-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathclassify_cola.py
185 lines (138 loc) · 5.65 KB
/
classify_cola.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import torch.nn as nn
from random import randint, shuffle
from random import random as rand
from pytorch_pretrained_bert.tokenization import BertTokenizer
import random
import math
import os
import argparse
import model_pretrain
import pandas as pd
from utils import load
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
# model config
parser.add_argument('--dim', type=int, default=768)
parser.add_argument('--max_len', type=int, default=512)
parser.add_argument('--heads', type=int, default=12)
parser.add_argument('--n_segs', type=int, default=2)
parser.add_argument('--pretrain_file', type=str, required=True)
parser.add_argument('--dataset', type=str, required=True) #COLA dataset in csv format
parser.add_argument('--epochs', type=int, default=4)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.00002)
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--decay', type=float, default=0.01)
args = parser.parse_args()
df = pd.read_csv(args.dataset, delimiter='\t', header=None, names=['sentence_source', 'label', 'label_notes', 'sentence'])
sentences = df.sentence.values
labels = df.label.values
train_sent=sentences[0:6000]
train_label=labels[0:6000]
test_sent=sentences[6000:]
test_label=labels[6000:]
class PreprocessCola():
""" Pre-processing steps for pretraining transformer """
def __init__(self, max_len=512):
super().__init__()
self.indexer = BertTokenizer.from_pretrained('bert-base-uncased')
self.max_len = max_len
def __call__(self,data):
token,label=data
#truncate_tokens_pair(tokens_a, tokens_b, self.max_len - 3)
# Add Special Tokens
tokens = ['[CLS]'] + token + ['[SEP]']
segment_ids = [0]*(len(token)+2)
input_mask = [1]*len(tokens)
# Token Indexing
input_ids = self.indexer.convert_tokens_to_ids(tokens)
# Zero Padding
n_pad = self.max_len - len(input_ids)
input_ids.extend([0]*int(n_pad))
segment_ids.extend([0]*int(n_pad))
input_mask.extend([0]*int(n_pad))
# Zero Padding for masked target
return (input_ids, segment_ids, input_mask,label)
class DataLoaderCola():
""" Load sentence pair from corpus """
def __init__(self, sent,label, batch_size, max_len, short_sampling_prob=0.1):
super().__init__()
self.sent=sent
self.label=label
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.max_len = max_len
self.short_sampling_prob = short_sampling_prob
self.batch_size = batch_size
self.preproc= PreprocessCola(max_len)
def __iter__(self): # iterator to load data
k=0
while True:
batch = []
for i in range(self.batch_size):
len_tokens = randint(1, int(self.max_len / 2)) \
if rand() < self.short_sampling_prob \
else int(self.max_len / 2)
tokens =self.tokenizer.tokenize( self.sent[k])
label=self.label[k]
k=k+1
data = (tokens,label)
data=self.preproc(data)
if k>len(sentences):
return
batch.append(data)
batch_tensors = [torch.tensor(x, dtype=torch.long) for x in zip(*batch)]
yield batch_tensors
data_train=DataLoaderCola(train_sent,train_label,args.batch_size,args.max_len)
data_test=DataLoaderCola(test_sent,test_label,args.batch_size,args.max_len)
# Function to calculate the accuracy of our predictions vs labels
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
class ColaClassifier(nn.Module):
def __init__(self,dim,heads,max_len,n_seg):
super().__init__()
self.allenc=model_pretrain.AllEncode(dim,heads,max_len,n_seg)
self.fc1=nn.Linear(dim,dim)
self.tanh=nn.Tanh()
self.fc2=nn.Linear(dim,2)
def forward(self,batch):
input_ids, segment_ids, input_mask,label=batch
out=self.allenc(input_ids,input_mask,segment_ids)
out1=self.fc1(out[:,0])
out1=self.tanh(out1)
out1=self.fc2(out1)
return out1
modelcls=ColaClassifier(args.dim,args.heads,args.max_len,args.n_segs).to(device)
criterion=nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.AdamW(modelcls.parameters(), lr=args.lr, betas=(args.beta1,args.beta2), weight_decay=0.01)
load(args.pretrain_file,modelcls.allenc)
def loss_func(model,batch):
input_ids, segment_ids, input_mask,label=batch
clsf=model(batch)
lossclf=criterion(clsf,label)
return lossclf
for epoch in range(args.epochs):
train_loss=0
for i,batch in enumerate(data_train):
batch = [t.to(device) for t in batch]
optimizer.zero_grad()
loss=loss_func(modelcls,batch)
train_loss += loss.item()
loss.backward()
optimizer.step()
loss_list.append
avg_train_loss = train_loss / len(data_train)
print(" Average training loss: {0:.2f}".format(avg_train_loss))
modelcls.eval()
total_eval_accuracy = 0
for batch in data_test:
batch = [t.to(device) for t in batch]
input_ids, segment_ids, input_mask,label=batch
with torch.no_grad():
clsf=modelcls(batch)
total_eval_accuracy += flat_accuracy(clsf, label)
avg_val_accuracy = total_eval_accuracy / len(dat_test)
print(" Accuracy: {0:.2f}".format(avg_val_accuracy))