forked from bgdnxt/gg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradient.go
248 lines (207 loc) · 4.72 KB
/
gradient.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
package gg
import (
"image/color"
"math"
"sort"
)
type stop struct {
pos float64
color color.Color
}
type stops []stop
// Len satisfies the Sort interface.
func (s stops) Len() int {
return len(s)
}
// Less satisfies the Sort interface.
func (s stops) Less(i, j int) bool {
return s[i].pos < s[j].pos
}
// Swap satisfies the Sort interface.
func (s stops) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
type Gradient interface {
Pattern
AddColorStop(offset float64, color color.Color)
}
// Linear Gradient
type linearGradient struct {
x0, y0, x1, y1 float64
stops stops
}
func (g *linearGradient) ColorAt(x, y int) color.Color {
if len(g.stops) == 0 {
return color.Transparent
}
fx, fy := float64(x), float64(y)
x0, y0, x1, y1 := g.x0, g.y0, g.x1, g.y1
dx, dy := x1-x0, y1-y0
// Horizontal
if dy == 0 && dx != 0 {
return getColor((fx-x0)/dx, g.stops)
}
// Vertical
if dx == 0 && dy != 0 {
return getColor((fy-y0)/dy, g.stops)
}
// Dot product
s0 := dx*(fx-x0) + dy*(fy-y0)
if s0 < 0 {
return g.stops[0].color
}
// Calculate distance to (x0,y0) alone (x0,y0)->(x1,y1)
mag := math.Hypot(dx, dy)
u := ((fx-x0)*-dy + (fy-y0)*dx) / (mag * mag)
x2, y2 := x0+u*-dy, y0+u*dx
d := math.Hypot(fx-x2, fy-y2) / mag
return getColor(d, g.stops)
}
func (g *linearGradient) AddColorStop(offset float64, color color.Color) {
g.stops = append(g.stops, stop{pos: offset, color: color})
sort.Sort(g.stops)
}
func NewLinearGradient(x0, y0, x1, y1 float64) Gradient {
g := &linearGradient{
x0: x0, y0: y0,
x1: x1, y1: y1,
}
return g
}
// Radial Gradient
type circle struct {
x, y, r float64
}
type radialGradient struct {
c0, c1, cd circle
a, inva float64
mindr float64
stops stops
}
func dot3(x0, y0, z0, x1, y1, z1 float64) float64 {
return x0*x1 + y0*y1 + z0*z1
}
func (g *radialGradient) ColorAt(x, y int) color.Color {
if len(g.stops) == 0 {
return color.Transparent
}
// copy from pixman's pixman-radial-gradient.c
dx, dy := float64(x)+0.5-g.c0.x, float64(y)+0.5-g.c0.y
b := dot3(dx, dy, g.c0.r, g.cd.x, g.cd.y, g.cd.r)
c := dot3(dx, dy, -g.c0.r, dx, dy, g.c0.r)
if g.a == 0 {
if b == 0 {
return color.Transparent
}
t := 0.5 * c / b
if t*g.cd.r >= g.mindr {
return getColor(t, g.stops)
}
return color.Transparent
}
discr := dot3(b, g.a, 0, b, -c, 0)
if discr >= 0 {
sqrtdiscr := math.Sqrt(discr)
t0 := (b + sqrtdiscr) * g.inva
t1 := (b - sqrtdiscr) * g.inva
if t0*g.cd.r >= g.mindr {
return getColor(t0, g.stops)
} else if t1*g.cd.r >= g.mindr {
return getColor(t1, g.stops)
}
}
return color.Transparent
}
func (g *radialGradient) AddColorStop(offset float64, color color.Color) {
g.stops = append(g.stops, stop{pos: offset, color: color})
sort.Sort(g.stops)
}
func NewRadialGradient(x0, y0, r0, x1, y1, r1 float64) Gradient {
c0 := circle{x0, y0, r0}
c1 := circle{x1, y1, r1}
cd := circle{x1 - x0, y1 - y0, r1 - r0}
a := dot3(cd.x, cd.y, -cd.r, cd.x, cd.y, cd.r)
var inva float64
if a != 0 {
inva = 1.0 / a
}
mindr := -c0.r
g := &radialGradient{
c0: c0,
c1: c1,
cd: cd,
a: a,
inva: inva,
mindr: mindr,
}
return g
}
// Conic Gradient
type conicGradient struct {
cx, cy float64
rotation float64
stops stops
}
func (g *conicGradient) ColorAt(x, y int) color.Color {
if len(g.stops) == 0 {
return color.Transparent
}
a := math.Atan2(float64(y)-g.cy, float64(x)-g.cx)
t := norm(a, -math.Pi, math.Pi) - g.rotation
if t < 0 {
t += 1
}
return getColor(t, g.stops)
}
func (g *conicGradient) AddColorStop(offset float64, color color.Color) {
g.stops = append(g.stops, stop{pos: offset, color: color})
sort.Sort(g.stops)
}
func NewConicGradient(cx, cy, deg float64) Gradient {
g := &conicGradient{
cx: cx,
cy: cy,
rotation: normalizeAngle(deg) / 360,
}
return g
}
func normalizeAngle(t float64) float64 {
t = math.Mod(t, 360)
if t < 0 {
t += 360
}
return t
}
// Map value which is in range [a..b] to range [0..1]
func norm(value, a, b float64) float64 {
return (value - a) * (1.0 / (b - a))
}
func getColor(pos float64, stops stops) color.Color {
if pos <= 0.0 || len(stops) == 1 {
return stops[0].color
}
last := stops[len(stops)-1]
if pos >= last.pos {
return last.color
}
for i, stop := range stops[1:] {
if pos < stop.pos {
pos = (pos - stops[i].pos) / (stop.pos - stops[i].pos)
return colorLerp(stops[i].color, stop.color, pos)
}
}
return last.color
}
func colorLerp(c0, c1 color.Color, t float64) color.Color {
r0, g0, b0, a0 := c0.RGBA()
r1, g1, b1, a1 := c1.RGBA()
return color.RGBA{
lerp(r0, r1, t),
lerp(g0, g1, t),
lerp(b0, b1, t),
lerp(a0, a1, t),
}
}
func lerp(a, b uint32, t float64) uint8 {
return uint8(int32(float64(a)*(1.0-t)+float64(b)*t) >> 8)
}