We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi, thanks for your repo. I have downloaded the official TensorFlow model from https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ. Then I successfully run weight_convert.py.
However, when I am trying to run the code, there are errors when load the model:
`Missing key(s) in state_dict: "g_mapping.dense0.weight", "g_mapping.dense0.bias", "g_mapping.dense1.weight", "g_mapping.dense1.bias", "g_mapping.dense2.weight", "g_mapping.dense2.bias", "g_mapping.dense3.weight", "g_mapping.dense3.bias", "g_mapping.dense4.weight", "g_mapping.dense4.bias", "g_mapping.dense5.weight", "g_mapping.dense5.bias", "g_mapping.dense6.weight", "g_mapping.dense6.bias", "g_mapping.dense7.weight", "g_mapping.dense7.bias", "g_synthesis.torgb.weight", "g_synthesis.torgb.bias", "g_synthesis.blocks.4x4.const", "g_synthesis.blocks.4x4.bias", "g_synthesis.blocks.4x4.epi1.top_epi.noise.weight", "g_synthesis.blocks.4x4.epi1.style_mod.lin.weight", "g_synthesis.blocks.4x4.epi1.style_mod.lin.bias", "g_synthesis.blocks.4x4.conv.weight", "g_synthesis.blocks.4x4.conv.bias", "g_synthesis.blocks.4x4.epi2.top_epi.noise.weight", "g_synthesis.blocks.4x4.epi2.style_mod.lin.weight", "g_synthesis.blocks.4x4.epi2.style_mod.lin.bias", "g_synthesis.blocks.8x8.conv0_up.weight", "g_synthesis.blocks.8x8.conv0_up.bias", "g_synthesis.blocks.8x8.conv0_up.intermediate.kernel", "g_synthesis.blocks.8x8.epi1.top_epi.noise.weight", "g_synthesis.blocks.8x8.epi1.style_mod.lin.weight", "g_synthesis.blocks.8x8.epi1.style_mod.lin.bias", "g_synthesis.blocks.8x8.conv1.weight", "g_synthesis.blocks.8x8.conv1.bias", "g_synthesis.blocks.8x8.epi2.top_epi.noise.weight", "g_synthesis.blocks.8x8.epi2.style_mod.lin.weight", "g_synthesis.blocks.8x8.epi2.style_mod.lin.bias", "g_synthesis.blocks.16x16.conv0_up.weight", "g_synthesis.blocks.16x16.conv0_up.bias", "g_synthesis.blocks.16x16.conv0_up.intermediate.kernel", "g_synthesis.blocks.16x16.epi1.top_epi.noise.weight", "g_synthesis.blocks.16x16.epi1.style_mod.lin.weight", "g_synthesis.blocks.16x16.epi1.style_mod.lin.bias", "g_synthesis.blocks.16x16.conv1.weight", "g_synthesis.blocks.16x16.conv1.bias", "g_synthesis.blocks.16x16.epi2.top_epi.noise.weight", "g_synthesis.blocks.16x16.epi2.style_mod.lin.weight", "g_synthesis.blocks.16x16.epi2.style_mod.lin.bias", "g_synthesis.blocks.32x32.conv0_up.weight", "g_synthesis.blocks.32x32.conv0_up.bias", "g_synthesis.blocks.32x32.conv0_up.intermediate.kernel", "g_synthesis.blocks.32x32.epi1.top_epi.noise.weight", "g_synthesis.blocks.32x32.epi1.style_mod.lin.weight", "g_synthesis.blocks.32x32.epi1.style_mod.lin.bias", "g_synthesis.blocks.32x32.conv1.weight", "g_synthesis.blocks.32x32.conv1.bias", "g_synthesis.blocks.32x32.epi2.top_epi.noise.weight", "g_synthesis.blocks.32x32.epi2.style_mod.lin.weight", "g_synthesis.blocks.32x32.epi2.style_mod.lin.bias", "g_synthesis.blocks.64x64.conv0_up.weight", "g_synthesis.blocks.64x64.conv0_up.bias", "g_synthesis.blocks.64x64.conv0_up.intermediate.kernel", "g_synthesis.blocks.64x64.epi1.top_epi.noise.weight", "g_synthesis.blocks.64x64.epi1.style_mod.lin.weight", "g_synthesis.blocks.64x64.epi1.style_mod.lin.bias", "g_synthesis.blocks.64x64.conv1.weight", "g_synthesis.blocks.64x64.conv1.bias", "g_synthesis.blocks.64x64.epi2.top_epi.noise.weight", "g_synthesis.blocks.64x64.epi2.style_mod.lin.weight", "g_synthesis.blocks.64x64.epi2.style_mod.lin.bias", "g_synthesis.blocks.128x128.conv0_up.weight", "g_synthesis.blocks.128x128.conv0_up.bias", "g_synthesis.blocks.128x128.conv0_up.intermediate.kernel", "g_synthesis.blocks.128x128.epi1.top_epi.noise.weight", "g_synthesis.blocks.128x128.epi1.style_mod.lin.weight", "g_synthesis.blocks.128x128.epi1.style_mod.lin.bias", "g_synthesis.blocks.128x128.conv1.weight", "g_synthesis.blocks.128x128.conv1.bias", "g_synthesis.blocks.128x128.epi2.top_epi.noise.weight", "g_synthesis.blocks.128x128.epi2.style_mod.lin.weight", "g_synthesis.blocks.128x128.epi2.style_mod.lin.bias", "g_synthesis.blocks.256x256.conv0_up.weight", "g_synthesis.blocks.256x256.conv0_up.bias", "g_synthesis.blocks.256x256.conv0_up.intermediate.kernel", "g_synthesis.blocks.256x256.epi1.top_epi.noise.weight", "g_synthesis.blocks.256x256.epi1.style_mod.lin.weight", "g_synthesis.blocks.256x256.epi1.style_mod.lin.bias", "g_synthesis.blocks.256x256.conv1.weight", "g_synthesis.blocks.256x256.conv1.bias", "g_synthesis.blocks.256x256.epi2.top_epi.noise.weight", "g_synthesis.blocks.256x256.epi2.style_mod.lin.weight", "g_synthesis.blocks.256x256.epi2.style_mod.lin.bias", "g_synthesis.blocks.512x512.conv0_up.weight", "g_synthesis.blocks.512x512.conv0_up.bias", "g_synthesis.blocks.512x512.conv0_up.intermediate.kernel", "g_synthesis.blocks.512x512.epi1.top_epi.noise.weight", "g_synthesis.blocks.512x512.epi1.style_mod.lin.weight", "g_synthesis.blocks.512x512.epi1.style_mod.lin.bias", "g_synthesis.blocks.512x512.conv1.weight", "g_synthesis.blocks.512x512.conv1.bias", "g_synthesis.blocks.512x512.epi2.top_epi.noise.weight", "g_synthesis.blocks.512x512.epi2.style_mod.lin.weight", "g_synthesis.blocks.512x512.epi2.style_mod.lin.bias", "g_synthesis.blocks.1024x1024.conv0_up.weight", "g_synthesis.blocks.1024x1024.conv0_up.bias", "g_synthesis.blocks.1024x1024.conv0_up.intermediate.kernel", "g_synthesis.blocks.1024x1024.epi1.top_epi.noise.weight", "g_synthesis.blocks.1024x1024.epi1.style_mod.lin.weight", "g_synthesis.blocks.1024x1024.epi1.style_mod.lin.bias", "g_synthesis.blocks.1024x1024.conv1.weight", "g_synthesis.blocks.1024x1024.conv1.bias", "g_synthesis.blocks.1024x1024.epi2.top_epi.noise.weight", "g_synthesis.blocks.1024x1024.epi2.style_mod.lin.weight", "g_synthesis.blocks.1024x1024.epi2.style_mod.lin.bias". Unexpected key(s) in state_dict: "fromrgb.weight", "fromrgb.bias", "1024x1024.conv0.weight", "1024x1024.conv0.bias", "1024x1024.blur.kernel", "1024x1024.conv1_down.weight", "1024x1024.conv1_down.bias", "1024x1024.conv1_down.downscale.blur.kernel", "512x512.conv0.weight", "512x512.conv0.bias", "512x512.blur.kernel", "512x512.conv1_down.weight", "512x512.conv1_down.bias", "512x512.conv1_down.downscale.blur.kernel", "256x256.conv0.weight", "256x256.conv0.bias", "256x256.blur.kernel", "256x256.conv1_down.weight", "256x256.conv1_down.bias", "256x256.conv1_down.downscale.blur.kernel", "128x128.conv0.weight", "128x128.conv0.bias", "128x128.blur.kernel", "128x128.conv1_down.weight", "128x128.conv1_down.bias", "128x128.conv1_down.downscale.blur.kernel", "64x64.conv0.weight", "64x64.conv0.bias", "64x64.blur.kernel", "64x64.conv1_down.weight", "64x64.conv1_down.bias", "64x64.conv1_down.downscale.blur.kernel", "32x32.conv0.weight", "32x32.conv0.bias", "32x32.blur.kernel", "32x32.conv1_down.weight", "32x32.conv1_down.bias", "32x32.conv1_down.downscale.blur.kernel", "16x16.conv0.weight", "16x16.conv0.bias", "16x16.blur.kernel", "16x16.conv1_down.weight", "16x16.conv1_down.bias", "16x16.conv1_down.downscale.blur.kernel", "8x8.conv0.weight", "8x8.conv0.bias", "8x8.blur.kernel", "8x8.conv1_down.weight", "8x8.conv1_down.bias", "8x8.conv1_down.downscale.blur.kernel", "4x4.conv.weight", "4x4.conv.bias", "4x4.dense0.weight", "4x4.dense0.bias", "4x4.dense1.weight", "4x4.dense1.bias".
` I wonder there might be any mismatch between the "karras2019stylegan-ffhq-1024x1024.pkl" I downloaded from the google link and the expected model.
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi, thanks for your repo.
I have downloaded the official TensorFlow model from https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ.
Then I successfully run weight_convert.py.
However, when I am trying to run the code, there are errors when load the model:
`Missing key(s) in state_dict: "g_mapping.dense0.weight", "g_mapping.dense0.bias", "g_mapping.dense1.weight", "g_mapping.dense1.bias", "g_mapping.dense2.weight", "g_mapping.dense2.bias", "g_mapping.dense3.weight", "g_mapping.dense3.bias", "g_mapping.dense4.weight", "g_mapping.dense4.bias", "g_mapping.dense5.weight", "g_mapping.dense5.bias", "g_mapping.dense6.weight", "g_mapping.dense6.bias", "g_mapping.dense7.weight", "g_mapping.dense7.bias", "g_synthesis.torgb.weight", "g_synthesis.torgb.bias", "g_synthesis.blocks.4x4.const", "g_synthesis.blocks.4x4.bias", "g_synthesis.blocks.4x4.epi1.top_epi.noise.weight", "g_synthesis.blocks.4x4.epi1.style_mod.lin.weight", "g_synthesis.blocks.4x4.epi1.style_mod.lin.bias", "g_synthesis.blocks.4x4.conv.weight", "g_synthesis.blocks.4x4.conv.bias", "g_synthesis.blocks.4x4.epi2.top_epi.noise.weight", "g_synthesis.blocks.4x4.epi2.style_mod.lin.weight", "g_synthesis.blocks.4x4.epi2.style_mod.lin.bias", "g_synthesis.blocks.8x8.conv0_up.weight", "g_synthesis.blocks.8x8.conv0_up.bias", "g_synthesis.blocks.8x8.conv0_up.intermediate.kernel", "g_synthesis.blocks.8x8.epi1.top_epi.noise.weight", "g_synthesis.blocks.8x8.epi1.style_mod.lin.weight", "g_synthesis.blocks.8x8.epi1.style_mod.lin.bias", "g_synthesis.blocks.8x8.conv1.weight", "g_synthesis.blocks.8x8.conv1.bias", "g_synthesis.blocks.8x8.epi2.top_epi.noise.weight", "g_synthesis.blocks.8x8.epi2.style_mod.lin.weight", "g_synthesis.blocks.8x8.epi2.style_mod.lin.bias", "g_synthesis.blocks.16x16.conv0_up.weight", "g_synthesis.blocks.16x16.conv0_up.bias", "g_synthesis.blocks.16x16.conv0_up.intermediate.kernel", "g_synthesis.blocks.16x16.epi1.top_epi.noise.weight", "g_synthesis.blocks.16x16.epi1.style_mod.lin.weight", "g_synthesis.blocks.16x16.epi1.style_mod.lin.bias", "g_synthesis.blocks.16x16.conv1.weight", "g_synthesis.blocks.16x16.conv1.bias", "g_synthesis.blocks.16x16.epi2.top_epi.noise.weight", "g_synthesis.blocks.16x16.epi2.style_mod.lin.weight", "g_synthesis.blocks.16x16.epi2.style_mod.lin.bias", "g_synthesis.blocks.32x32.conv0_up.weight", "g_synthesis.blocks.32x32.conv0_up.bias", "g_synthesis.blocks.32x32.conv0_up.intermediate.kernel", "g_synthesis.blocks.32x32.epi1.top_epi.noise.weight", "g_synthesis.blocks.32x32.epi1.style_mod.lin.weight", "g_synthesis.blocks.32x32.epi1.style_mod.lin.bias", "g_synthesis.blocks.32x32.conv1.weight", "g_synthesis.blocks.32x32.conv1.bias", "g_synthesis.blocks.32x32.epi2.top_epi.noise.weight", "g_synthesis.blocks.32x32.epi2.style_mod.lin.weight", "g_synthesis.blocks.32x32.epi2.style_mod.lin.bias", "g_synthesis.blocks.64x64.conv0_up.weight", "g_synthesis.blocks.64x64.conv0_up.bias", "g_synthesis.blocks.64x64.conv0_up.intermediate.kernel", "g_synthesis.blocks.64x64.epi1.top_epi.noise.weight", "g_synthesis.blocks.64x64.epi1.style_mod.lin.weight", "g_synthesis.blocks.64x64.epi1.style_mod.lin.bias", "g_synthesis.blocks.64x64.conv1.weight", "g_synthesis.blocks.64x64.conv1.bias", "g_synthesis.blocks.64x64.epi2.top_epi.noise.weight", "g_synthesis.blocks.64x64.epi2.style_mod.lin.weight", "g_synthesis.blocks.64x64.epi2.style_mod.lin.bias", "g_synthesis.blocks.128x128.conv0_up.weight", "g_synthesis.blocks.128x128.conv0_up.bias", "g_synthesis.blocks.128x128.conv0_up.intermediate.kernel", "g_synthesis.blocks.128x128.epi1.top_epi.noise.weight", "g_synthesis.blocks.128x128.epi1.style_mod.lin.weight", "g_synthesis.blocks.128x128.epi1.style_mod.lin.bias", "g_synthesis.blocks.128x128.conv1.weight", "g_synthesis.blocks.128x128.conv1.bias", "g_synthesis.blocks.128x128.epi2.top_epi.noise.weight", "g_synthesis.blocks.128x128.epi2.style_mod.lin.weight", "g_synthesis.blocks.128x128.epi2.style_mod.lin.bias", "g_synthesis.blocks.256x256.conv0_up.weight", "g_synthesis.blocks.256x256.conv0_up.bias", "g_synthesis.blocks.256x256.conv0_up.intermediate.kernel", "g_synthesis.blocks.256x256.epi1.top_epi.noise.weight", "g_synthesis.blocks.256x256.epi1.style_mod.lin.weight", "g_synthesis.blocks.256x256.epi1.style_mod.lin.bias", "g_synthesis.blocks.256x256.conv1.weight", "g_synthesis.blocks.256x256.conv1.bias", "g_synthesis.blocks.256x256.epi2.top_epi.noise.weight", "g_synthesis.blocks.256x256.epi2.style_mod.lin.weight", "g_synthesis.blocks.256x256.epi2.style_mod.lin.bias", "g_synthesis.blocks.512x512.conv0_up.weight", "g_synthesis.blocks.512x512.conv0_up.bias", "g_synthesis.blocks.512x512.conv0_up.intermediate.kernel", "g_synthesis.blocks.512x512.epi1.top_epi.noise.weight", "g_synthesis.blocks.512x512.epi1.style_mod.lin.weight", "g_synthesis.blocks.512x512.epi1.style_mod.lin.bias", "g_synthesis.blocks.512x512.conv1.weight", "g_synthesis.blocks.512x512.conv1.bias", "g_synthesis.blocks.512x512.epi2.top_epi.noise.weight", "g_synthesis.blocks.512x512.epi2.style_mod.lin.weight", "g_synthesis.blocks.512x512.epi2.style_mod.lin.bias", "g_synthesis.blocks.1024x1024.conv0_up.weight", "g_synthesis.blocks.1024x1024.conv0_up.bias", "g_synthesis.blocks.1024x1024.conv0_up.intermediate.kernel", "g_synthesis.blocks.1024x1024.epi1.top_epi.noise.weight", "g_synthesis.blocks.1024x1024.epi1.style_mod.lin.weight", "g_synthesis.blocks.1024x1024.epi1.style_mod.lin.bias", "g_synthesis.blocks.1024x1024.conv1.weight", "g_synthesis.blocks.1024x1024.conv1.bias", "g_synthesis.blocks.1024x1024.epi2.top_epi.noise.weight", "g_synthesis.blocks.1024x1024.epi2.style_mod.lin.weight", "g_synthesis.blocks.1024x1024.epi2.style_mod.lin.bias".
Unexpected key(s) in state_dict: "fromrgb.weight", "fromrgb.bias", "1024x1024.conv0.weight", "1024x1024.conv0.bias", "1024x1024.blur.kernel", "1024x1024.conv1_down.weight", "1024x1024.conv1_down.bias", "1024x1024.conv1_down.downscale.blur.kernel", "512x512.conv0.weight", "512x512.conv0.bias", "512x512.blur.kernel", "512x512.conv1_down.weight", "512x512.conv1_down.bias", "512x512.conv1_down.downscale.blur.kernel", "256x256.conv0.weight", "256x256.conv0.bias", "256x256.blur.kernel", "256x256.conv1_down.weight", "256x256.conv1_down.bias", "256x256.conv1_down.downscale.blur.kernel", "128x128.conv0.weight", "128x128.conv0.bias", "128x128.blur.kernel", "128x128.conv1_down.weight", "128x128.conv1_down.bias", "128x128.conv1_down.downscale.blur.kernel", "64x64.conv0.weight", "64x64.conv0.bias", "64x64.blur.kernel", "64x64.conv1_down.weight", "64x64.conv1_down.bias", "64x64.conv1_down.downscale.blur.kernel", "32x32.conv0.weight", "32x32.conv0.bias", "32x32.blur.kernel", "32x32.conv1_down.weight", "32x32.conv1_down.bias", "32x32.conv1_down.downscale.blur.kernel", "16x16.conv0.weight", "16x16.conv0.bias", "16x16.blur.kernel", "16x16.conv1_down.weight", "16x16.conv1_down.bias", "16x16.conv1_down.downscale.blur.kernel", "8x8.conv0.weight", "8x8.conv0.bias", "8x8.blur.kernel", "8x8.conv1_down.weight", "8x8.conv1_down.bias", "8x8.conv1_down.downscale.blur.kernel", "4x4.conv.weight", "4x4.conv.bias", "4x4.dense0.weight", "4x4.dense0.bias", "4x4.dense1.weight", "4x4.dense1.bias".
`
I wonder there might be any mismatch between the "karras2019stylegan-ffhq-1024x1024.pkl" I downloaded from the google link and the expected model.
The text was updated successfully, but these errors were encountered: