-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijkstra.c
262 lines (235 loc) · 5.09 KB
/
Dijkstra.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
// number of vertices
int n;
//structure for saving vertex u and its d(u) value- for heap
struct tuple
{
int vertex;
int key;
};
//for neighbour
struct neighbour
{
int v;
struct neighbour *next;
int weight;
} * abc;
//for starting vertex
struct node
{
int item;
int delta;
int indexinheap;
int pred;
struct neighbour *next;
struct neighbour *end;
};
// functions for heap
int parent(int i)
{
return (i - 1) / 2;
}
int left(int i)
{
return 2 * i + 1;
}
int right(int i)
{
return 2 * i + 2;
}
//fn to swap to vertices of the heap as well as swap their heap indeices in the vertex array A
void swap(struct tuple *a, struct tuple *b, struct tuple *T[], struct node *A[])
{
int i = A[a->vertex - 1]->indexinheap;
A[a->vertex - 1]->indexinheap = A[b->vertex - 1]->indexinheap;
A[b->vertex - 1]->indexinheap = i;
struct tuple x = *a;
*a = *b;
*b = x;
}
// function to make a node for neighbour and attach it to the associated list
struct neighbour *makenode(int i, int x, int y, struct node *A[])
{
struct neighbour *ptr = malloc(sizeof(struct neighbour));
if (ptr == NULL)
{
return ptr;
}
ptr->v = x;
ptr->next = NULL;
ptr->weight = y;
if (A[i]->next == NULL)
{
A[i]->next = ptr;
A[i]->end = ptr;
}
else
{
A[i]->end->next = ptr;
A[i]->end = ptr;
}
return ptr;
}
// Minheapify fn
void MinHeapify(struct tuple *T[], struct node *A[], int posn)
{
int smallest = posn;
if (left(posn) <= n - 1 && T[left(posn)]->key <= T[posn]->key)
{
smallest = left(posn);
}
if (right(posn) <= n - 1 && T[right(posn)]->key <= T[smallest]->key)
{
smallest = right(posn);
}
if (smallest == posn)
{
return;
}
else
{
swap(T[posn], T[smallest], T, A);
}
MinHeapify(T, A, smallest);
}
// Sift up fn
void Siftup(struct tuple *T[], int i, struct node *A[])
{
while (i > 0 && T[i]->key < T[parent(i)]->key)
{
swap(T[i], T[parent(i)], T, A);
i = parent(i);
}
}
// decreasekey fn
void decreasekey(int i, int value, struct tuple *T[], struct node *A[])
{
T[i]->key = value;
Siftup(T, i, A);
}
// extract min
struct tuple extractmin(struct tuple *T[], struct node *A[])
{
// if (n == 0)
// {
// return temp;
// }
struct tuple *temp = T[0];
T[0] = T[n - 1];
// T[n-1]->key = -1;
n--;
MinHeapify(T, A, 0);
A[temp->vertex - 1]->delta = temp->key;
return *temp;
}
//finalise a vertex and relax all its edges
void finalise(struct tuple v, struct node *A[], struct tuple *T[])
{
int m = 0, i = 0, weight = 0;
struct neighbour *temp = A[v.vertex - 1]->next;
//traverse through neighbour linked list
while (temp != NULL)
{
m = temp->v;
i = A[m - 1]->indexinheap;
//check if the neighbour is already finalised
if (i == -1)
{
temp = temp->next;
continue;
}
weight = temp->weight;
//relax edge
if (T[i]->key > v.key + weight)
{
A[m - 1]->pred = v.vertex;
decreasekey(i, v.key + weight, T, A);
}
temp = temp->next;
}
}
void dijkstras(struct node *A[], struct tuple *T[])
{
// extract and finalise
while (n != 0)
{
struct tuple v = extractmin(T, A);
finalise(v, A, T);
A[v.vertex - 1]->indexinheap = -1;
}
}
int main()
{
int N, m, wg;
// input the number of vertices
scanf("%d", &N);
n = N;
// array of struct node
struct node *A[n];
// heap
struct tuple *T[n];
// initialising heap
for (int i = 0; i < N; i++)
{
T[i] = malloc(sizeof(struct tuple));
if (T[i] == NULL)
{
exit(1);
}
T[i]->vertex = i + 1;
T[i]->key = 1000;
}
// initialise array
for (int k = 0; k < N; k++)
{
A[k] = malloc(sizeof(struct node));
if (A[k] == NULL)
{
exit(1);
}
A[k]->item = k + 1;
A[k]->end = NULL;
A[k]->next = NULL;
A[k]->indexinheap = k;
A[k]->pred = -1;
A[k]->delta = 0;
}
// input the neighbours and make linked list associated with each element of the array
for (int k = 0; k < N; k++)
{
scanf("%d", &m);
while (m != -1)
{
scanf("%d", &wg);
abc = makenode(k, m, wg, A);
if (abc == NULL)
{
exit(1);
}
scanf("%d", &m);
}
}
// input source vertex
int s;
scanf("%d", &s);
// decrease d(s) to 0
decreasekey(A[s - 1]->indexinheap, 0, T, A);
A[s - 1]->indexinheap = 0;
// Dijkstras function
dijkstras(A, T);
// print
for (int i = 0; i < N; i++)
{
if (A[i]->delta == 1000)
{
printf("Unreachable\n");
}
else
{
printf("%d %d\n", A[i]->delta, A[i]->pred);
}
}
return 0;
}