-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gym.py
169 lines (134 loc) · 6.96 KB
/
run_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import sys
import multiprocessing as mp
import numpy as np
import json
import jax
from utils.common_utils import print_, save_frames_as_gif, setup_environment, set_global_seeds, prepare_config, update_config_with_args, setup_output_dirs
import time
import os
from planners.gym_interface import setup_planner
from omegaconf import OmegaConf
from scipy.io import savemat
DISPROD_PATH = os.getenv("DISPROD_PATH")
sys.path.append(DISPROD_PATH)
DISPROD_CONF_PATH = os.path.join(DISPROD_PATH, "config")
ENV_MAPPING = { "cp": "cartpole",
"ccp" : "continuous_cartpole",
"mc": "mountain_car",
"cmc" : "continuous_mountain_car",
"p" : "pendulum",
"ccp_h" : "continuous_cartpole_hybrid",
"cmc_sp" : "sparse_continuous_mountain_car",
"cdc" : "continuous_dubins_car",
"cmc_hd" : "continuous_mountain_car_high_dim",
"se": "simple_env"}
def run(cfg, queue, n_episodes, seeds):
scores = []
env = setup_environment(cfg)
agent = setup_planner(env, cfg)
for idx in range(n_episodes):
set_global_seeds(seed=seeds[idx], env=env)
key = jax.random.PRNGKey(seeds[idx])
done = False
total_reward = 0
n_step = 0
# Reset everything
obs = env.reset()
ac_seq, key = agent.reset(key)
# agent.reset()
frames = []
while not done:
action, ac_seq, tau, key = agent.choose_action(obs, ac_seq, key)
n_step += 1
print(f"Step: {n_step}, State: {obs}, Action: {action}")
if cfg['debug_planner']:
print_(f"Step: {n_step}, State: {obs}, Action: {action}", cfg['log_file'])
if cfg["plot_imagined_trajectory"]:
env.set_imag_traj_data(tau)
if cfg['render']:
env.render()
if cfg['save_as_gif']:
frames.append(env.render(mode="rgb_array"))
obs, reward, done, _ = env.step(np.array(action))
total_reward += reward
# Save frames
if len(frames) > 0:
save_frames_as_gif(frames, path=f"{cfg['graph_dir']}", filename=f"seed_{seeds[idx]}.gif")
# Convert to list if reward is ndarray. Required just for Pendulum.
if type(total_reward).__module__ in ['numpy', "jaxlib.xla_extension"]:
total_reward = total_reward.tolist()
# Dump scores as JSON
scores.append({"seed": seeds[idx], "returns": total_reward, "steps": n_step})
if "dubins" in cfg["env_name"]:
env.save_trajectory(f"{cfg['graph_dir']}", f"{seeds[idx]}_tau")
queue.put(scores)
def main(args):
args.env_name = ENV_MAPPING[args.env]
cfg = prepare_config(args.env_name, DISPROD_CONF_PATH)
cfg = update_config_with_args(cfg, args, base_path=DISPROD_PATH)
run_name = cfg["run_name"]
# Setup virtual display for server
if args.headless.lower() == "true" and cfg["save_as_gif"]:
setup_virtual_display()
setup_output_dirs(cfg, run_name, DISPROD_PATH)
base_seed = cfg["seed"]
partitions = np.minimum(mp.cpu_count(), cfg["n_episodes"])
episode_per_partition = int(np.ceil(cfg["n_episodes"]/partitions))
print(f"Evaluating {args.env_name} using {partitions} CPUs for {cfg['n_episodes']} episodes. Config {OmegaConf.to_yaml(cfg)}")
seeds = list(range(base_seed, base_seed * ((episode_per_partition * partitions) + 1), base_seed))
queue = mp.Queue()
processes = []
scores = []
for idx in range(0, len(seeds), episode_per_partition):
p = mp.Process(target=run, args=(cfg, queue, episode_per_partition, seeds[idx:idx+episode_per_partition]))
p.start()
processes.append(p)
for p in processes:
p.join()
while (not queue.empty()):
scores.append(queue.get())
with open(f"{cfg['log_dir']}/output.log", 'w') as f:
json.dump(scores, f)
rewards_matrix = np.array([(score["seed"], score["returns"]) for el in scores for score in el])
rewards = rewards_matrix[:, 1]
rewards_mean = np.mean(rewards)
rewards_sd = np.std(rewards)
print(f"Mean: {rewards_mean}, SD: {rewards_sd} \n")
with open(f"{cfg['log_dir']}/summary.log", 'w') as f:
f.write(f"Config: {OmegaConf.to_yaml(cfg)} \n")
f.write(f"Mean: {rewards_mean}, SD: {rewards_sd} \n")
savemat(os.path.join(cfg['log_dir'], "rewards.mat"),{
"rewards": rewards_matrix
})
def setup_virtual_display():
from pyvirtualdisplay import Display
display = Display(visible=0, size=(1400, 900))
display.start()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, choices=["cp", "ccp", "mc", "cmc", "p", "ccp_h", "cmc_sp", "cdc", "cmc_hd", "se"], required=True)
parser.add_argument('--render', type=str, default="True")
parser.add_argument('--seed', type=int, help='Seed for PRNG', default=42)
parser.add_argument('--run_name', type=str, help='Run Name', default=str(int(time.time())))
parser.add_argument('--depth', type=int, help='Specifies the planning horizon for the planner.')
parser.add_argument('--alpha', type=float, help='Controls noise levels in the simulator.')
parser.add_argument('--reward_sparsity', type=float, help='Controls the sparsity of rewards in the planner.')
parser.add_argument('--n_episodes', type=int, help='Number of episodes to run the experiment for.')
parser.add_argument('--alg', type=str, help='Specify which algorithm to use - DiSProD/MPPI/CEM', choices=['disprod', 'mppi', 'cem'])
parser.add_argument('--obstacles_config_file', type=str, help="Config filename without the JSON extension",
default="dubins")
parser.add_argument('--map_name', type=str, help="Specify the map name to be used. Only called if dubins or continuous dubins env", default="no-ob-1")
parser.add_argument('--headless', type=str, help="If set to True, then the program is being run on server",
default="False")
# CEM/MPPI
parser.add_argument('--n_samples', type=int, help='Number of samples to sample in CEM/MPPI')
# DiSProD specific
parser.add_argument('--step_size', type=float, help='Controls the step-size for action mean updates in DiSProD')
parser.add_argument('--step_size_var', type=float, help='Controls the step-size for action variance updates in DiSProD')
parser.add_argument('--taylor_expansion_mode', type=str, help="Control the use of variance in Taylor's expansion", choices=['complete', 'state_var', 'no_var'])
parser.add_argument('--n_restarts', type=int, help='Number of restarts to perform in DiSProD')
# For experiments with continuous-mountain-car-high-dim
parser.add_argument('--n_actions', type=int, help="Varying the number of actions. n_actions = n_redundant_actions + 1", default=1)
args, unknown = parser.parse_known_args()
main(args)