Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

想请问一下,sbert做实体链接时,symptom 、disease、drug的预向量化是通过什么方式做的?项目没发现这一步 #6

Open
13227721183 opened this issue Oct 31, 2022 · 2 comments

Comments

@13227721183
Copy link

想请问一下,sbert做实体链接时,symptom 、disease、drug的预向量化是通过什么方式做的?项目没发现这一步

@pen-ho
Copy link
Owner

pen-ho commented Nov 2, 2022

想请问一下,sbert做实体链接时,symptom 、disease、drug的预向量化是通过什么方式做的?项目没发现这一步

https://www.sbert.net/examples/applications/semantic-search/README.html 可以看sbert这个文档,先把symptom 、disease、drug的词通过sbert 进行encode成向量然后导出,就是我embedding下的pkl文件。然后用util.semantic_search对离线计算好的emb和线上输入的query的emb计算相似度查出得分最高的字典中的词。

@ZHAOFEGNSHUN
Copy link

请问这部分代码可以贴一下吗?谢谢您

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants