill_width=True) as demo:
with gr.Blocks(fill_width=True) as demo:
with gr.Row():
run_button = gr.Button("Generate")
with gr.Row():
input_image = gr.ImageMask(
type="pil",
label="Input Image",
# crop_size=(1024, 1024),
# canvas_size=(1024, 1024),
layers=False,
sources=["upload"],
)
result = ImageSlider(
interactive=False,
label="Generated Image",
)
with gr.Row():
model_selection = gr.Dropdown(
choices=list(MODELS.keys()),
value="RealVisXL V5.0 Lightning",
label="Model",
)
prompt = gr.Textbox(value="high quality", label="Prompt (Don't touch unless you know what you're doing)", visible=False)
size = gr.Slider(value=1024, label="Resize", minimum=0, maximum=1024, step=8, visible=False, interactive=True)
guidance_scale = gr.Number(value=1.5, label="Guidance Scale", visible=False)
steps = gr.Number(value=8, label="Steps", precision=0, visible=False)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, guidance_scale, steps],
outputs=result,
)
input_image.upload(fn=set_img, inputs=input_image).then(fn=resize, inputs=[input_image, size], outputs=[input_image, size, guidance_scale, steps, prompt])
size.change(fn=resize, inputs=[input_image, size], outputs=[input_image, size, guidance_scale, steps, prompt])
demo.launch(share=False)