-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathClear_user_consumption_recode.py
172 lines (131 loc) · 6.67 KB
/
Clear_user_consumption_recode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding=utf-8
'''
author: ShiLei Miao
'''
from numpy import *
import pandas as pd
from pandas import *
import os
import time
os.chdir(r'E:\PycharmProjects\Rong360')
start =time.clock()
###
# 数据读取
def Read_dta(f):
N_dta = []
N_dta_columns = f.readline().strip()
N_dta_columns = N_dta_columns.split('\t')
while True:
line = f.readline().strip()
if line:
line = line.split('\t')
N_dta.append(line)
else:
break
N_dta = DataFrame(N_dta,columns=N_dta_columns)
return N_dta
filename = open('***\\consumption_recode.txt','r')
consumption_recode = Read_dta(filename)
u_train = pd.read_csv('***\\train.txt')
u_test = pd.read_csv('***\\test.txt')
def Summarizing_basic_information(N_data,variable):
N_data[variable] = N_data[variable].astype(float)
data = DataFrame()
data['min_'+variable] = N_data.groupby('user_id')[variable].min()
data['max_'+variable] = N_data.groupby('user_id')[variable].max()
data['sum_'+variable] = N_data.groupby('user_id')[variable].sum()
data['mean_'+variable] = N_data.groupby('user_id')[variable].mean()
data['std_'+variable] = N_data.groupby('user_id')[variable].std()
data['count_'+variable] = N_data.groupby('user_id')[variable].count()
data['user_id'] = data.index
data = DataFrame(data.values,columns=data.columns)
data = data.reindex(columns=['user_id','min_'+variable,'max_'+variable,'sum_'+variable,\
'mean_'+variable,'std_'+variable,'count_'+variable])
return data
## 将数据集进行区间估计
def C_confidence_interval(dta,variable):
dta[variable+u'_upper'] = 0
dta[variable+u'_lower'] = 0
t_table = pd.read_excel(u'dta\\Original_dta\\user_dta\\t检验临界值表.xls','t_table')
z_a = 1.96
for i in range(len(dta)):
if dta.ix[i][u'count_'+variable] < 30:
t_a = t_table.ix[dta.ix[i][u'count_'+variable]-1]['a3']
dta.loc[i,variable+u'_upper'] = dta.ix[i]['mean_'+variable] + \
t_a*dta.ix[i]['std_'+variable]/math.sqrt(dta.ix[i][u'count_'+variable])
dta.loc[i,variable+u'_lower'] = dta.ix[i]['mean_'+variable] - \
t_a*dta.ix[i]['std_'+variable]/math.sqrt(dta.ix[i][u'count_'+variable])
if dta.ix[i][u'count_'+variable] >= 30:
dta.loc[i,variable+u'_upper'] = dta.ix[i]['mean_'+variable] + \
z_a*dta.ix[i]['std_'+variable]/math.sqrt(dta.ix[i][u'count_'+variable])
dta.loc[i,variable+u'_lower'] = dta.ix[i]['mean_'+variable] - \
z_a*dta.ix[i]['std_'+variable]/math.sqrt(dta.ix[i][u'count_'+variable])
return dta
## 数据探索
Freq_var = []
for i in range(2,len(consumption_recode.columns)):
a = []
a.append(consumption_recode.columns[i]);
a.append(len(consumption_recode[consumption_recode.columns[i]].value_counts()))
Freq_var.append(a)
list_1 = [];list_2 = []
for i in range(len(Freq_var)):
if Freq_var[i][1] <= 3:
list_1.append(Freq_var[i][0])
if Freq_var[i][1] > 3:
list_2.append(Freq_var[i][0])
# 单独处理 is_cheat_bill
for i in range(len(list_2)):
N_cc = Summarizing_basic_information(consumption_recode,list_2[i])
u_train = merge(u_train, N_cc, how="left", left_on='user_id', right_on='user_id')
u_test = merge(u_test, N_cc, how="left", left_on='user_id', right_on='user_id')
## 2、处理 【bill_id:记录编号】
bill_id = DataFrame()
bill_id['count_bill_id'] = consumption_recode.groupby('user_id')['bill_id'].count()
bill_id['user_id'] = bill_id.index
N_bill_id = DataFrame(bill_id.values,columns = bill_id.columns)
## 3、处理 【is_cheat_bill:是否恶意账单】
N1_is_cheat_bill = DataFrame(consumption_recode['user_id']).join(consumption_recode['is_cheat_bill'])
N1_is_cheat_bill = N1_is_cheat_bill.drop_duplicates()
N_is_cheat_bill = DataFrame()
N_is_cheat_bill['is_cheat_bill'] = N1_is_cheat_bill.groupby('user_id')['is_cheat_bill'].max()
N_is_cheat_bill['user_id'] = N_is_cheat_bill.index
N_is_cheat_bill = DataFrame(N_is_cheat_bill.values,columns=N_is_cheat_bill.columns)
N_is_cheat_bill = N_is_cheat_bill.reindex(columns=['user_id','is_cheat_bill'])
## 4、处理 【card_type: 卡类型】
N_card_type = DataFrame()
N_card_type['max_card_type'] = consumption_recode.groupby('user_id')['card_type'].max()
N_card_type['min_card_type'] = consumption_recode.groupby('user_id')['card_type'].min()
N_card_type['count_card_type'] = consumption_recode.groupby('user_id')['user_id'].count()
N_card_type['user_id'] = N_card_type.index
N_card_type = DataFrame(N_card_type.values,columns=N_card_type.columns)
## 5、处理 【curr: 币种】
consumption_recode['curr'] = consumption_recode['curr'].astype(float)
N_curr = DataFrame()
N_curr['max_curr'] = consumption_recode.groupby('user_id')['curr'].max()
N_curr['min_curr'] = consumption_recode.groupby('user_id')['curr'].min()
N_curr['median_curr'] = consumption_recode.groupby('user_id')['curr'].median()
N_curr['count_curr'] = consumption_recode.groupby('user_id')['user_id'].count()
N_curr['user_id'] = N_curr.index
N_curr = DataFrame(N_curr.values,columns=N_curr.columns)
## 6、处理 【repay_stat: 还款状态】
N_repay_stat = DataFrame()
N_repay_stat['max_repay_stat'] = consumption_recode.groupby('user_id')['repay_stat'].max()
N_repay_stat['min_repay_stat'] = consumption_recode.groupby('user_id')['repay_stat'].min()
N_repay_stat['count_repay_stat'] = consumption_recode.groupby('user_id')['user_id'].count()
N_repay_stat['user_id'] = N_repay_stat.index
N_repay_stat = DataFrame(N_repay_stat.values,columns=N_repay_stat.columns)
u_train = merge(u_train, N_bill_id, how="left", left_on='user_id', right_on='user_id')
u_train = merge(u_train, N_is_cheat_bill, how="left", left_on='user_id', right_on='user_id')
u_train = merge(u_train, N_card_type, how="left", left_on='user_id', right_on='user_id')
u_train = merge(u_train, N_curr ,how="left", left_on='user_id', right_on='user_id')
u_train = merge(u_train, N_repay_stat, how="left", left_on='user_id', right_on='user_id')
u_test = merge(u_test, N_bill_id, how="left", left_on='user_id', right_on='user_id')
u_test = merge(u_test, N_is_cheat_bill, how="left", left_on='user_id', right_on='user_id')
u_test = merge(u_test, N_card_type, how="left", left_on='user_id', right_on='user_id')
u_test = merge(u_test, N_curr ,how="left", left_on='user_id', right_on='user_id')
u_test = merge(u_test, N_repay_stat, how="left", left_on='user_id', right_on='user_id')
u_train.to_csv('***\\N_train_consumption1.csv',index=False)
u_test.to_csv('***\\N_test_consumption1.csv',index=False)
end = time.clock()
print ('Running time: %s Seconds'%(end-start))