-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcustomvgg19.py
74 lines (55 loc) · 2 KB
/
customvgg19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from keras.applications import vgg19
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
import numpy as np
import matplotlib.pyplot as plt
# from sklearn.neighbors import KNeighborsClassifier
# img_path = 'B3.jpg'
# img = image.load_img(img_path, target_size=(224, 224))
img_width, img_height = 224, 224
train_data_dir = "/data/train"
test_data_dir = "/data/test"
batch_size = 8
model = vgg19.VGG19(weights='imagenet', include_top=True)
# x = image.img_to_array(img)
# x = np.expand_dims(x, axis=0)
# x = preprocess_input(x)
train_datagen = ImageDataGenerator(
# rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.3,
width_shift_range = 0.3,
height_shift_range=0.3,
rotation_range=180)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size = (img_height, img_width),
batch_size = batch_size,
class_mode = "categorical")
test_datagen = ImageDataGenerator(
# rescale = 1./255,
horizontal_flip = True,
fill_mode = "nearest",
zoom_range = 0.3,
width_shift_range = 0.3,
height_shift_range=0.3,
rotation_range=180)
test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size = (img_height, img_width),
batch_size = batch_size,
class_mode = "categorical")
# features = model.predict(x)
train_labels = train_generator.classes
test_labels = test_generator.classes
model_extractfeatures = Model(input=model.input, output=model.get_layer('fc1').output)
# fc2_features = model_extractfeatures.predict(x)
train_data = model_extractfeatures.predict_generator(train_generator,steps=113,verbose=1)
test_data = model_extractfeatures.predict_generator(test_generator,steps=132,verbose=1)
np.save('/output/train_features',train_data)
np.save('/output/test_features',test_data)
np.save('/output/train_labels',train_labels)
np.save('/output/test_labels',test_labels)