-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathstylegan_layers.py
executable file
·499 lines (438 loc) · 22.3 KB
/
stylegan_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import pickle
import numpy as np
class MyLinear(nn.Module):
"""Linear layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_size, output_size, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True):
super().__init__()
he_std = gain * input_size**(-0.5) # He init
# Equalized learning rate and custom learning rate multiplier.
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(torch.randn(output_size, input_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_size))
self.b_mul = lrmul
else:
self.bias = None
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
return F.linear(x, self.weight * self.w_mul, bias)
class MyConv2d(nn.Module):
"""Conv layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_channels, output_channels, kernel_size, stride=1, gain=2**(0.5), use_wscale=False, lrmul=1, bias=True,
intermediate=None, upscale=False, downscale=False):
super().__init__()
if upscale:
self.upscale = Upscale2d()
else:
self.upscale = None
if downscale:
self.downscale = Downscale2d()
else:
self.downscale = None
he_std = gain * (input_channels * kernel_size ** 2) ** (-0.5) # He init
self.kernel_size = kernel_size
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(torch.randn(output_channels, input_channels, kernel_size, kernel_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_channels))
self.b_mul = lrmul
else:
self.bias = None
self.intermediate = intermediate
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
have_convolution = False
if self.upscale is not None and min(x.shape[2:]) * 2 >= 128:
# this is the fused upscale + conv from StyleGAN, sadly this seems incompatible with the non-fused way
# this really needs to be cleaned up and go into the conv...
w = self.weight * self.w_mul
w = w.permute(1, 0, 2, 3)
# probably applying a conv on w would be more efficient. also this quadruples the weight (average)?!
w = F.pad(w, (1,1,1,1))
w = w[:, :, 1:, 1:]+ w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]
x = F.conv_transpose2d(x, w, stride=2, padding=(w.size(-1)-1)//2)
have_convolution = True
elif self.upscale is not None:
x = self.upscale(x)
downscale = self.downscale
intermediate = self.intermediate
if downscale is not None and min(x.shape[2:]) >= 128:
w = self.weight * self.w_mul
w = F.pad(w, (1,1,1,1))
# in contrast to upscale, this is a mean...
w = (w[:, :, 1:, 1:]+ w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1])*0.25 # avg_pool?
x = F.conv2d(x, w, stride=2, padding=(w.size(-1)-1)//2)
have_convolution = True
downscale = None
elif downscale is not None:
assert intermediate is None
intermediate = downscale
if not have_convolution and intermediate is None:
return F.conv2d(x, self.weight * self.w_mul, bias, padding=self.kernel_size//2)
elif not have_convolution:
x = F.conv2d(x, self.weight * self.w_mul, None, padding=self.kernel_size//2)
if intermediate is not None:
x = intermediate(x)
if bias is not None:
x = x + bias.view(1, -1, 1, 1)
return x
class NoiseLayer(nn.Module):
"""adds noise. noise is per pixel (constant over channels) with per-channel weight"""
def __init__(self, channels):
super().__init__()
self.weight = nn.Parameter(torch.zeros(channels))
self.noise = None
def forward(self, x, noise=None):
if noise is None and self.noise is None:
noise = torch.randn(x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype)
elif noise is None:
# here is a little trick: if you get all the noiselayers and set each
# modules .noise attribute, you can have pre-defined noise.
# Very useful for analysis
noise = self.noise
x = x + self.weight.view(1, -1, 1, 1) * noise
return x
class StyleMod(nn.Module):
def __init__(self, latent_size, channels, use_wscale):
super(StyleMod, self).__init__()
self.lin = MyLinear(latent_size,
channels * 2,
gain=1.0, use_wscale=use_wscale)
def forward(self, x, latent):
style = self.lin(latent) # style => [batch_size, n_channels*2]
shape = [-1, 2, x.size(1)] + (x.dim() - 2) * [1]
style = style.view(shape) # [batch_size, 2, n_channels, ...]
x = x * (style[:, 0] + 1.) + style[:, 1]
return x
class PixelNormLayer(nn.Module):
def __init__(self, epsilon=1e-8):
super().__init__()
self.epsilon = epsilon
def forward(self, x):
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + self.epsilon)
class BlurLayer(nn.Module):
def __init__(self, kernel=[1, 2, 1], normalize=True, flip=False, stride=1):
super(BlurLayer, self).__init__()
kernel = torch.tensor(kernel, dtype=torch.float32)
kernel = kernel[:, None] * kernel[None, :]
kernel = kernel[None, None]
if normalize:
kernel = kernel / kernel.sum()
if flip:
kernel = kernel[:, :, ::-1, ::-1]
self.register_buffer('kernel', kernel)
self.stride = stride
def forward(self, x):
# expand kernel channels
kernel = self.kernel.expand(x.size(1), -1, -1, -1)
x = F.conv2d(
x,
kernel,
stride=self.stride,
padding=int((self.kernel.size(2)-1)/2),
groups=x.size(1)
)
return x
def upscale2d(x, factor=2, gain=1):
assert x.dim() == 4
if gain != 1:
x = x * gain
if factor != 1:
shape = x.shape
x = x.view(shape[0], shape[1], shape[2], 1, shape[3], 1).expand(-1, -1, -1, factor, -1, factor)
x = x.contiguous().view(shape[0], shape[1], factor * shape[2], factor * shape[3])
return x
class Upscale2d(nn.Module):
def __init__(self, factor=2, gain=1):
super().__init__()
assert isinstance(factor, int) and factor >= 1
self.gain = gain
self.factor = factor
def forward(self, x):
return upscale2d(x, factor=self.factor, gain=self.gain)
class G_mapping(nn.Sequential):
def __init__(self, nonlinearity='lrelu', use_wscale=True):
act, gain = {'relu': (torch.relu, np.sqrt(2)),
'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
layers = [
('pixel_norm', PixelNormLayer()),
('dense0', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense0_act', act),
('dense1', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense1_act', act),
('dense2', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense2_act', act),
('dense3', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense3_act', act),
('dense4', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense4_act', act),
('dense5', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense5_act', act),
('dense6', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense6_act', act),
('dense7', MyLinear(512, 512, gain=gain, lrmul=0.01, use_wscale=use_wscale)),
('dense7_act', act)
]
super().__init__(OrderedDict(layers))
def forward(self, x):
x = super().forward(x)
# Broadcast
x = x.unsqueeze(1).expand(-1, 18, -1)
return x
class Truncation(nn.Module):
def __init__(self, avg_latent, max_layer=8, threshold=0.7):
super().__init__()
self.max_layer = max_layer
self.threshold = threshold
self.register_buffer('avg_latent', avg_latent)
def forward(self, x):
assert x.dim() == 3
interp = torch.lerp(self.avg_latent, x, self.threshold)
do_trunc = (torch.arange(x.size(1)) < self.max_layer).view(1, -1, 1)
return torch.where(do_trunc, interp, x)
class LayerEpilogue(nn.Module):
"""Things to do at the end of each layer."""
def __init__(self, channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
super().__init__()
layers = []
if use_noise:
layers.append(('noise', NoiseLayer(channels)))
layers.append(('activation', activation_layer))
if use_pixel_norm:
layers.append(('pixel_norm', PixelNorm()))
if use_instance_norm:
layers.append(('instance_norm', nn.InstanceNorm2d(channels)))
self.top_epi = nn.Sequential(OrderedDict(layers))
if use_styles:
self.style_mod = StyleMod(dlatent_size, channels, use_wscale=use_wscale)
else:
self.style_mod = None
def forward(self, x, dlatents_in_slice=None):
x = self.top_epi(x)
if self.style_mod is not None:
x = self.style_mod(x, dlatents_in_slice)
else:
assert dlatents_in_slice is None
return x
class InputBlock(nn.Module):
def __init__(self, nf, dlatent_size, const_input_layer, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
super().__init__()
self.const_input_layer = const_input_layer
self.nf = nf
if self.const_input_layer:
# called 'const' in tf
self.const = nn.Parameter(torch.ones(1, nf, 4, 4))
self.bias = nn.Parameter(torch.ones(nf))
else:
self.dense = MyLinear(dlatent_size, nf*16, gain=gain/4, use_wscale=use_wscale) # tweak gain to match the official implementation of Progressing GAN
self.epi1 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
self.conv = MyConv2d(nf, nf, 3, gain=gain, use_wscale=use_wscale)
self.epi2 = LayerEpilogue(nf, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
def forward(self, dlatents_in_range):
batch_size = dlatents_in_range.size(0)
if self.const_input_layer:
x = self.const.expand(batch_size, -1, -1, -1)
x = x + self.bias.view(1, -1, 1, 1)
else:
x = self.dense(dlatents_in_range[:, 0]).view(batch_size, self.nf, 4, 4)
x = self.epi1(x, dlatents_in_range[:, 0])
x = self.conv(x)
x = self.epi2(x, dlatents_in_range[:, 1])
return x
class GSynthesisBlock(nn.Module):
def __init__(self, in_channels, out_channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
# 2**res x 2**res # res = 3..resolution_log2
super().__init__()
if blur_filter:
blur = BlurLayer(blur_filter)
else:
blur = None
self.conv0_up = MyConv2d(in_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale,
intermediate=blur, upscale=True)
self.epi1 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
self.conv1 = MyConv2d(out_channels, out_channels, kernel_size=3, gain=gain, use_wscale=use_wscale)
self.epi2 = LayerEpilogue(out_channels, dlatent_size, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer)
def forward(self, x, dlatents_in_range):
x = self.conv0_up(x)
x = self.epi1(x, dlatents_in_range[:, 0])
x = self.conv1(x)
x = self.epi2(x, dlatents_in_range[:, 1])
return x
class G_synthesis(nn.Module):
def __init__(self,
dlatent_size = 512, # Disentangled latent (W) dimensionality.
num_channels = 3, # Number of output color channels.
resolution = 1024, # Output resolution.
fmap_base = 8192, # Overall multiplier for the number of feature maps.
fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution.
fmap_max = 512, # Maximum number of feature maps in any layer.
use_styles = True, # Enable style inputs?
const_input_layer = True, # First layer is a learned constant?
use_noise = True, # Enable noise inputs?
randomize_noise = True, # True = randomize noise inputs every time (non-deterministic), False = read noise inputs from variables.
nonlinearity = 'lrelu', # Activation function: 'relu', 'lrelu'
use_wscale = True, # Enable equalized learning rate?
use_pixel_norm = False, # Enable pixelwise feature vector normalization?
use_instance_norm = True, # Enable instance normalization?
dtype = torch.float32, # Data type to use for activations and outputs.
fused_scale = 'auto', # True = fused convolution + scaling, False = separate ops, 'auto' = decide automatically.
blur_filter = [1,2,1], # Low-pass filter to apply when resampling activations. None = no filtering.
structure = 'auto', # 'fixed' = no progressive growing, 'linear' = human-readable, 'recursive' = efficient, 'auto' = select automatically.
is_template_graph = False, # True = template graph constructed by the Network class, False = actual evaluation.
force_clean_graph = False, # True = construct a clean graph that looks nice in TensorBoard, False = default behavior.
):
super().__init__()
def nf(stage):
return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
self.dlatent_size = dlatent_size
resolution_log2 = int(np.log2(resolution))
assert resolution == 2**resolution_log2 and resolution >= 4
if is_template_graph: force_clean_graph = True
if force_clean_graph: randomize_noise = False
if structure == 'auto': structure = 'linear' if force_clean_graph else 'recursive'
act, gain = {'relu': (torch.relu, np.sqrt(2)),
'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
num_layers = resolution_log2 * 2 - 2
num_styles = num_layers if use_styles else 1
torgbs = []
blocks = []
for res in range(2, resolution_log2 + 1):
channels = nf(res-1)
name = '{s}x{s}'.format(s=2**res)
if res == 2:
blocks.append((name,
InputBlock(channels, dlatent_size, const_input_layer, gain, use_wscale,
use_noise, use_pixel_norm, use_instance_norm, use_styles, act)))
else:
blocks.append((name,
GSynthesisBlock(last_channels, channels, blur_filter, dlatent_size, gain, use_wscale, use_noise, use_pixel_norm, use_instance_norm, use_styles, act)))
last_channels = channels
self.torgb = MyConv2d(channels,num_channels, 1,gain=1, use_wscale=use_wscale)
self.blocks = nn.ModuleDict(OrderedDict(blocks))
def forward(self,dlatents_in):
batch_size = dlatents_in.size(0)
for i, m in enumerate(self.blocks.values()):
if i == 0:
x = m(dlatents_in[:, 2*i:2*i+2])
else:
x = m(x,dlatents_in[:, 2*i:2*i+2])
rgb = self.torgb(x)
return rgb
class StddevLayer(nn.Module):
def __init__(self, group_size=4, num_new_features=1):
super().__init__()
self.group_size = 4
self.num_new_features = 1
def forward(self, x):
b, c, h, w = x.shape
group_size = min(self.group_size, b)
y = x.reshape([group_size, -1, self.num_new_features,
c // self.num_new_features, h, w])
y = y - y.mean(0, keepdim=True)
y = (y**2).mean(0, keepdim=True)
y = (y + 1e-8)**0.5
y = y.mean([3, 4, 5], keepdim=True).squeeze(3) # don't keep the meaned-out channels
y = y.expand(group_size, -1, -1, h, w).clone().reshape(b, self.num_new_features, h, w)
z = torch.cat([x, y], dim=1)
return z
class Downscale2d(nn.Module):
def __init__(self, factor=2, gain=1):
super().__init__()
assert isinstance(factor, int) and factor >= 1
self.factor = factor
self.gain = gain
if factor == 2:
f = [np.sqrt(gain) / factor] * factor
self.blur = BlurLayer(kernel=f, normalize=False, stride=factor)
else:
self.blur = None
def forward(self, x):
assert x.dim()==4
# 2x2, float32 => downscale using _blur2d().
if self.blur is not None and x.dtype == torch.float32:
return self.blur(x)
# Apply gain.
if self.gain != 1:
x = x * self.gain
# No-op => early exit.
if factor == 1:
return x
# Large factor => downscale using tf.nn.avg_pool().
# NOTE: Requires tf_config['graph_options.place_pruned_graph']=True to work.
return F.avg_pool2d(x, self.factor)
class DiscriminatorBlock(nn.Sequential):
def __init__(self, in_channels, out_channels, gain, use_wscale, activation_layer):
super().__init__(OrderedDict([
('conv0', MyConv2d(in_channels, in_channels, 3, gain=gain, use_wscale=use_wscale)), # out channels nf(res-1)
('act0', activation_layer),
('blur', BlurLayer()),
('conv1_down', MyConv2d(in_channels, out_channels, 3, gain=gain, use_wscale=use_wscale, downscale=True)),
('act1', activation_layer)]))
class View(nn.Module):
def __init__(self, *shape):
super().__init__()
self.shape = shape
def forward(self, x):
return x.view(x.size(0), *self.shape)
class DiscriminatorTop(nn.Sequential):
def __init__(self, mbstd_group_size, mbstd_num_features, in_channels, intermediate_channels, gain, use_wscale, activation_layer, resolution=4, in_channels2=None, output_features=1, last_gain=1):
layers = []
if mbstd_group_size > 1:
layers.append(('stddev_layer', StddevLayer(mbstd_group_size, mbstd_num_features)))
if in_channels2 is None:
in_channels2 = in_channels
layers.append(('conv', MyConv2d(in_channels + mbstd_num_features, in_channels2, 3, gain=gain, use_wscale=use_wscale)))
layers.append(('act0', activation_layer))
layers.append(('view', View(-1)))
layers.append(('dense0', MyLinear(in_channels2*resolution*resolution, intermediate_channels, gain=gain, use_wscale=use_wscale)))
layers.append(('act1', activation_layer))
layers.append(('dense1', MyLinear(intermediate_channels, output_features, gain=last_gain, use_wscale=use_wscale)))
super().__init__(OrderedDict(layers))
class D_basic(nn.Sequential):
def __init__(self,
#images_in, # First input: Images [minibatch, channel, height, width].
#labels_in, # Second input: Labels [minibatch, label_size].
num_channels = 3, # Number of input color channels. Overridden based on dataset.
resolution = 1024, # Input resolution. Overridden based on dataset.
fmap_base = 8192, # Overall multiplier for the number of feature maps.
fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution.
fmap_max = 512, # Maximum number of feature maps in any layer.
nonlinearity = 'lrelu', # Activation function: 'relu', 'lrelu',
use_wscale = True, # Enable equalized learning rate?
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, 0 = disable.
mbstd_num_features = 1, # Number of features for the minibatch standard deviation layer.
#blur_filter = [1,2,1], # Low-pass filter to apply when resampling activations. None = no filtering.
):
self.mbstd_group_size = 4
self.mbstd_num_features = 1
resolution_log2 = int(np.log2(resolution))
assert resolution == 2**resolution_log2 and resolution >= 4
def nf(stage):
return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
act, gain = {'relu': (torch.relu, np.sqrt(2)),
'lrelu': (nn.LeakyReLU(negative_slope=0.2), np.sqrt(2))}[nonlinearity]
self.gain = gain
self.use_wscale = use_wscale
super().__init__(OrderedDict([
('fromrgb', MyConv2d(num_channels, nf(resolution_log2-1), 1, gain=gain, use_wscale=use_wscale)),
('act', act)]
+[('{s}x{s}'.format(s=2**res), DiscriminatorBlock(nf(res-1), nf(res-2), gain=gain, use_wscale=use_wscale, activation_layer=act)) for res in range(resolution_log2, 2, -1)]
+[('4x4', DiscriminatorTop(mbstd_group_size, mbstd_num_features, nf(2), nf(2), gain=gain, use_wscale=use_wscale, activation_layer=act))]))