-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnew_notes_and_todo_for_python-wrapper_code.txt
1027 lines (763 loc) · 42 KB
/
new_notes_and_todo_for_python-wrapper_code.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
PLAN:
** GENERAL/FUTURE TO-DO
[ ] Add indications of n_iterations to FitResult output in case of NM or DE fits
solverResults.GetNFunctionEvals
-- currently, FitResult.nIter = -1 when they succeed
fitting.py: Imfit.nIter
self._modelObjectWrapper.nIter
_modelObjectWrapper is set up by _setupModel
self._modelObjectWrapper = ModelObjectWrapper(...)
pyimfit_lib.pyx: ModelObjectWrapper class
from .imfit_lib cimport Convolver, ModelObject, SolverResults, DispatchToSolver
cdef SolverResults *_solverResults
cdef mp_result *_fitResult
fit() method:
if mode == 'LM':
self._fitResult = self._solverResults.GetMPResults()
if self._solverResults.ErrorsPresent():
self._solverResults.GetErrors(self._fitErrorsVect)
@property
def nIter(self):
if self.fittedLM:
return self._fitResult.niter
else:
return -1
[x] Add retrieval and storage of nFuncEvals in Imfit class
[x] Add code to print out nFuncEvals
[ ] Figure out how to retain number of iterations/generations when NM or DE fit is done
and save it in the FitResult object.
[X] Add ftol keyword to fitting.py --
Imfit.fit and Imfit.doFit
[X] Fix bug in trying to use PointSource-type (PSF interpolation) functios
[X] I. Modify ModelObjectWrapper.__init__() to accept optional PSF & normalization flag
If PSF and flag are non-None, ModelObjectWrapper.__init__() should call setPSF()
*before* calling ModelObjectWrapper._addFunctions()
[X] II. Move code from ModelObjectWrapper.setPSF() into ModelObjectWrapper.__init__();
delete ModelObjectWrapper.setPSF()
[X] III. Modify Imfit._setupModel() so that it initializes ModelObjectWrapper with
new interface, including PSF.
np.asarray(self._psf), self._normalizePSF
[X] IV. Modify Imfit._setupModel() to remove call to self._modelObjectWrapper.setPSF()
[X] Run pytest test_imfit.py to see if test passes
[X] Modify ModelDescription to include reporting if it contains PointSource-type functions
-- attribute hasPointSources [bool]
[X] Add tests to test_descriptions.py
[X] Write code to pass tests
[X] Add error-checking to catch and report if we try to instantiate Imfit object when
model has PointSource and we didn't supply one (raise TypeError)
[X] Write test (in test_imfit.py) to check this
[X] Write code in Imfit.__init__ to make test pass
[ ] Modify various methods in Imfit class to check whether _modelObjectWrapper has been
instantiated or not.
** Update GitHub access to new methodology
[X] Visit GitHub web page
[X]1. Generate Personal Authenticaion Token [PAT] (& copy to pword file)
https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/creating-a-personal-access-token
[X]2. Update Keychain Access
A. Delete current github.com "internet password" entry in Keychain Access
https://docs.github.com/en/free-pro-team@latest/github/using-git/updating-credentials-from-the-macos-keychain
-- this is the password storage for command-line access via git-credential-osxkeychain
(see "Access Control" tab for this entry)
-- do *not* modify any of the "Web form password" entries -- these are what
Safari, etc. use!
B. Force new storage of PAT in keychain
https://docs.github.com/en/free-pro-team@latest/github/using-git/caching-your-github-credentials-in-git
(Note that "$ git config --get credential.helper" confirms that osxkeychain is already set)
** New Update: Update code to use Imfit v1.8
[X] Build and test new Mac Python version
[x] Update imfit submodule
[x] Update submodule
$ cd ~/coding/pyimfit
$ git submodule update --remote --merge
[x] Checkout v1.8
$ cd imfit
$ git checkout tags/v1.8
$ cd ..
$ git commit -a -m "Set Imfit submodule to release v1.8"
$ git push
[x] Build updated libimfit
A. [mac] cd imfit
B. [mac] scons --clang-openmp libimfit.a
C. [mac] cp libimfit.a ../prebuilt/macos
# copy updated Imfit C++ header files
D. [mac] cd .. ; ./update_from_imfit.sh
[X] Build and test pyimfit on Mac
[X] Changed AddFunctions() in v1.8
-- now includes functionLabelList input parameter
[X] Update imfit_lib.pxd to handle changed AddFunctions
[X] Update pyimfit_lib.pyx to handle changed AddFunctions
[X] Update Python code to handle changed AddFunctions
-- e.g., pass in labels when initializing FunctionDescription objects?
[x] Update code in descriptions.py
[x] Update code that reads in config files to check for and add
function labels
[ ] Build and test pyimfit on Linux VM
-- howto_new_distribution.txt
[X] Find notes on building on Linux VM
[X] Build new libimfit.a on Linux VM
-- [opt]2. Generate updated libimfit.a for Linux [VM: ubuntu64-16_dev], IF NECESSARY
[ ] Build new release on Linux VM
-- 4. Do new "develop" install and run tests on Linux VM
** New Update: Make build for Python 3.12
howto_new_distribution.txt
[X] Install Python 3.12
[X] Install Python
[X] Install necessary libraries via pip
[ ] Add Python 3.12 as an option for GitHub Actions testing workflow
[ ] Upload new version to pip staging area
[ ] Email announcement to Imfit mailing list
[ ] Email announcement to AstroPy mailing list
[ ] Announce on Facebook Python-Astronomy group
[ ] Announce on Twitter?
[ ] Announce on Bluesky?
[ ] Announce on Facebook Astrostatistics group
** New Update: Make build for Python 3.10
howto_new_distribution.txt
[X] Install Python 3.10
[X] Install Python
[X] Install necessary libraries via pip
[X] Add Python 3.10 as an option for GitHub Actions testing workflow
[X] Upload new version to pip staging area
[ ] Email announcement to Imfit mailing list
[ ] Email announcement to AstroPy mailing list
[ ] Announce on Facebook Python-Astronomy group
[ ] Announce on Facebook Astrostatistics group
** Alternate outputs for best-fit parameter values
https://github.com/perwin/pyimfit/issues/2
[x] Brainstorm alternate output
-- return ModelDescription object
-- return list of single-function-set dicts
OR: return dict containing single-function-set dicts, so we can optionally
have labels for each function set as the keys (e.g., corresponding to FunctionSetDescription.name)
Default case: 'fs0', 'fs1', etc. as function-set names
Note that ModelObject stores its function sets as as List[FunctionSetDescription]
Possible outline for model-as-dict
'options': optionsDict or None
'function_sets': list of function-set-dicts
function-set-dict -- dict
'name': str or None [default] [--> FunctionSetDescription.name]
'X0'
'Y0'
'function_list': list of function-dicts
function-dict -- OrderedDict
'name': <function name>' ("Exponential", etc.)
'label' : str or None [default]
'parameters' : parameters-dict
parameters-dict -- OrderedDict
'<parameter-name>': parameter-value
OR '<parameter-name>': [parameter-value, "fixed"]
OR '<parameter-name>': [parameter-value, lower-limit, upper-limit]
etc.
[x] Code to generate FunctionDescription object from function-dict
-- FunctionDescription.dict_to_FunctionDescription
[x] Add test code to test_descriptions.py
[x] Add static class function DictToFunction() to FunctionDescription class
[x] Update code till tests pass
[x] Update code-with-parameter-limits till tests pass
[x] Code to generate FunctionSetDescription object from function-set-dict
[x] Add test code to test_descriptions.py
[x] Add static class function DictToFunctionSet() to FunctionSetDescription class
[x] Update code till tests pass
[x] Update code-with-parameter-limits till tests pass
[x] Code to generate ModelDescription object from model-as-dict
[x] Add test code to test_descriptions.py
[x] Add static class function DictToFunctionSet() to FunctionSetDescription class
[x] Update code till tests pass
[x] Update code-with-parameter-limits till tests pass
[x] Code to generate parameter-info list from Parameter object
--- getParamInfoList
returns e.g. [33.4] or [33.4, 0.0, 100.0] or [33.4, 'fixed']
[x] Add test to test_descriptions.py for ParameterDescription.getParamInfoList()
[x] Write code till test passes
[x] Code to generate function-as-dict from FunctionDescription object
--- getFunctionAsDict
[x] Add test to test_descriptions.py for FunctionDescription.getFunctionAsDict()
[x] Write code till test passes
[x] Code to generate function-set-as-dict from FunctionSetDescription object
--- getFuncSetAsDict
[x] Add test to test_descriptions.py for FunctionSetDescription.getFuncSetAsDict()
[x] Write code till test passes
[x] Code to generate model-as-dict from ModelDescription object
--- getModelAsDict
[x] Add test to test_descriptions.py for ModelDescription.getModelAsDict()
[x] Write code till test passes
[x] Convert "name" to "label" in FunctionSetDescription code
[x] update code
[x] Fix code so that test_descriptions.py passes
[x] Clean up config.parse_config() so that it *doesn't* auto-generate "fs{0}" (e.g., "fs0")
function-set names
[x] Convert "fs{0}" name-generation to "" generation
[x] Fix any tests that fail
[x] Code to output dict-based models from Imfit object
-- new method for Imfit (original suggestion was to alter getRawParameters() output;
probably better to have a new method)
getModelAsDict() method
[x] Check for current code (or lack thereof) for outputting models
[x] Write unit test to output dict version of model (test_fitting.py)
[x] Code to instantiate Imfit object with model-dict
-- imfit_fitter = Imfit(model_dict)
[x] Write unit test(s) for this
[x] Modify Imfit.__init__ so unit test passes
[ ] Write documentation for dict-based models
-- overview [somewhere in "Specifying a model"]
[x] Look at current docs to see where this would go
[x] Add 1-sentence mention of model dicts to "For Those Already Familiar with Imfit"
[x] Add new subsection inside "Specify the model (and its parameters)" describing dicts
[x] Add mention of Imfit.getModelAsDict() to "Inspecting the results of a fit" subsection
* Possible bug in Imfit.getModelImage
Working in /Users/erwin/Beleriand/build/psf_matching_experiments/notes_for_psf-matching.txt
In [40]: psfMod = pyimfit.Imfit(pyimfit.ModelDescription.load(fdir+"config_psf_narrow.dat"))
In [44]: psfimage = psfMod.getModelImage(shape=(35,35))
==> segmentation fault!
[ ] This seems to happen when we enter the first OpenMP code section in
ModelObject::CreateModelObject()
BUT note that this segfault does *not* happend in test_fitting.py !
* Figure out fix for handling makeimage-style image generation
Three levels/stages:
0. Instantiate Imfit instance
-- optionally supply PSF, subsampling flag, zero point
1. Instantiate ModelObjectWrapper *without* image size
-- can then be used for e.g. getModelFluxes()
2. Specify image size (e.g. via loadData)
-- Currently, we ignore NCOLS/NROWS image-description parameters in a config file
(config.py) [that is, we load and store the values, but otherwise ignore them]
-- Remember that model-image size combines with PSF size to set the internal model-image array,
so it's not something that can be easily changed
-- Ideally, we want some way to specify image size via NCOLS/NROWS image-description parameters,
as is currently done by makeimage
-- right now, the only way to specify image size is
1. Load an image (ModelObjectWrapper.loadData) to set model image size = data image
(e.g., via Imfit.loadData())
OR
2. Use ModelObjectWrapper.getModelImage()
One can call Imfit.getModelImage(shape=xxx), but only *once* (subsequent calls
that include a shape specification raise errors).
In ModelObjectWrapper, the loadData() and setupModelImage() methods are the only way
to specify the image size
* Packaging:
* Make Python package (ignore Imfit library compilation for now)
[x] Make text file summarizing how to compile/build package in current form
* Test upload to TestPyPI and installation
[x] Make virtualenv
[x] Trial upload of wheel
[x] Trial installation in virtualenv
* Update README.md
-- Will be seen on Github
* Update/flesh out README_pyimfit.md
-- Will be seen on PyPI
* Include compilation of Imfit library
[x] Look up notes on how to include Cython compilation in a package build
http://martinsosic.com/development/2016/02/08/wrapping-c-library-as-python-module.html#summary
* Figure out how to install cython and scons as part of general installation
https://stackoverflow.com/questions/54117786/add-numpy-get-include-argument-to-setuptools-without-preinstalled-numpy
[X] cython
-- needed for cythonize in setup.py and for actual processing of .pyx into .cpp
(possibly later we could relax this, by generating the .cpp files and making
them part of the repo/distribution)
[x] scons
Need to locally/temporarily install scons as a Python package *and* have
access to the "scons" binary
[x] Figure out how to *remove* general SCons installation
-- right now, if we download the precompiled binary version from test.pypi.org,
it installs scons (in addition to pyimfit)
* Test compilation in virtualenv with different compilers
[x] Write notes/script to set up new virtualenv with bare essentials
[x] Write notes/script for making clean setup of pyimfit
-- scons -c on imfit subdir
-- rm build/*, etc.
[x] Write notes/script
[x] Test with GCC-9
[-] Test with Homebrew llvm
[x] Write code to pass in user-specified CXX, CC to scons for building libimfit.a
* Test installation on Linux
[x] Test installation on Ubuntu 16 VM
* Documentation:
[x] Check how to set up doc input files for readthedocs
[x] Look up how to do Sphinx setup/quickstart (e.g., how to generate setup.py file)
[x] Do Sphinx setup/quickstart
[x] Test Sphinx documentation generation
[x] Make basic how-to/summary files (useful for me)
[x] Basic summary .rst file
-- the main pieces
-- how to assemble a model
-- how to do a fit
-- how to look at the results
[X] Add mention/example of how to include/use PSF images and mask images
[X] Add mention/example of how to do bootstrap resampling
[ ] Add API documentation
To make this work, we need to create files in api_ref_local/, such as descriptions.rst
files in docs/api_ref/, which are generated via lines in make_docs.sh, e.g.:
./convert_apidoc_html.py ./_build/html/api_ref_local/descriptions.html ./api_ref/descriptions_base.html
-- modify api_ref/api_index.rst to include more files
[ ] Add documentation file for config.py
[X] Add documentation file for descriptions.py
[ ] Add documentation file for imfit_funcs.py
[ ] Add documentation file for utils.py
* Rework package to make it astropy-compatible
* [X] Decide on consistent use of "function set" vs "function block"
[x] Rationalize handling of masks and MaskedArray in fitting.Imfit.loadData
[x]1. We should check that mask has same shape as data image *before*
we call _composemask
[x]2. Rationalize processing of mask
[ ] Feedback options
[x] Option to print feedback from Levenberg-Marquardt
[x] Option to print feedback from Nelder-Mead
[x] Option to print feedback from DE
[x] Option to print feedback from bootstrap-resampling
[ ] Option in doFit() to print a fit summary at the end
-- automatically printed when verbose=1 or 2?
[x] check how fitting functions in scipy (and astropy?) return things
-- scipy.optimize.minimize returns a slightly modified dict class called OptimizeResult (basically just
allowing keys to be accessed as attributes
[x] Separate public method in Imfit class which returns fit summary (called by doFit())
[x] Write unit test
[x] Error if fit not terminated
[x] Basic fit result
[x] Write stub function
**CURRENT**
[x] Finish adding entries to getFit
-- NFEV?
-- NPEGGED?
-- solver name
-- solver status (and string translation?)
-- parameter uncertainties in L-M case?
Scipy.optimize.minimize output
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 339
Function evaluations: 571
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html#scipy.optimize.OptimizeResult
Imfit output -- LM:
*** mpfit status = 1 -- SUCCESS: Convergence in fit-statistic value.
CHI-SQUARE = 66932.392040 (63421 DOF)
INITIAL CHI^2 = 712278.469657
NPAR = 7
NFREE = 7
NPEGGED = 0
NITER = 13
NFEV = 98
Reduced Chi^2 = 1.055366
AIC = 66946.393806, BIC = 67009.795665
Imfit output -- NM:
Nelder-Mead Simplex: status = 3 -- SUCCESS: ftol_rel or ftol_abs reached
CHI-SQUARE = 66932.392242
NFEV = 557
Reduced Chi^2 = 1.055366
AIC = 66946.394008, BIC = 67009.795867
EXAMPLE OF USE INSIDE AN OPTIMIZER CLASS/METHOD:
result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0],
status=warnflag, success=(warnflag == 0),
message=msg, x=x, final_simplex=(sim, fsim))
[x] Add method to Imfit class to return list of parameter names in bootstrap-output form
-- e.g., ["X0_1", "Y0_1", "PA_1", etc.]
-- same as headers generated by ModelObject::GetParamHeader
-- simple enough that we can probably get away with coding it in Python
[x] Write tests for getNumberedParameterNames
[x] Write code to pass tests
[x] Write code (test_boodtrap.py) to check for returned parameter names
[x] Add option to Imfit.runBootstrap() to return parameter names
[ ] Investigate mechanisms for allowing user to halt/cancel a fit (or image-generation, or
bootstrap resampling) in process
https://stackoverflow.com/questions/21550418/how-to-interrupt-native-extension-code-without-killing-the-interpreter
[ ] Fix broken SimpleModelDescription
-- currently, if we create a "blank" SimpleModelDescription, we cannot add a FunctionSetDescription
to it
-- ideally, we should be able to instantiate SimpleModelDescription using
a) an existing ModelDescription instance (with one function set)
b) an existing FunctionSetDescription instance
b) a single-entry list/tuple of FunctionSetDescription instances
-- we should also be able to set the x0 and y0 values
[ ] Create some tests in test_descriptions.py for how SimpleModelDescription should act
[x] Write test(s) instantiating from existing ModelDescription
[x] Basic test
[x] Test that we raise exception for case of input ModelDescription with 2+ function sets
[x] Write test(s) instantiating from existing FunctionSetDescription
[x] Write test(s) instantiating from existing FunctionDescription
[ ] Write test(s) modifying x0, y0
[X] Add test of replaceOptions method (ModelDescription)
[X] Add test of nParameters value (SimpleModelDescription)
[X] Add ability to get list of image-function names
-- instantiate a list of string when module is imported?
[X] Decide which module to put this in
[X] Add ability to get list of image-function parameters
[x] Improvements/fixes to Imfit class
[x] getModelImage -- allow user to specify new parameter vector
makeimage_main.cpp:
theModel->CreateModelImage(paramsVect);
theModel->GetModelImageVector()
[x] Add ability to specify optional/new parameter vector to ModelObjectWrapper
-- Note that computeFitStatistic already allows this
-- do we want to permanently update the internal parameter vector,
or just temporarily?
[x] Add keyword option for specifying new parameter array to Imfit.getModelImage()
[x] Set up testing of Imfit.getModelImage(newParameters)
[x] Write test code for FlatSky component, varying I_0 value
[x] getModelFluxes and getModelMagnitudes -- ditto
[x] Write unit tests
[x] Modify ModelObjectWrapper.getModelFluxes to allow optional parameter vector
[x] Modify ModelObjectWrapper.getModelMagnitudes to allow optional parameter vector
[x] Catch possible error where user specifies alternate shape for model image
via getModelImage when Imfit object already has that specified (e.g., via loadData)
[x] Write unit test in test_fitting.py to catch this
[ ] Processing of makeimage config files
-- We would like to be able to tell PyImfit to read a makeimage config file and set
up the model accordingly, *including* the image dimensions (if supplied)
[ ] LATER: handle resizing of model image and/or new
-- This will require changing Imfit to allow resizing, new data, etc.
Alternately (and probably simpler), this will require allowing Imfit to
discard the old ModelObjectWrapper and properly initialize a new one
-- Note that self._dataSet records if we have called loadData, and thus whether or
not a data image, etc. (including image size) has been added
[ ] Resizing of model image
[ ] Changing image-description parameters
[ ] Changing PSF image(s)
[ ] Changing data image (can include resizing of model image)
[x] Computation of total and individual-function fluxes, magnitudes
-- e.g., equivalent of makeimage --print-fluxes
-- option/method: total flux only (with zero point as optional parameter)
-- option/method: fluxes for individual functions (with zero point as optional parameter)
[x] Create unit-test file
[x] Create preliminary unit tests
[x] Write code to pass unit tests
[x] Method to save best-fit parameters (e.g., in Imfit object) to imfit/makeimage-compatible output
file
-- We should actually be able to do two things
1. Save best-fit parameters to something like a standard imfit best-fit output file
2. Save a model to something like a standard imfit config file (including GAIN, etc.)
-- e.g., if we construct a model in Python, and then want to save it to a file
[x] Check to see if code for this already exists [no]
[x] Add code to ModelDescription to save model description to file
[x] Add code to ParameterDescription to output formatted string
[x] Add code to unit test (test_description.py)
[x] Write code to pass test
[x] Add code to ParameterDescription to output formatted string w/ optional errors (no limit info)
[x] Add code to unit tests (test_description.py) -- no errors
[x] Add code to unit tests (test_description.py) -- with errors
[x] Write code to pass tests
[x] Add code to FunctionDescription to output list of formatted strings
[x] Add code to unit test (test_description.py)
[x] Write code to pass test
[x] Add code to FunctionDescription to output list of formatted strings w/ optional errors (no limit info)
[x] Add code to unit tests (test_description.py) -- no errors
[x] Add code to unit tests (test_description.py) -- with errors
[x] Write code to pass tests
[x] Add code to FunctionSetDescription to output list of formatted strings
[x] Add code to unit test (test_description.py)
[x] Write code to pass test
[x] Add code to FunctionSetDescription to output list of formatted strings w/ optional errors (no limit info)
[x] Add code to unit test (test_description.py) -- no errors
[x] Add code to unit test (test_description.py) -- with errors (or noLimits=True)
[x] Write code to pass test
[x] Add code to save ModelDescription as imfit config file (GAIN, parameter limits, etc.)
[x] Add code to unit test (test_description.py)
[x] Write code to pass test
[x] Add code to save ModelDescription as imfit output file (no GAIN, etc.; should include
parameter errors, if they exist)
[x] Add code to Imfit to do same (should call method on internal
e.g., use getModelDescription(), then pass parameters to the resulting ModelDescription object
[x] Test Imfit.saveCurrentModelToFile()
[x] Test saving model prior to fit
[x] Run fit with NM (no parameter errors)
[x] Run fit with LM (parameter errors)
[x] includeImageOptions=True doesn't actually save image options if they're provided
in the Imfit.fit method
-- OK, the problem is:
1. How do we save keyword values passed in when .fit() or .loadData() [called by fit]
are called (currently, these are passed on to _modelObjectWrapper.loadData)
2. ModelDescription.getStringDescription needs to be able to
[x] Add code for updating ModelDescription option within Imfit
-- use ModelDescription.updateOptions()
[x] Write _updateModelDescription
[x] Write unit test for Imfit._updateModelDescription
[x] Write code to pass test
[x] Test to see if Imfit.saveCurrentModelToFile() correctly saves user-supplied image options
[ ] Experiment with building using shared libraries
-- See notes in notes_on_packaging.txt [delocate for macOS, auditwheel for Linux]
https://stackoverflow.com/questions/47042483/how-to-build-and-distribute-a-python-cython-package-that-depends-on-third-party
[ ] Experiment with inserting shared libraries into Linux wheel
[ ] Build wheel under Linux
[ ] Download distribution onto Linux VM
$ git clone --recurse-submodules https://github.com/perwin/pyimfit.git pyimfit
$ cd pyimfit
[ ] Build binary wheel
$ python3 setup.py bdist_wheel
[ ] Use auditwheel to copy shared libraries into wheel
[X] We need the following internal flag variables in Imfit:
has-FinalSetupForFitting-been-called?
_finalSetupDone
has-fit-been-done? (converged *or* terminated)
_fitDone
has-fit-statistic-been-computed?
_fitStatComputed
Currently, Imfit has the following *properties*:
.fitConverged = return self._modelObjectWrapper.fitConverged
= [ModelObjectWrapper] return (self._fitStatus > 0) and (self._fitStatus < 5)
.fitTerminated = return self._modelObjectWrapper.fitTerminated
= [ModelObjectWrapper] return self._fitStatus >= 5
In ModelObjectWrapper
_fitStatus = int, initially 0; then = return value from DispatchToSolver
[X] Imfit.doFit method
-- specifies which solver to use
-- initiates the fit
[X] doFit method
def doFit( self, solver='LM' ):
if solver not in ['LM', 'NM', 'DE']:
raise Exception('Invalid solver name: {0}'.format(solver))
self._modelObjectWrapper.fit(verbose=self._verboseLevel, mode=solver)
if not self.fitError:
self._fitDone = True
self._fitStatComputed = True
[X] Modify ModelObjectWrapper.fit
-- *remove* self._model.FinalSetupForFitting() call
[X] ModelObjectWrapper.doFinalSetup method
-- if NOT _finalSetupDone: calls ModelObject::FinalSetupForFitting
[X] Imfit.loadData method
-- optional PSF data
-- set this first!
-- loads data and image-description parameters and fit-statistic selection
-- calls FinalSetupForFitting
[X] Main refactoring (don't include PSF option)
[X] Modify ModelObjectWrapper.loadData
-- status = self._model.FinalSetupForFitting() right at the end
-- set internal _finalSetupDone flag
[X] Add PSF option
[X] Refactor existing Imfit.fit method to call .loadData and then .doFit
[X] Refactor
[X] Run unit & regression tests
[x] Test use of PSF convolution in computation of fit statistics and fitting
PSF convolution in test_fitting_and_fitstatistic.py is currently not working!
-- Problem is: PSF image is *not* being normalized?
Normalization w/in C++ imfit (setup_model_object.cpp):
status = newModelObj->AddPSFVector(nPixels_psf, nColumns_psf, nRows_psf, psfPixels,
options->normalizePSF);
Normalization in pyimfit
def setPSF(self, np.ndarray[np.double_t, ndim=2, mode='c'] psf):
self._model.AddPSFVector(n_cols_psf * n_rows_psf, n_cols_psf, n_rows_psf, &self._psfData[0])
def _setupModel(self):
if self._psf is not None:
self._modelObjectWrapper.setPSF(np.asarray(self._psf))
[x] Add normalize option/keyword to Imfit class
[x] Add as property with default value = True
[x] Modify Imfit._setupModel to include normalize flag value as input to setPSF
[x] Modify ModelObjectWrapper.setPSF to accept normalization flag and pass it on
to ModelObject::AddPSFVector
[x] Run tests in test_fitting_and_fitstatistic.py
[x] Add option for specifying *no* PSF normalization
-- should be sample place we pass in the PSF image!
[ ] Modify Imfit: add ability to change parameter *values*
[x]-- necessary if we want to use Imfit to get fit statistic *without* running
a fit
-- useful if user wants to re-run a fit with different starting parameters
-- for now: we want to be able to supply a list/ndarray of parameter *values*,
without touching the parameter limits
-- Two modes:
[x]1. Pass parameter values to ModelObject::GetFitStatistic
2. Update the parameter values in Imfit object (for future fits)
Current ModelObjectWrapper.getFitStatistic(mode) does this:
def getFitStatistic( self, mode='none' ):
cdef double fitstat
if self.fittedLM: -- i.e., if there was a successful fit with LM
fitstat = self._fitResult.bestnorm
else:
fitstat = self._model.GetFitStatistic(self._paramVect)
[and then returns a modified value -- e.g., reduced, AIC, BIC -- depending
on value of "mode"]
[X] New method in ModelObjectWrapper
computeFitStatistic( self, parameterVector=None ):
[ type for parameterVector = np.ndarray[np.double_t, ndim=1, mode='c'] ?]
if parameterVictor is None:
fitstat = self._model.GetFitStatistic(self._paramsVect)
else:
# possibly convert parameterVector to double *
fitstat = self._model.GetFitStatistic(parameterVector)
[X] Corresponding method for Imfit
[X] Add extra unit tests
Basically, we need to update ModelObjectWrapper._paramVect
[ ] Updating of current parameter vector in ModelObjectWrapper:
[ ] Quick and dirty modification:
[ ] Add .updateParameterValues method to ModelObjectWrapper
-- should update ModelObjectWrapper._paramVect
[ ] Add .updateParameterValues method to Imfit
-- should call ModelObjectWrapper._paramVect on self._modelObjectWrapper
MAYBE LATER:
[ ] Check to see if there's a way to modify parameter values in an existing
ModelDescription instance
[ ] Modify ParameterDescription
[ ] Change "value" property so we can set it as well as read it
[ ] Modify ModelDescription
[ ] ModelDesription.updateParameterValues
[ ] Modify Imfit to allow updating of parameter values
-- i.e., call
[X] Test whether we can call Imfit.fitStatistic w/o running fit
** [X] ADD OVERSAMPLED-PSF SUPPORT TO PYIMFIT
In current imfit/makeimage code, this is done in SetupModelObject
[[ *after* PSF vector is added, if any ]]
[[ *after* adding data image [or specifying model image size in makeimage mode] ]]
-- this also makes sense from the standpoint of wanting to have the data/model
image dimensions so we can tell if the oversampling regions are within the image
if (options->psfOversampling) {
for (int i = 0; i < (int)psfOversampleInfoVect.size(); i++) {
status = newModelObj->AddOversampledPsfInfo(psfOversampleInfoVect[i]);
if (status < 0) {
fprintf(stderr, "*** ERROR: Failure in ModelObject::AddOversampledPsfInfo!\n\n");
exit(-1);
}
}
}
So we need a way of creating PsfOversamplingInfo objects, and passing pointers
to them
We need to add PsfOversamplingInfo to ModelObjectWrapper, via Imfit
-- PsfOversamplingInfo can only be added to ModelObject
1. *After* data image added (or model image setup):
nDataColumns and nDataRows must already be set
2. *After* PSF image (if any) has been added
Current way to do this is via keyword in call to ModelObjectWrapper.loadData()
psf_oversampling_list
[X] Add declaration of PsfOversamplingInfo to imfit_lib.pxd
[X] Figure out when we need to or can add psf oversampling info to ModelObject
*After* data image added (or model image setup):
nDataColumns and nDataRows must already be set
*After* PSF image (if any) has been added
[X] Add keyword parameter for oversampling-info objects to ModelObjectWrapper.
[X] Add wrapper method around ModelObject::AddOversampledPsfInfo to ModelObjectWrapper
[X] Make unit/regression test for use of PSF oversampling
[ ] Add some kind of wrapper/factory function so we can make PsfOversampling objects
*without* having to explicitly call FixImage first
-- Because PsfOversampling is defined with a __cinit__ (in pyimfit_lib.pyx) and
an explicity format for its input PSF-image array, the input must be in proper
(little-endian) format *before* we call PsfOversampling()
[ ] Add preliminary PSF oversampling documenation
[ ] Later: add separate method to Imfit class allowing user to pass in
just the oversampling info?
ModelObjectWrapper:
cdef addOversamplingInfo(self, PsfOversampling oversamplingInfo):
keyword in loadData:
psf_oversampling_list : list of PsfOversampling
List of PsfOversampling objects, describing oversampling regions, PSFs,
and oversampling scales.
=====================================
HOWTO unit testing, regression testing, etc.:
We can manually run the tests via
$ cd pyimfit/pyimfit/tests
$ pytest
Currently, these test must be run from within the test/ subdirectory, since they rely
on local relative file paths to get at the data in pyimfit/pyimfit/data/ -- so if you
do something like "cd pyimfit ; pytest" or "cd pymfit ; pytest pyimfit/tests", the
tests will fail because the paths to the data files in data/ will be wrong....
We can also set up a daemon process that monitors pyimfit/pyimfit/ and its subdirectories
for any changes to files, and re-runs "pytest" via the "conttest" script
(original at https://github.com/eigenhombre/continuous-testing-helper; modified version
in ~/python)
$ cd pyimfit/pyimfit
$ ~/python/conttest.py "cd tests ; pytest"
OR:
$ cd pyimfit/pyimfit/tests
$ ~/python/conttest.py --dir=.. "pytest"
(Ctrl-C will kill the conttest process)
(Note that the options of a ".conttest-excludes" file in the same directory which tells
conttest to ignore a set of subdirectories doesn't seem to work -- but the only subdirectories
in pyimfit/pyimfit are __pycache__/ and data/, and arguably we *should* monitor those,
so it's not really a problem.)
* As a reminder, imfit does the following, in this order
1. Creates ModelObject and loads data, error, mask, PSF, image-description info
(via SetupModelObject)
Adds PSF *first*, then adds data, etc. [because when we add data with
AddImageDataVector, SetupModelImage is then automatically called, and
the internal model-image dimensions are determined, and so *if* we're
using a PSF, its dimensions need to already be in place]
2. Adds image functions to ModelObject (via AddFunctions)
[I *believe* that 1 and 2 can be done in either order...]
3. ModelObject->FinalSetupForFitting()
[then we add info about parameter, etc.]
imfit_fitter = Imfit(model_desc)
imfit_fitter.loadData(image_ic3478, gain=4.725, read_noise=4.3, original_sky=130.14)
* pyimfit currently works this way
1. Instantiate Imfit object, storing the input ModelDescription and PSF data
ex: imfit_fitter = Imfit(model_desc)
ex: imfit_fitter = Imfit(model_desc, psfImage)
2. Supply image data (and image-description info, like gain)
ex: imfit_fitter.loadData(image_ic3478, gain=4.725, read_noise=4.3, original_sky=130.14)
3. Call Imfit.fit, which
A. calls _setupModel(), which instantiates ModelObjectWrapper object,
passing it the ModelDescription
Then, inside ModelObjectWrapper, we do
self._model = new ModelObject()
self._model.SetDebugLevel(debug_level)
self._model.SetVerboseLevel(verbose_level)
self._addFunctions(self._modelDescr, subsampling=subsampling, verbose=verbose_level)
self._paramSetup(self._modelDescr)
Then, PSF data (if any) is passed to ModelObjectWrapper object via
self._modelObjectWrapper.setPSF(np.asarray(self._psf))
B. Sends data, etc. to ModelObjectWrapper object via
self._modelObjectWrapper.loadData(image, error, mask, **kwargs)
C. Calls FinalSetupForFitting *and* initiates the fit via
self._modelObjectWrapper.fit(verbose=self._verboseLevel, mode=mode)
So, in conceptual summary
1. Create ModelObject and add functions (and param info)
2. Add PSF
3. Add data
4. FinalSetupForFitting()
5. Run fit
model_object.cpp:
/* ---------------- PUBLIC METHOD: SetupModelImage -------------------- */
// Called by AddImageDataVector(); can also be used by itself in make-image
// mode. Tells ModelObject to allocate space for the model image.
// Note that if PSF convolution is being done, then AddPSFVector() must be
// called *before* this method.
supply data
supply PSF
==> call FinalSetupForFitting
supply PSF
supply data
==> call FinalSetupForFitting
supply data (not using PSF)
==> ??
Why we might want to supply PSF *first*, separate from data image, etc.
-- What if user wants to re-run fit with updated mask image?
-- What if user wants to re-run fit with changed image section?
1. Add doFinalSetup method to Imfit (and ModelObjectWrapper)
2. Modify ModelObjectWrapper.fit so that it checks to see if ModelObject::FinalSetupForFitting
has already been called; if not,
PROBLEMS:
When user calls Imfit.fitStatistic, .reducedFitStatistic, .AIC, or .BIC
-- Do we re-compute the fit statistic?
-- What if fit statistic already exists?
Imfit.fit(...)
self._modelObjectWrapper.loadData(image, error, mask, **kwargs)
self._dataSet = True
self._modelObjectWrapper.fit(verbose=self._verboseLevel, mode=mode)
@property
def fitStatistic(self):
"""
The :math:`\\chi^2`, Poisson MLR, or Cash statistic of the fit.
"""
return self._modelObjectWrapper.getFitStatistic(mode='none')
ModelObjectWrapper:
def fit( self, double ftol=1e-8, int verbose=-1, mode='LM', seed=0 ):
cdef int solverID
cdef string solverName
status = self._model.FinalSetupForFitting()
if status < 0:
raise Exception('Failure in ModelObject::FinalSetupForFitting().')
NOTE that getFitStatistic method currently does *not* check to see if
FinalSetupForFitting was actually called!
So one could plausibly call ModelObjectWrapper.loadData and then call