forked from CakeML/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lists.ml
821 lines (679 loc) · 30.5 KB
/
lists.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
(* ========================================================================= *)
(* Theory of lists, plus characters and strings as lists of characters. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Marco Maggesi 2014 *)
(* ========================================================================= *)
needs "ind_types.ml";;
(* ------------------------------------------------------------------------- *)
(* Standard tactic for list induction using MATCH_MP_TAC list_INDUCT *)
(* ------------------------------------------------------------------------- *)
let LIST_INDUCT_TAC =
let list_INDUCT = prove
(`!P:(A)list->bool. P [] /\ (!h t. P t ==> P (CONS h t)) ==> !l. P l`,
MATCH_ACCEPT_TAC list_INDUCT) in
MATCH_MP_TAC list_INDUCT THEN
CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN GEN_TAC THEN DISCH_TAC];;
(* ------------------------------------------------------------------------- *)
(* Basic definitions. *)
(* ------------------------------------------------------------------------- *)
let HD = new_recursive_definition list_RECURSION
`HD(CONS (h:A) t) = h`;;
let TL = new_recursive_definition list_RECURSION
`TL(CONS (h:A) t) = t`;;
let APPEND = new_recursive_definition list_RECURSION
`(!l:(A)list. APPEND [] l = l) /\
(!h t l. APPEND (CONS h t) l = CONS h (APPEND t l))`;;
let REVERSE = new_recursive_definition list_RECURSION
`(REVERSE [] = []) /\
(REVERSE (CONS (x:A) l) = APPEND (REVERSE l) [x])`;;
let LENGTH = new_recursive_definition list_RECURSION
`(LENGTH [] = 0) /\
(!h:A. !t. LENGTH (CONS h t) = SUC (LENGTH t))`;;
let MAP = new_recursive_definition list_RECURSION
`(!f:A->B. MAP f NIL = NIL) /\
(!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t))`;;
let LAST = new_recursive_definition list_RECURSION
`LAST (CONS (h:A) t) = if t = [] then h else LAST t`;;
let BUTLAST = new_recursive_definition list_RECURSION
`(BUTLAST [] = []) /\
(BUTLAST (CONS h t) = if t = [] then [] else CONS h (BUTLAST t))`;;
let REPLICATE = new_recursive_definition num_RECURSION
`(REPLICATE 0 x = []) /\
(REPLICATE (SUC n) x = CONS x (REPLICATE n x))`;;
let NULL = new_recursive_definition list_RECURSION
`(NULL [] = T) /\
(NULL (CONS h t) = F)`;;
let ALL = new_recursive_definition list_RECURSION
`(ALL P [] = T) /\
(ALL P (CONS h t) <=> P h /\ ALL P t)`;;
let EX = new_recursive_definition list_RECURSION
`(EX P [] = F) /\
(EX P (CONS h t) <=> P h \/ EX P t)`;;
let ITLIST = new_recursive_definition list_RECURSION
`(ITLIST f [] b = b) /\
(ITLIST f (CONS h t) b = f h (ITLIST f t b))`;;
let MEM = new_recursive_definition list_RECURSION
`(MEM x [] <=> F) /\
(MEM x (CONS h t) <=> (x = h) \/ MEM x t)`;;
let ALL2_DEF = new_recursive_definition list_RECURSION
`(ALL2 P [] l2 <=> (l2 = [])) /\
(ALL2 P (CONS h1 t1) l2 <=>
if l2 = [] then F
else P h1 (HD l2) /\ ALL2 P t1 (TL l2))`;;
let ALL2 = prove
(`(ALL2 P [] [] <=> T) /\
(ALL2 P (CONS h1 t1) [] <=> F) /\
(ALL2 P [] (CONS h2 t2) <=> F) /\
(ALL2 P (CONS h1 t1) (CONS h2 t2) <=> P h1 h2 /\ ALL2 P t1 t2)`,
REWRITE_TAC[distinctness "list"; ALL2_DEF; HD; TL]);;
let MAP2_DEF = new_recursive_definition list_RECURSION
`(MAP2 f [] l = []) /\
(MAP2 f (CONS h1 t1) l = CONS (f h1 (HD l)) (MAP2 f t1 (TL l)))`;;
let MAP2 = prove
(`(MAP2 f [] [] = []) /\
(MAP2 f (CONS h1 t1) (CONS h2 t2) = CONS (f h1 h2) (MAP2 f t1 t2))`,
REWRITE_TAC[MAP2_DEF; HD; TL]);;
let EL = new_recursive_definition num_RECURSION
`(EL 0 l = HD l) /\
(EL (SUC n) l = EL n (TL l))`;;
let FILTER = new_recursive_definition list_RECURSION
`(FILTER P [] = []) /\
(FILTER P (CONS h t) = if P h then CONS h (FILTER P t) else FILTER P t)`;;
let ASSOC = new_recursive_definition list_RECURSION
`ASSOC a (CONS h t) = if FST h = a then SND h else ASSOC a t`;;
let ITLIST2_DEF = new_recursive_definition list_RECURSION
`(ITLIST2 f [] l2 b = b) /\
(ITLIST2 f (CONS h1 t1) l2 b = f h1 (HD l2) (ITLIST2 f t1 (TL l2) b))`;;
let ITLIST2 = prove
(`(ITLIST2 f [] [] b = b) /\
(ITLIST2 f (CONS h1 t1) (CONS h2 t2) b = f h1 h2 (ITLIST2 f t1 t2 b))`,
REWRITE_TAC[ITLIST2_DEF; HD; TL]);;
let ZIP_DEF = new_recursive_definition list_RECURSION
`(ZIP [] l2 = []) /\
(ZIP (CONS h1 t1) l2 = CONS (h1,HD l2) (ZIP t1 (TL l2)))`;;
let ZIP = prove
(`(ZIP [] [] = []) /\
(ZIP (CONS h1 t1) (CONS h2 t2) = CONS (h1,h2) (ZIP t1 t2))`,
REWRITE_TAC[ZIP_DEF; HD; TL]);;
let ALLPAIRS = new_recursive_definition list_RECURSION
`(ALLPAIRS f [] l <=> T) /\
(ALLPAIRS f (CONS h t) l <=> ALL (f h) l /\ ALLPAIRS f t l)`;;
let PAIRWISE = new_recursive_definition list_RECURSION
`(PAIRWISE (r:A->A->bool) [] <=> T) /\
(PAIRWISE (r:A->A->bool) (CONS h t) <=> ALL (r h) t /\ PAIRWISE r t)`;;
let list_of_seq = new_recursive_definition num_RECURSION
`list_of_seq (s:num->A) 0 = [] /\
list_of_seq s (SUC n) = APPEND (list_of_seq s n) [s n]`;;
(* ------------------------------------------------------------------------- *)
(* Various trivial theorems. *)
(* ------------------------------------------------------------------------- *)
let NOT_CONS_NIL = prove
(`!(h:A) t. ~(CONS h t = [])`,
REWRITE_TAC[distinctness "list"]);;
let LAST_CLAUSES = prove
(`(LAST [h:A] = h) /\
(LAST (CONS h (CONS k t)) = LAST (CONS k t))`,
REWRITE_TAC[LAST; NOT_CONS_NIL]);;
let APPEND_NIL = prove
(`!l:A list. APPEND l [] = l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND]);;
let APPEND_ASSOC = prove
(`!(l:A list) m n. APPEND l (APPEND m n) = APPEND (APPEND l m) n`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND]);;
let REVERSE_APPEND = prove
(`!(l:A list) m. REVERSE (APPEND l m) = APPEND (REVERSE m) (REVERSE l)`,
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[APPEND; REVERSE; APPEND_NIL; APPEND_ASSOC]);;
let REVERSE_REVERSE = prove
(`!l:A list. REVERSE(REVERSE l) = l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[REVERSE; REVERSE_APPEND; APPEND]);;
let REVERSE_EQ_EMPTY = prove
(`!l:A list. REVERSE l = [] <=> l = []`,
MESON_TAC[REVERSE_REVERSE; REVERSE]);;
let CONS_11 = prove
(`!(h1:A) h2 t1 t2. (CONS h1 t1 = CONS h2 t2) <=> (h1 = h2) /\ (t1 = t2)`,
REWRITE_TAC[injectivity "list"]);;
let list_CASES = prove
(`!l:(A)list. (l = []) \/ ?h t. l = CONS h t`,
LIST_INDUCT_TAC THEN REWRITE_TAC[CONS_11; NOT_CONS_NIL] THEN
MESON_TAC[]);;
let LIST_EQ = prove
(`!l1 l2:A list.
l1 = l2 <=>
LENGTH l1 = LENGTH l2 /\ !n. n < LENGTH l2 ==> EL n l1 = EL n l2`,
REPEAT LIST_INDUCT_TAC THEN
REWRITE_TAC[NOT_CONS_NIL; CONS_11; LENGTH; CONJUNCT1 LT; NOT_SUC] THEN
ASM_REWRITE_TAC[SUC_INJ] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV)
[MESON[num_CASES] `(!n. P n) <=> P 0 /\ (!n. P(SUC n))`] THEN
REWRITE_TAC[EL; HD; TL; LT_0; LT_SUC; CONJ_ACI]);;
let LENGTH_APPEND = prove
(`!(l:A list) m. LENGTH(APPEND l m) = LENGTH l + LENGTH m`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LENGTH; ADD_CLAUSES]);;
let MAP_APPEND = prove
(`!f:A->B. !l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; APPEND]);;
let LENGTH_MAP = prove
(`!l. !f:A->B. LENGTH (MAP f l) = LENGTH l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; LENGTH]);;
let LENGTH_EQ_NIL = prove
(`!l:A list. (LENGTH l = 0) <=> (l = [])`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_CONS_NIL; NOT_SUC]);;
let LENGTH_EQ_CONS = prove
(`!l n. (LENGTH l = SUC n) <=> ?h t. (l = CONS h t) /\ (LENGTH t = n)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC; NOT_CONS_NIL] THEN
ASM_REWRITE_TAC[SUC_INJ; CONS_11] THEN MESON_TAC[]);;
let LENGTH_REVERSE = prove
(`!l:A list. LENGTH(REVERSE l) = LENGTH l`,
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[REVERSE; LENGTH_APPEND; LENGTH] THEN
REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES]);;
let MAP_o = prove
(`!f:A->B. !g:B->C. !l. MAP (g o f) l = MAP g (MAP f l)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MAP; o_THM]);;
let MAP_EQ = prove
(`!f g l. ALL (\x. f x = g x) l ==> (MAP f l = MAP g l)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; ALL] THEN ASM_MESON_TAC[]);;
let ALL_IMP = prove
(`!P Q l. (!x. MEM x l /\ P x ==> Q x) /\ ALL P l ==> ALL Q l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MEM; ALL] THEN ASM_MESON_TAC[]);;
let NOT_EX = prove
(`!P l. ~(EX P l) <=> ALL (\x. ~(P x)) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[EX; ALL; DE_MORGAN_THM]);;
let NOT_ALL = prove
(`!P l. ~(ALL P l) <=> EX (\x. ~(P x)) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[EX; ALL; DE_MORGAN_THM]);;
let ALL_MAP = prove
(`!P f l. ALL P (MAP f l) <=> ALL (P o f) l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ALL; MAP; o_THM]);;
let ALL_EQ = prove
(`!l. ALL R l /\ (!x. R x ==> (P x <=> Q x))
==> (ALL P l <=> ALL Q l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL] THEN
STRIP_TAC THEN BINOP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[]);;
let ALL_T = prove
(`!l. ALL (\x. T) l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL]);;
let MAP_EQ_ALL2 = prove
(`!l m. ALL2 (\x y. f x = f y) l m ==> (MAP f l = MAP f m)`,
REPEAT LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; ALL2; CONS_11] THEN
ASM_MESON_TAC[]);;
let ALL2_MAP = prove
(`!P f l. ALL2 P (MAP f l) l <=> ALL (\a. P (f a) a) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; MAP; ALL]);;
let MAP_EQ_DEGEN = prove
(`!l f. ALL (\x. f(x) = x) l ==> (MAP f l = l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; CONS_11] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let ALL2_AND_RIGHT = prove
(`!l m P Q. ALL2 (\x y. P x /\ Q x y) l m <=> ALL P l /\ ALL2 Q l m`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; ALL2] THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; ALL2] THEN
REWRITE_TAC[CONJ_ACI]);;
let ITLIST_APPEND = prove
(`!f a l1 l2. ITLIST f (APPEND l1 l2) a = ITLIST f l1 (ITLIST f l2 a)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ITLIST; APPEND]);;
let ITLIST_EXTRA = prove
(`!l. ITLIST f (APPEND l [a]) b = ITLIST f l (f a b)`,
REWRITE_TAC[ITLIST_APPEND; ITLIST]);;
let ALL_MP = prove
(`!P Q l. ALL (\x. P x ==> Q x) l /\ ALL P l ==> ALL Q l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL] THEN ASM_MESON_TAC[]);;
let AND_ALL = prove
(`!l. ALL P l /\ ALL Q l <=> ALL (\x. P x /\ Q x) l`,
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; CONJ_ACI]);;
let EX_IMP = prove
(`!P Q l. (!x. MEM x l /\ P x ==> Q x) /\ EX P l ==> EX Q l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MEM; EX] THEN ASM_MESON_TAC[]);;
let ALL_MEM = prove
(`!P l. (!x. MEM x l ==> P x) <=> ALL P l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MEM] THEN
ASM_MESON_TAC[]);;
let LENGTH_REPLICATE = prove
(`!n x. LENGTH(REPLICATE n x) = n`,
INDUCT_TAC THEN ASM_REWRITE_TAC[LENGTH; REPLICATE]);;
let MEM_REPLICATE = prove
(`!n x y:A. MEM x (REPLICATE n y) <=> x = y /\ ~(n = 0)`,
INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; REPLICATE; NOT_SUC] THEN
MESON_TAC[]);;
let EX_MAP = prove
(`!P f l. EX P (MAP f l) <=> EX (P o f) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP; EX; o_THM]);;
let EXISTS_EX = prove
(`!P l. (?x. EX (P x) l) <=> EX (\s. ?x. P x s) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[EX] THEN
ASM_MESON_TAC[]);;
let FORALL_ALL = prove
(`!P l. (!x. ALL (P x) l) <=> ALL (\s. !x. P x s) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
ASM_MESON_TAC[]);;
let MEM_APPEND = prove
(`!x l1 l2. MEM x (APPEND l1 l2) <=> MEM x l1 \/ MEM x l2`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; APPEND; DISJ_ACI]);;
let MEM_MAP = prove
(`!f y l. MEM y (MAP f l) <=> ?x. MEM x l /\ (y = f x)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MEM; MAP] THEN MESON_TAC[]);;
let FILTER_APPEND = prove
(`!P l1 l2. FILTER P (APPEND l1 l2) = APPEND (FILTER P l1) (FILTER P l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[FILTER; APPEND] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[APPEND]);;
let FILTER_MAP = prove
(`!P f l. FILTER P (MAP f l) = MAP f (FILTER (P o f) l)`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MAP; FILTER; o_THM] THEN COND_CASES_TAC THEN
REWRITE_TAC[MAP]);;
let MEM_FILTER = prove
(`!P l x. MEM x (FILTER P l) <=> P x /\ MEM x l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; FILTER] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM] THEN
ASM_MESON_TAC[]);;
let EX_MEM = prove
(`!P l. (?x. P x /\ MEM x l) <=> EX P l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[EX; MEM] THEN
ASM_MESON_TAC[]);;
let MAP_FST_ZIP = prove
(`!l1 l2. (LENGTH l1 = LENGTH l2) ==> (MAP FST (ZIP l1 l2) = l1)`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[LENGTH; SUC_INJ; MAP; FST; ZIP; NOT_SUC]);;
let MAP_SND_ZIP = prove
(`!l1 l2. (LENGTH l1 = LENGTH l2) ==> (MAP SND (ZIP l1 l2) = l2)`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[LENGTH; SUC_INJ; MAP; FST; ZIP; NOT_SUC]);;
let LENGTH_ZIP = prove
(`!l1 l2. LENGTH l1 = LENGTH l2 ==> LENGTH(ZIP l1 l2) = LENGTH l2`,
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN
ASM_SIMP_TAC[LENGTH; NOT_SUC; ZIP; SUC_INJ]);;
let MEM_ASSOC = prove
(`!l x. MEM (x,ASSOC x l) l <=> MEM x (MAP FST l)`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; MAP; ASSOC] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[PAIR; FST]);;
let ALL_APPEND = prove
(`!P l1 l2. ALL P (APPEND l1 l2) <=> ALL P l1 /\ ALL P l2`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ALL; APPEND; GSYM CONJ_ASSOC]);;
let MEM_EL = prove
(`!l n. n < LENGTH l ==> MEM (EL n l) l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; CONJUNCT1 LT; LENGTH] THEN
INDUCT_TAC THEN ASM_SIMP_TAC[EL; HD; LT_SUC; TL]);;
let MEM_EXISTS_EL = prove
(`!l x. MEM x l <=> ?i. i < LENGTH l /\ x = EL i l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LENGTH; EL; MEM; CONJUNCT1 LT] THEN
GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV
[MESON[num_CASES] `(?i. P i) <=> P 0 \/ (?i. P(SUC i))`] THEN
REWRITE_TAC[LT_SUC; LT_0; EL; HD; TL]);;
let ALL_EL = prove
(`!P l. (!i. i < LENGTH l ==> P (EL i l)) <=> ALL P l`,
REWRITE_TAC[GSYM ALL_MEM; MEM_EXISTS_EL] THEN MESON_TAC[]);;
let ALL2_MAP2 = prove
(`!l m. ALL2 P (MAP f l) (MAP g m) = ALL2 (\x y. P (f x) (g y)) l m`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; MAP]);;
let AND_ALL2 = prove
(`!P Q l m. ALL2 P l m /\ ALL2 Q l m <=> ALL2 (\x y. P x y /\ Q x y) l m`,
GEN_TAC THEN GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2] THEN
REWRITE_TAC[CONJ_ACI]);;
let ALLPAIRS_SYM = prove
(`!P l m. ALLPAIRS P l m <=> ALLPAIRS (\x y. P y x) m l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALLPAIRS] THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALLPAIRS; ALL] THEN
ASM_MESON_TAC[]);;
let ALLPAIRS_MEM = prove
(`!P l m. (!x y. MEM x l /\ MEM y m ==> P x y) <=> ALLPAIRS P l m`,
GEN_TAC THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALLPAIRS; GSYM ALL_MEM; MEM] THEN
ASM_MESON_TAC[]);;
let ALLPAIRS_MAP = prove
(`!P l m. ALLPAIRS P (MAP f l) (MAP g m) <=>
ALLPAIRS (\x y. P (f x) (g y)) l m`,
REWRITE_TAC[GSYM ALLPAIRS_MEM; MEM_MAP] THEN MESON_TAC[]);;
let ALLPAIRS_EQ = prove
(`!l m. !P Q. ALL P (l:A list) /\ ALL Q (m:B list) /\
(!p q. P p /\ Q q ==> (R p q <=> R' p q))
==> (ALLPAIRS R l m <=> ALLPAIRS R' l m)`,
REWRITE_TAC[GSYM ALLPAIRS_MEM; GSYM ALL_MEM] THEN MESON_TAC[]);;
let ALL2_ALL = prove
(`!P l. ALL2 P l l <=> ALL (\x. P x x) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ALL2; ALL]);;
let APPEND_EQ_NIL = prove
(`!l m. (APPEND l m = []) <=> (l = []) /\ (m = [])`,
REWRITE_TAC[GSYM LENGTH_EQ_NIL; LENGTH_APPEND; ADD_EQ_0]);;
let APPEND_LCANCEL = prove
(`!l1 l2 l3:A list. APPEND l1 l2 = APPEND l1 l3 <=> l2 = l3`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; CONS_11]);;
let APPEND_RCANCEL = prove
(`!l1 l2 l3:A list. APPEND l1 l3 = APPEND l2 l3 <=> l1 = l2`,
ONCE_REWRITE_TAC[MESON[REVERSE_REVERSE]
`l = l' <=> REVERSE l = REVERSE l'`] THEN
REWRITE_TAC[REVERSE_APPEND; APPEND_LCANCEL]);;
let LENGTH_MAP2 = prove
(`!f l m. LENGTH l = LENGTH m ==> LENGTH(MAP2 f l m) = LENGTH m`,
GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[LENGTH; NOT_CONS_NIL; NOT_SUC; MAP2; SUC_INJ]);;
let EL_MAP2 = prove
(`!f l m k. k < LENGTH l /\ k < LENGTH m
==> EL k (MAP2 f l m) = f (EL k l) (EL k m)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[LENGTH; CONJUNCT1 LT] THEN
INDUCT_TAC THEN ASM_SIMP_TAC[LENGTH; MAP2; EL; HD; TL; LT_SUC]);;
let MAP_EQ_NIL = prove
(`!f l. MAP f l = [] <=> l = []`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; NOT_CONS_NIL]);;
let INJECTIVE_MAP = prove
(`!f:A->B. (!l m. MAP f l = MAP f m ==> l = m) <=>
(!x y. f x = f y ==> x = y)`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`[x:A]`; `[y:A]`]) THEN
ASM_REWRITE_TAC[MAP; CONS_11];
REPEAT LIST_INDUCT_TAC THEN ASM_SIMP_TAC[MAP; NOT_CONS_NIL; CONS_11] THEN
ASM_MESON_TAC[]]);;
let SURJECTIVE_MAP = prove
(`!f:A->B. (!m. ?l. MAP f l = m) <=> (!y. ?x. f x = y)`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `y:B` THEN FIRST_X_ASSUM(MP_TAC o SPEC `[y:B]`) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; CONS_11; NOT_CONS_NIL; MAP_EQ_NIL];
MATCH_MP_TAC list_INDUCT] THEN
ASM_MESON_TAC[MAP]);;
let MAP_ID = prove
(`!l. MAP (\x. x) l = l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP]);;
let MAP_I = prove
(`MAP I = I`,
REWRITE_TAC[FUN_EQ_THM; I_DEF; MAP_ID]);;
let BUTLAST_APPEND = prove
(`!l m:A list. BUTLAST(APPEND l m) =
if m = [] then BUTLAST l else APPEND l (BUTLAST m)`,
SIMP_TAC[COND_RAND; APPEND_NIL; MESON[]
`(if p then T else q) <=> ~p ==> q`] THEN
LIST_INDUCT_TAC THEN ASM_SIMP_TAC[APPEND; BUTLAST; APPEND_EQ_NIL]);;
let APPEND_BUTLAST_LAST = prove
(`!l. ~(l = []) ==> APPEND (BUTLAST l) [LAST l] = l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LAST; BUTLAST; NOT_CONS_NIL] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[APPEND]);;
let LAST_APPEND = prove
(`!p q. LAST(APPEND p q) = if q = [] then LAST p else LAST q`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LAST; APPEND_EQ_NIL] THEN
MESON_TAC[]);;
let LENGTH_TL = prove
(`!l. ~(l = []) ==> LENGTH(TL l) = LENGTH l - 1`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; TL; ARITH; SUC_SUB1]);;
let LAST_REVERSE = prove
(`!l:A list. ~(l = []) ==> LAST(REVERSE l) = HD l`,
LIST_INDUCT_TAC THEN
REWRITE_TAC[HD; REVERSE; LAST; LAST_APPEND; NOT_CONS_NIL]);;
let HD_REVERSE = prove
(`!l:A list. ~(l = []) ==> HD(REVERSE l) = LAST l`,
MESON_TAC[LAST_REVERSE; REVERSE_REVERSE; REVERSE_EQ_EMPTY]);;
let EL_APPEND = prove
(`!k l m. EL k (APPEND l m) = if k < LENGTH l then EL k l
else EL (k - LENGTH l) m`,
INDUCT_TAC THEN REWRITE_TAC[EL] THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[HD; APPEND; LENGTH; SUB_0; EL; LT_0; CONJUNCT1 LT] THEN
ASM_REWRITE_TAC[TL; LT_SUC; SUB_SUC]);;
let EL_TL = prove
(`!n. EL n (TL l) = EL (n + 1) l`,
REWRITE_TAC[GSYM ADD1; EL]);;
let EL_CONS = prove
(`!n h t. EL n (CONS h t) = if n = 0 then h else EL (n - 1) t`,
INDUCT_TAC THEN REWRITE_TAC[EL; HD; TL; NOT_SUC; SUC_SUB1]);;
let LAST_EL = prove
(`!l. ~(l = []) ==> LAST l = EL (LENGTH l - 1) l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LAST; LENGTH; SUC_SUB1] THEN
DISCH_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[LENGTH; EL; HD; EL_CONS; LENGTH_EQ_NIL]);;
let HD_APPEND = prove
(`!l m:A list. HD(APPEND l m) = if l = [] then HD m else HD l`,
LIST_INDUCT_TAC THEN REWRITE_TAC[HD; APPEND; NOT_CONS_NIL]);;
let CONS_HD_TL = prove
(`!l. ~(l = []) ==> l = CONS (HD l) (TL l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL;HD;TL]);;
let EL_MAP = prove
(`!f n l. n < LENGTH l ==> EL n (MAP f l) = f(EL n l)`,
GEN_TAC THEN INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LENGTH; CONJUNCT1 LT; LT_0; EL; HD; TL; MAP; LT_SUC]);;
let MAP_REVERSE = prove
(`!f l. REVERSE(MAP f l) = MAP f (REVERSE l)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MAP; REVERSE; MAP_APPEND]);;
let ALL_FILTER = prove
(`!P Q l:A list. ALL P (FILTER Q l) <=> ALL (\x. Q x ==> P x) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; FILTER] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ALL]);;
let APPEND_SING = prove
(`!h t. APPEND [h] t = CONS h t`,
REWRITE_TAC[APPEND]);;
let MEM_APPEND_DECOMPOSE_LEFT = prove
(`!x:A l. MEM x l <=> ?l1 l2. ~(MEM x l1) /\ l = APPEND l1 (CONS x l2)`,
REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; MEM_APPEND; MEM] THEN X_GEN_TAC `x:A` THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[MEM] THEN
MAP_EVERY X_GEN_TAC [`y:A`; `l:A list`] THEN
ASM_CASES_TAC `x:A = y` THEN ASM_MESON_TAC[MEM; APPEND]);;
let MEM_APPEND_DECOMPOSE = prove
(`!x:A l. MEM x l <=> ?l1 l2. l = APPEND l1 (CONS x l2)`,
REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; MEM_APPEND; MEM] THEN
ONCE_REWRITE_TAC[MEM_APPEND_DECOMPOSE_LEFT] THEN MESON_TAC[]);;
let PAIRWISE_APPEND = prove
(`!R:A->A->bool l m.
PAIRWISE R (APPEND l m) <=>
PAIRWISE R l /\ PAIRWISE R m /\ (!x y. MEM x l /\ MEM y m ==> R x y)`,
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[APPEND; PAIRWISE; MEM; ALL_APPEND; GSYM ALL_MEM] THEN
MESON_TAC[]);;
let PAIRWISE_MAP = prove
(`!R f:A->B l.
PAIRWISE R (MAP f l) <=> PAIRWISE (\x y. R (f x) (f y)) l`,
GEN_TAC THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[PAIRWISE; MAP; ALL_MAP; o_DEF]);;
let PAIRWISE_IMPLIES = prove
(`!R:A->A->bool R' l.
PAIRWISE R l /\ (!x y. MEM x l /\ MEM y l /\ R x y ==> R' x y)
==> PAIRWISE R' l`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[PAIRWISE; GSYM ALL_MEM; MEM] THEN MESON_TAC[]);;
let PAIRWISE_TRANSITIVE = prove
(`!R x y:A l.
(!x y z. R x y /\ R y z ==> R x z)
==> (PAIRWISE R (CONS x (CONS y l)) <=> R x y /\ PAIRWISE R (CONS y l))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[PAIRWISE; ALL; GSYM CONJ_ASSOC;
TAUT `(p /\ q /\ r /\ s <=> p /\ r /\ s) <=>
p /\ s ==> r ==> q`] THEN
STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN
ASM_MESON_TAC[]);;
let LENGTH_LIST_OF_SEQ = prove
(`!s:num->A n. LENGTH(list_of_seq s n) = n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[list_of_seq; LENGTH; LENGTH_APPEND; ADD_CLAUSES]);;
let EL_LIST_OF_SEQ = prove
(`!s:num->A m n. m < n ==> EL m (list_of_seq s n) = s m`,
GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
INDUCT_TAC THEN
REWRITE_TAC[list_of_seq; LT; EL_APPEND; LENGTH_LIST_OF_SEQ] THEN
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUB_REFL; EL; HD; LT_REFL]);;
let LIST_OF_SEQ_EQ_NIL = prove
(`!s:num->A n. list_of_seq s n = [] <=> n = 0`,
REWRITE_TAC[GSYM LENGTH_EQ_NIL; LENGTH_LIST_OF_SEQ; LENGTH]);;
(* ------------------------------------------------------------------------- *)
(* Syntax. *)
(* ------------------------------------------------------------------------- *)
let mk_cons h t =
try let cons = mk_const("CONS",[type_of h,aty]) in
mk_comb(mk_comb(cons,h),t)
with Failure _ -> failwith "mk_cons";;
let mk_list (tms,ty) =
try let nil = mk_const("NIL",[ty,aty]) in
if tms = [] then nil else
let cons = mk_const("CONS",[ty,aty]) in
itlist (mk_binop cons) tms nil
with Failure _ -> failwith "mk_list";;
let mk_flist tms =
try mk_list(tms,type_of(hd tms))
with Failure _ -> failwith "mk_flist";;
(* ------------------------------------------------------------------------- *)
(* Extra monotonicity theorems for inductive definitions. *)
(* ------------------------------------------------------------------------- *)
let MONO_ALL = prove
(`(!x:A. P x ==> Q x) ==> ALL P l ==> ALL Q l`,
DISCH_TAC THEN SPEC_TAC(`l:A list`,`l:A list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN ASM_MESON_TAC[]);;
let MONO_ALL2 = prove
(`(!x y. (P:A->B->bool) x y ==> Q x y) ==> ALL2 P l l' ==> ALL2 Q l l'`,
DISCH_TAC THEN
SPEC_TAC(`l':B list`,`l':B list`) THEN SPEC_TAC(`l:A list`,`l:A list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2_DEF] THEN
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
monotonicity_theorems := [MONO_ALL; MONO_ALL2] @ !monotonicity_theorems;;
(* ------------------------------------------------------------------------- *)
(* Apply a conversion down a list. *)
(* ------------------------------------------------------------------------- *)
let rec LIST_CONV conv tm =
if is_cons tm then
COMB2_CONV (RAND_CONV conv) (LIST_CONV conv) tm
else if fst(dest_const tm) = "NIL" then REFL tm
else failwith "LIST_CONV";;
(* ------------------------------------------------------------------------- *)
(* Type of characters, like the HOL88 "ascii" type, with syntax *)
(* constructors and equality conversions for chars and strings. *)
(* ------------------------------------------------------------------------- *)
let char_INDUCT,char_RECURSION = define_type
"char = ASCII bool bool bool bool bool bool bool bool";;
new_type_abbrev("string",`:char list`);;
let dest_char,mk_char,dest_string,mk_string,CHAR_EQ_CONV,STRING_EQ_CONV =
let bool_of_term t =
match t with
Const("T",_) -> true
| Const("F",_) -> false
| _ -> failwith "bool_of_term" in
let code_of_term t =
let f,tms = strip_comb t in
if not(is_const f && fst(dest_const f) = "ASCII")
|| not(length tms = 8) then failwith "code_of_term"
else
itlist (fun b f -> if b then 1 + 2 * f else 2 * f)
(map bool_of_term (rev tms)) 0 in
let char_of_term = Char.chr o code_of_term in
let dest_string tm =
try let tms = dest_list tm in
if fst(dest_type(hd(snd(dest_type(type_of tm))))) <> "char"
then fail() else
let ccs = map (String.str o char_of_term) tms in
string_escaped (implode ccs)
with Failure _ -> failwith "dest_string" in
let mk_bool b =
let true_tm,false_tm = `T`,`F` in
if b then true_tm else false_tm in
let mk_code =
let ascii_tm = `ASCII` in
let mk_code c =
let lis = map (fun i -> mk_bool((c / (1 lsl i)) mod 2 = 1)) (0--7) in
itlist (fun x y -> mk_comb(y,x)) lis ascii_tm in
let codes = Array.fromList (List.map mk_code (0--255)) in
fun c -> Array.sub codes c in
let mk_char = mk_code o Char.ord in
let mk_string s =
let ns = map (fun i -> Char.ord(String.sub s i))
(0--(String.size s - 1)) in
mk_list(map mk_code ns,`:char`) in
let CHAR_DISTINCTNESS =
let avars,bvars,cvars =
[`a0:bool`;`a1:bool`;`a2:bool`;`a3:bool`;`a4:bool`;`a5:bool`;`a6:bool`],
[`b1:bool`;`b2:bool`;`b3:bool`;`b4:bool`;`b5:bool`;`b6:bool`;`b7:bool`],
[`c1:bool`;`c2:bool`;`c3:bool`;`c4:bool`;`c5:bool`;`c6:bool`;`c7:bool`] in
let ASCII_NEQS_FT = (map EQF_INTRO o CONJUNCTS o prove)
(`~(ASCII F b1 b2 b3 b4 b5 b6 b7 = ASCII T c1 c2 c3 c4 c5 c6 c7) /\
~(ASCII a0 F b2 b3 b4 b5 b6 b7 = ASCII a0 T c2 c3 c4 c5 c6 c7) /\
~(ASCII a0 a1 F b3 b4 b5 b6 b7 = ASCII a0 a1 T c3 c4 c5 c6 c7) /\
~(ASCII a0 a1 a2 F b4 b5 b6 b7 = ASCII a0 a1 a2 T c4 c5 c6 c7) /\
~(ASCII a0 a1 a2 a3 F b5 b6 b7 = ASCII a0 a1 a2 a3 T c5 c6 c7) /\
~(ASCII a0 a1 a2 a3 a4 F b6 b7 = ASCII a0 a1 a2 a3 a4 T c6 c7) /\
~(ASCII a0 a1 a2 a3 a4 a5 F b7 = ASCII a0 a1 a2 a3 a4 a5 T c7) /\
~(ASCII a0 a1 a2 a3 a4 a5 a6 F = ASCII a0 a1 a2 a3 a4 a5 a6 T)`,
REWRITE_TAC[injectivity "char"]) in
let ASCII_NEQS_TF =
let ilist = zip bvars cvars @ zip cvars bvars in
let f = EQF_INTRO o INST ilist o GSYM o EQF_ELIM in
map f ASCII_NEQS_FT in
let rec prefix n l =
if n = 0 then [] else
match l with
h::t -> h :: prefix (n-1) t
| _ -> l in
let rec findneq n prefix a b =
match a,b with
b1::a, b2::b -> if b1 <> b2 then n,rev prefix,bool_of_term b2,a,b else
findneq (n+1) (b1 :: prefix) a b
| _, _ -> fail() in
fun c1 c2 ->
let _,a = strip_comb c1
and _,b = strip_comb c2 in
let n,p,b,s1,s2 = findneq 0 [] a b in
let ss1 = funpow n tl bvars
and ss2 = funpow n tl cvars in
let pp = prefix n avars in
let pth = if b then ASCII_NEQS_FT else ASCII_NEQS_TF in
INST (zip p pp @ zip s1 ss1 @ zip s2 ss2) (el n pth) in
let STRING_DISTINCTNESS =
let xtm,xstm = `x:char`,`xs:string`
and ytm,ystm = `y:char`,`ys:string`
and niltm = `[]:string` in
let NIL_EQ_THM = EQT_INTRO (REFL niltm)
and CONS_EQ_THM,CONS_NEQ_THM = (CONJ_PAIR o prove)
(`(CONS x xs:string = CONS x ys <=> xs = ys) /\
((x = y <=> F) ==> (CONS x xs:string = CONS y ys <=> F))`,
REWRITE_TAC[CONS_11] THEN MESON_TAC[])
and NIL_NEQ_CONS,CONS_NEQ_NIL = (CONJ_PAIR o prove)
(`(NIL:string = CONS x xs <=> F) /\
(CONS x xs:string = NIL <=> F)`,
REWRITE_TAC[NOT_CONS_NIL]) in
let rec STRING_DISTINCTNESS s1 s2 =
if s1 = niltm
then if s2 = niltm then NIL_EQ_THM
else let c2,s2 = rand (rator s2),rand s2 in
INST [c2,xtm;s2,xstm] NIL_NEQ_CONS
else let c1,s1 = rand (rator s1),rand s1 in
if s2 = niltm then INST [c1,xtm;s1,xstm] CONS_NEQ_NIL
else let c2,s2 = rand (rator s2),rand s2 in
if c1 = c2
then let th1 = INST [c1,xtm; s1,xstm; s2,ystm] CONS_EQ_THM
and th2 = STRING_DISTINCTNESS s1 s2 in
TRANS th1 th2
else let ilist = [c1,xtm; c2,ytm; s1,xstm; s2,ystm] in
let itm = INST ilist CONS_NEQ_THM in
MP itm (CHAR_DISTINCTNESS c1 c2) in
STRING_DISTINCTNESS in
let (CHAR_EQ_CONV : conv) =
fun tm ->
let c1,c2 = dest_eq tm in
if c1 = c2 then EQT_INTRO (REFL c1) else
CHAR_DISTINCTNESS c1 c2
and STRING_EQ_CONV tm =
let ltm,rtm = dest_eq tm in
if ltm = rtm then EQT_INTRO (REFL ltm) else
STRING_DISTINCTNESS ltm rtm in
char_of_term,mk_char,dest_string,mk_string,CHAR_EQ_CONV,STRING_EQ_CONV;;