-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscrete_disprod.py
305 lines (231 loc) · 11.3 KB
/
discrete_disprod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import jax
import jax.numpy as jnp
from functools import partial
from planners.utils import adam_with_projection
from planners.disprod import Disprod
class DiscreteDisprod(Disprod):
def __init__(self, env, cfg):
super(DiscreteDisprod, self).__init__(env, cfg)
self.ac_lb = 0
self.ac_ub = env.action_space.n - 1
# self.nA = cfg["nA"]
# self.nS = cfg["nS"]
self.depth = cfg.get("depth")
self.n_res = cfg["disprod"]["n_restarts"]
self.max_grad_steps = cfg["disprod"]["max_grad_steps"]
self.step_size = cfg["disprod"]["step_size"]
self.step_size_var = cfg["disprod"]["step_size_var"]
self.conv_thresh = cfg["disprod"]["convergance_threshold"]
self.log_file = cfg["log_file"]
# Multiplicative factor used to transform free_action variables to the legal range.
self.scale_fac = self.ac_ub - self.ac_lb
self.converged_jit = jax.jit(lambda x, thresh: jnp.max(jnp.abs(x)) < thresh)
self.n_bin_var = cfg.get("n_bin_var", 0)
self.n_real_var = self.nS - self.n_bin_var
# Partial function to initialize action distribution
self.ac_dist_init_fn = init_ac_dist(self.n_res, self.depth, self.nA, low_ac=0, high_ac=1)
norm_mu, norm_var = 0, 1
noise_dist = (jnp.array([norm_mu]), jnp.array([norm_var]))
projection = projection_fn(self.nA)
self.batch_projection = jax.vmap(projection, in_axes=(0), out_axes=(0))
# Dynamics distribution function
if cfg["disprod"]["taylor_expansion_mode"] == "complete":
fop_fn = fop_analytic(self.ns_fn, env)
sop_fn = sop_analytic(self.ns_fn, env)
self.dynamics_dist_fn = dynamics_comp(self.ns_fn, env, fop_fn, sop_fn, noise_dist, self.n_real_var, self.n_bin_var)
elif cfg["disprod"]["taylor_expansion_mode"] == "no_var":
self.dynamics_dist_fn = dynamics_nv(self.ns_fn, env, noise_dist, self.n_real_var, self.n_bin_var)
else:
raise Exception(
f"Unknown value for config taylor_expansion_mode. Got {cfg['taylor_expansion_mode']}")
# Reward distribution function
if cfg['disprod']['reward_fn_using_taylor']:
self.reward_dist_fn = reward_comp(self.reward_fn, self.env)
else:
self.reward_dist_fn = reward_mean(self.reward_fn, self.env)
# Action selector
if cfg["disprod"]["choose_action_mean"]:
self.ac_selector = lambda m,v,key: m
else:
self.ac_selector = lambda m,v,key: m + jnp.sqrt(v) * jax.random.normal(key, shape=(self.nA,))
self.rollout_fn = rollout_graph(self.dynamics_dist_fn, self.reward_dist_fn)
self.q_fn = q(noise_dist, self.depth, self.rollout_fn)
self.batch_q_fn = jax.vmap(self.q_fn, in_axes=(0, 0), out_axes=(0))
self.batch_grad_q_fn = jax.vmap(grad_q(self.q_fn), in_axes=(0, 0), out_axes=(0))
def reset(self, key):
key_1, key_2 = jax.random.split(key)
ac_seq = jax.random.uniform(key_1, shape=(self.depth, self.nA))
return ac_seq, key_2
@partial(jax.jit, static_argnums=(0,))
def choose_action(self, obs, prev_ac_seq, key):
ac_seq = prev_ac_seq
# Create a vector of obs corresponding to n_restarts
state = jnp.tile(obs, (self.n_res, 1)).astype('float32')
# key: returned
# subkey1: for action distribution initialization
key, subkey1 = jax.random.split(key, 2)
# Initialize the action distribution
ac = self.ac_dist_init_fn(subkey1, ac_seq)
opt_init_mean, opt_update_mean, get_params_mean = adam_with_projection(self.step_size, proj_fn=self.batch_projection)
opt_state_mean = opt_init_mean(ac)
n_grad_steps = 0
has_converged = False
def _update_ac(val):
"""
Update loop for all the restarts.
"""
ac_init, n_grad_steps, has_converged, state, opt_state_mean, tmp = val
# Compute Q-value function for all restarts
reward = self.batch_q_fn(state, ac_init)
# Compute gradients with respect to action marginals.
grads = self.batch_grad_q_fn(state, ac_init)
# Update action distribution based on gradients
opt_state_mean = opt_update_mean(n_grad_steps, -grads, opt_state_mean)
ac_mu_upd = get_params_mean(opt_state_mean)
# Compute updated reward
updated_reward = self.batch_q_fn(state, ac_mu_upd)
# Reset the restarts in which updates led to a poor reward
restarts_to_reset = jnp.where(updated_reward < reward, jnp.ones(self.n_res, dtype=jnp.int32), jnp.zeros(self.n_res, dtype=jnp.int32))
mask = jnp.tile(restarts_to_reset, (self.depth, self.nA, 1)).transpose(2, 0, 1)
ac_mu = ac_init * mask + ac_mu_upd * (1-mask)
# Compute action mean and variance epsilon
ac_mu_eps = ac_mu - ac_init
# Check for convergence
has_converged = jnp.max(jnp.abs(ac_mu_eps)) < self.conv_thresh
return ac_mu, n_grad_steps + 1, has_converged, state, opt_state_mean, tmp.at[n_grad_steps].set(jnp.sum(restarts_to_reset))
def _check_conv(val):
_, n_grad_steps, has_converged, _, _, _ = val
return jnp.logical_and(n_grad_steps < self.max_grad_steps, jnp.logical_not(has_converged))
# Iterate until max_grad_steps reached or both means and variance has not converged
init_val = (ac, n_grad_steps, has_converged, state, opt_state_mean, jnp.zeros((self.max_grad_steps,)))
ac, n_grad_steps, _, _, _, tmp = jax.lax.while_loop(_check_conv, _update_ac, init_val)
# if self.debug:
# print(f"Gradients steps taken: {n_grad_steps}. Resets per step: {tmp}")
q_value = self.batch_q_fn(state, ac)
# TODO: Figure out a JAX version of random_argmax
# best_restart = random_argmax(subkey2, q_value)
best_restart = jnp.nanargmax(q_value)
ac_seq = ac[best_restart]
ac = jnp.argmax(ac_seq[0])
return ac, ac_seq, key
# def random_argmax(key, x, pref_idx=0):
# options = jnp.where(x == jnp.nanmax(x))[0]
# val = 0 if 0 in options else jax_random.choice(key, options)
# return val
#########
# Action Distribution initialization and transformation
#########
def init_ac_dist(n_res, depth, nA, low_ac, high_ac):
def _init_ac_dist(key, ac_seq):
key1, key2 = jax.random.split(key)
# Layer 1 actions are concrete
ac_l1 = jax.random.randint(key1, shape=(n_res, 1, nA), minval=0, maxval=1)
# Rest actions are marginals
ac_l2 = jax.random.dirichlet(key2, jnp.ones(nA), (n_res, depth-1))
ac_l1 = ac_l1.at[0, 0, :].set(jnp.round(ac_seq[1]))
ac_l2 = ac_l2.at[0, : depth-2, :].set(ac_seq[2:])
ac = jnp.concatenate([ac_l1, ac_l2], axis=1)
return ac
return _init_ac_dist
# https://arxiv.org/pdf/1309.1541.pdf
def projection_fn(nA):
def _projection_fn(ac):
ac_sort = jnp.sort(ac)[::-1]
ac_sort_cumsum = jnp.cumsum(ac_sort)
rho_candidates = ac_sort + (1 - ac_sort_cumsum)/jnp.arange(1, nA+1)
mask = jnp.where(rho_candidates > 0, jnp.arange(nA, dtype=jnp.int32), -jnp.ones(nA, dtype=jnp.int32))
rho = jnp.max(mask)
contrib = (1 - ac_sort_cumsum[rho])/(rho + 1)
return jax.nn.relu(ac + contrib)
return jax.vmap(_projection_fn, in_axes=0, out_axes=0)
#####################################
# Q-function computation graph
#################################
def rollout_graph(dynamics_dist_fn, reward_dist_fn):
def _rollout_graph(d, params):
agg_reward, s_mu, s_var, a_mu = params
reward = reward_dist_fn(s_mu, s_var, a_mu[d, :])
ns_mu, ns_var = dynamics_dist_fn(s_mu, s_var, a_mu[d, :])
return agg_reward+reward, ns_mu, ns_var, a_mu
return _rollout_graph
def q(noise_dist, depth, rollout_fn):
def _q(s, a_mu):
"""
Compute the Q-function for a single restart
"""
noise_mean, noise_var = noise_dist
# augment state by adding variable for noise
s_mu = jnp.concatenate([s, noise_mean], axis=0)
s_var = jnp.concatenate([s*0, noise_var], axis=0)
init_rew = jnp.array([0.0])
init_params = (init_rew, s_mu, s_var, a_mu)
agg_rew, _, _, _ = jax.lax.fori_loop( 0, depth, rollout_fn, init_params)
return agg_rew.sum()
return _q
def grad_q(q):
def _grad_q(s, ac_mu):
"""
Compute the gradient of Q-function for a single restart with actions
"""
return jax.grad(q, argnums=(1), allow_int=True)(s, ac_mu)
return _grad_q
#####################################
# Dynamics Distribution Fn
#####################################
# No variance mode
def dynamics_nv(ns_fn, env, noise_dist, n_real_var, n_bin_var):
def _dynamics_nv(s_mu, s_var, a_mu):
ns = ns_fn(s_mu, a_mu, env)
noise_mean, noise_var = noise_dist
ns_mu = jnp.concatenate([ns, noise_mean], axis=0)
ns_var = jnp.concatenate([jnp.zeros_like(ns), noise_var], axis=0)
return ns_mu, ns_var
return _dynamics_nv
# Complete Mode
def dynamics_comp(ns_fn, env, fop_fn, sop_fn, noise_dist, n_real_var, n_bin_var):
def _dynamics_comp(s_mu, s_var, a_mu):
ns = ns_fn(s_mu, a_mu, env)
fop_wrt_s, fop_wrt_ac = fop_fn(s_mu, a_mu)
sop_wrt_s, sop_wrt_ac = sop_fn(s_mu, a_mu)
# Taylor's expansion
ns_mu = ns + 0.5*(jnp.multiply(sop_wrt_s, s_var).sum(axis=1))
ns_var = jnp.multiply(jnp.square(fop_wrt_s), s_var).sum(axis=1)
noise_mean, noise_var = noise_dist
ns_mu = jnp.concatenate([ns_mu, noise_mean], axis=0)
ns_var = jnp.concatenate([ns_var, noise_var], axis=0)
return ns_mu, ns_var
return _dynamics_comp
#####################################
# Reward distribution fn
#####################################
def reward_mean(reward_fn, env):
def _reward_mean(s_mu, s_var, ac_mu):
return reward_fn(s_mu, ac_mu, env)
return _reward_mean
def reward_comp(reward_fn, env):
def _reward_comp(s_mu, s_var, ac_mu):
reward_mu = reward_fn(s_mu, ac_mu, env)
def _diag_hessian(wrt):
hess = jax.hessian(reward_fn, wrt)(s_mu, ac_mu, env)
return jax.numpy.diagonal(hess, axis1=0, axis2=1)
sop_wrt_s = _diag_hessian(0)
sop_wrt_ac = _diag_hessian(1)
return reward_mu + 0.5*(jnp.multiply(sop_wrt_s, s_var).sum(axis=0))
return _reward_comp
#########################################
# Functions for computing partials - Analytic
###########################################
def fop_analytic(ns_fn, env):
def _fop_analytic(s_mu, ac_mu):
return jax.jacfwd(ns_fn, argnums=(0, 1))(s_mu, ac_mu, env)
return _fop_analytic
def sop_analytic(ns_fn, env):
def _sop_analytic(s_mu, ac_mu):
def _diag_hessian(wrt):
hess = jax.hessian(ns_fn, wrt)(s_mu, ac_mu, env)
return jax.numpy.diagonal(hess, axis1=1, axis2=2)
# TODO: Compute in one call
sop_wrt_s = _diag_hessian(0)
sop_wrt_ac = _diag_hessian(1)
return sop_wrt_s, sop_wrt_ac
return _sop_analytic