-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDAG.c
223 lines (201 loc) · 4.62 KB
/
DAG.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include <stdio.h>
#include <stdlib.h>
int dagornot; // globalvariable to dave if graph is dag or not
struct node // struct to save neighbours in
{
int item;
struct node *next;
struct node *end;
} * temp, *topo;
struct data // struct to save other data related to a vertex
{
int vertexno;
int entry;
int exit;
int visited;
int pred;
} * tem;
int clock; // global clock
struct node *makenode(int i, int x, struct node *A[]) // function to make a node for neighbour and attach it to the associated list
{
struct node *ptr = malloc(sizeof(struct node));
if (ptr == NULL)
{
return ptr;
}
ptr->item = x;
ptr->next = NULL;
if (A[i]->next == NULL)
{
A[i]->next = ptr;
A[i]->end = ptr;
}
else
{
A[i]->end->next = ptr;
A[i]->end = ptr;
}
return ptr;
}
void *push(int x)
{
temp = malloc(sizeof(struct node));
if (temp == NULL)
{
exit(1);
}
temp->item = x;
if (topo == NULL)
{
topo = temp;
topo->next = NULL;
}
else
{
temp->next = topo;
topo = temp;
}
}
int poptopo()
{
int x = topo->item;
temp = topo;
topo = topo->next;
free(temp);
return x;
}
void DfsExplore(int v1, struct data *G[], struct node *A[]) // DFS Explore fn
{
G[v1]->visited = 1;
G[v1]->entry = clock;
clock++;
int c = 0;
struct node *temp = A[v1]->next;
while (temp != NULL)
{
c++;
int x = temp->item - 1;
if (G[x]->visited == 0)
{
G[x]->pred = v1 + 1;
DfsExplore(x, G, A);
}
else // if the encountered vertex is visited we check if it is a backedge
{
if (G[x]->exit == -1) // by checking if it is exitted from
{
dagornot = 0;
}
}
temp = temp->next;
}
G[v1]->exit = clock;
push(v1);
clock++;
}
void DepthFirstExpl(int v1, struct data *G[], struct node *A[], int n) // Depth First Search fn
{
clock = 0;
DfsExplore(v1, G, A);
for (int i = 0; i < n; i++)
{
if (G[i]->visited == 0)
{
DfsExplore(i, G, A);
}
}
}
void printdata(int n, struct data *G[]) // print data fn to print entry time, exit time, predecessor
{
for (int i = 0; i < n; i++)
{
printf("%d %d %d\n", G[i]->entry, G[i]->exit, G[i]->pred);
}
}
void printbackedge(struct data *G[], struct node *A[], int n) // fn to print the backedges along with other data
{
int v;
int ex1, ex2;
for (int i = 0; i < n; i++)
{
temp = A[i]->next;
while (temp != NULL)
{
ex1 = G[i]->exit;
ex2 = G[temp->item - 1]->exit;
if (ex1 < ex2)
{
v = temp->item - 1;
printf("%d %d %d %d\n", G[v]->entry, G[i]->entry, G[i]->exit, G[v]->exit);
}
temp = temp->next;
}
}
}
int main()
{
int n, m, ind1, ind2;
dagornot = 1; // let us assume the graph is acyclic
struct node *abc;
scanf("%d", &n); // input number of vertices
struct node *A[n]; // array of struct pointers
for (int k = 0; k < n; k++)
{
A[k] = malloc(sizeof(struct node));
if (A[k] == NULL)
{
exit(1);
}
A[k]->item = k + 1;
A[k]->end = NULL;
A[k]->next = NULL;
}
for (int k = 0; k < n; k++) // input the neighbours and make linked kist associated with each element of the array
{
scanf("%d", &m);
while (m != -1)
{
abc = makenode(k, m, A);
if (abc == NULL)
{
exit(1);
}
scanf("%d", &m);
}
}
struct node *bk[n];
int startingvertex;
scanf("%d", &startingvertex); // input the starting vertex for DFS
struct data *G[n]; // array to store other data
for (int i = 0; i < n; i++)
{
G[i] = malloc(sizeof(struct data));
if (G[i] == NULL)
{
exit(1);
}
G[i]->vertexno = i + 1;
G[i]->visited = 0;
G[i]->entry = -1;
G[i]->exit = -1;
G[i]->pred = -1;
}
DepthFirstExpl(startingvertex - 1, G, A, n);
printdata(n, G);
if (dagornot == 0)
{
printf("Not a DAG\n");
printbackedge(G, A, n); // print backedges
}
else if (dagornot == 1)
{
printf("DAG\n");
// pop the vertices from topo stack
for (int i = 0; i < n; i++)
{
int x = poptopo();
printf("%d\n", x + 1);
}
}
return 0;
}