forked from CakeML/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
equal.ml
342 lines (281 loc) · 12.3 KB
/
equal.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
(* ========================================================================= *)
(* Basic equality reasoning including conversionals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "printer.ml";;
(* ------------------------------------------------------------------------- *)
(* Type abbreviation for conversions. *)
(* ------------------------------------------------------------------------- *)
type conv = term->thm;;
(* ------------------------------------------------------------------------- *)
(* A bit more syntax. *)
(* ------------------------------------------------------------------------- *)
let lhand = rand o rator;;
let lhs = fst o dest_eq;;
let rhs = snd o dest_eq;;
(* ------------------------------------------------------------------------- *)
(* Similar to variant, but even avoids constants, and ignores types. *)
(* ------------------------------------------------------------------------- *)
let mk_primed_var =
let rec svariant avoid s =
if mem s avoid || (can get_const_type s && not(is_hidden s)) then
svariant avoid (s^"'")
else s in
fun avoid v ->
let s,ty = dest_var v in
let s' = svariant (mapfilter (fst o dest_var) avoid) s in
mk_var(s',ty);;
(* ------------------------------------------------------------------------- *)
(* General case of beta-conversion. *)
(* ------------------------------------------------------------------------- *)
let BETA_CONV tm =
try BETA tm with Failure _ ->
try let f,arg = dest_comb tm in
let v = bndvar f in
INST [arg,v] (BETA (mk_comb(f,v)))
with Failure _ -> failwith "BETA_CONV: Not a beta-redex";;
(* ------------------------------------------------------------------------- *)
(* A few very basic derived equality rules. *)
(* ------------------------------------------------------------------------- *)
let AP_TERM tm =
let rth = REFL tm in
fun th -> try MK_COMB(rth,th)
with Failure _ -> failwith "AP_TERM";;
let AP_THM th tm =
try MK_COMB(th,REFL tm)
with Failure _ -> failwith "AP_THM";;
let SYM th =
let tm = concl th in
let l,r = dest_eq tm in
let lth = REFL l in
EQ_MP (MK_COMB(AP_TERM (rator (rator tm)) th,lth)) lth;;
let ALPHA tm1 tm2 =
try TRANS (REFL tm1) (REFL tm2)
with Failure _ -> failwith "ALPHA";;
let ALPHA_CONV v tm =
let res = alpha v tm in
ALPHA tm res;;
let GEN_ALPHA_CONV v tm =
if is_abs tm then ALPHA_CONV v tm else
let b,abs = dest_comb tm in
AP_TERM b (ALPHA_CONV v abs);;
let MK_BINOP op =
let afn = AP_TERM op in
fun (lth,rth) -> MK_COMB(afn lth,rth);;
(* ------------------------------------------------------------------------- *)
(* Terminal conversion combinators. *)
(* ------------------------------------------------------------------------- *)
let (NO_CONV:conv) = fun tm -> failwith "NO_CONV";;
let (ALL_CONV:conv) = REFL;;
(* ------------------------------------------------------------------------- *)
(* Combinators for sequencing, trying, repeating etc. conversions. *)
(* ------------------------------------------------------------------------- *)
let ((THENC):conv -> conv -> conv) =
fun conv1 conv2 t ->
let th1 = conv1 t in
let th2 = conv2 (rand(concl th1)) in
TRANS th1 th2;;
let ((ORELSEC):conv -> conv -> conv) =
fun conv1 conv2 t ->
try conv1 t with Failure _ -> conv2 t;;
let (FIRST_CONV:conv list -> conv) = end_itlist (fun c1 c2 -> c1 ORELSEC c2);;
let (EVERY_CONV:conv list -> conv) =
fun l -> itlist (fun c1 c2 -> c1 THENC c2) l ALL_CONV;;
let REPEATC =
let rec REPEATC conv t =
((conv THENC (REPEATC conv)) ORELSEC ALL_CONV) t in
(REPEATC:conv->conv);;
let (CHANGED_CONV:conv->conv) =
fun conv tm ->
let th = conv tm in
let l,r = dest_eq (concl th) in
if aconv l r then failwith "CHANGED_CONV" else th;;
let TRY_CONV conv = conv ORELSEC ALL_CONV;;
(* ------------------------------------------------------------------------- *)
(* Subterm conversions. *)
(* ------------------------------------------------------------------------- *)
let (RATOR_CONV:conv->conv) =
fun conv tm ->
match tm with
Comb(l,r) -> AP_THM (conv l) r
| _ -> failwith "RATOR_CONV: Not a combination";;
let (RAND_CONV:conv->conv) =
fun conv tm ->
match tm with
Comb(l,r) -> MK_COMB(REFL l,conv r)
| _ -> failwith "RAND_CONV: Not a combination";;
let LAND_CONV = RATOR_CONV o RAND_CONV;;
let (COMB2_CONV: conv->conv->conv) =
fun lconv rconv tm ->
match tm with
Comb(l,r) -> MK_COMB(lconv l,rconv r)
| _ -> failwith "COMB2_CONV: Not a combination";;
let COMB_CONV = W COMB2_CONV;;
let (ABS_CONV:conv->conv) =
fun conv tm ->
let v,bod = dest_abs tm in
let th = conv bod in
try ABS v th with Failure _ ->
let gv = genvar(type_of v) in
let gbod = vsubst[gv,v] bod in
let gth = ABS gv (conv gbod) in
let gtm = concl gth in
let l,r = dest_eq gtm in
let v' = variant (frees gtm) v in
let l' = alpha v' l and r' = alpha v' r in
EQ_MP (ALPHA gtm (mk_eq(l',r'))) gth;;
let BINDER_CONV conv tm =
if is_abs tm then ABS_CONV conv tm
else RAND_CONV(ABS_CONV conv) tm;;
let SUB_CONV conv tm =
match tm with
Comb(_,_) -> COMB_CONV conv tm
| Abs(_,_) -> ABS_CONV conv tm
| _ -> REFL tm;;
let (BINOP_CONV:conv->conv) =
fun conv tm ->
let lop,r = dest_comb tm in
let op,l = dest_comb lop in
MK_COMB(AP_TERM op (conv l),conv r);;
let (BINOP2_CONV:conv->conv->conv) =
fun conv1 conv2 tm ->
let lop,r = dest_comb tm in
let op,l = dest_comb lop in
MK_COMB(AP_TERM op (conv1 l),conv2 r);;
(* ------------------------------------------------------------------------- *)
(* Depth conversions; internal use of a failure-propagating `Boultonized' *)
(* version to avoid a great deal of reuilding of terms. *)
(* ------------------------------------------------------------------------- *)
let (ONCE_DEPTH_CONV: conv->conv),
(DEPTH_CONV: conv->conv),
(REDEPTH_CONV: conv->conv),
(TOP_DEPTH_CONV: conv->conv),
(TOP_SWEEP_CONV: conv->conv) =
let THENQC conv1 conv2 tm =
Interrupt.poll ();
try let th1 = conv1 tm in
try let th2 = conv2(rand(concl th1)) in TRANS th1 th2
with Failure _ -> th1
with Failure _ -> conv2 tm
and THENCQC conv1 conv2 tm =
let th1 = conv1 tm in
try let th2 = conv2(rand(concl th1)) in TRANS th1 th2
with Failure _ -> th1
and COMB_QCONV conv tm =
match tm with
Comb(l,r) ->
(try let th1 = conv l in
try let th2 = conv r in MK_COMB(th1,th2)
with Failure _ -> AP_THM th1 r
with Failure _ -> AP_TERM l (conv r))
| _ -> failwith "COMB_QCONV: Not a combination" in
let rec REPEATQC conv tm = THENCQC conv (REPEATQC conv) tm in
let SUB_QCONV conv tm =
match tm with
Abs(_,_) -> ABS_CONV conv tm
| _ -> COMB_QCONV conv tm in
let rec ONCE_DEPTH_QCONV conv tm =
(conv ORELSEC (SUB_QCONV (ONCE_DEPTH_QCONV conv))) tm
and DEPTH_QCONV conv tm =
THENQC (SUB_QCONV (DEPTH_QCONV conv))
(REPEATQC conv) tm
and REDEPTH_QCONV conv tm =
THENQC (SUB_QCONV (REDEPTH_QCONV conv))
(THENCQC conv (REDEPTH_QCONV conv)) tm
and TOP_DEPTH_QCONV conv tm =
THENQC (REPEATQC conv)
(THENCQC (SUB_QCONV (TOP_DEPTH_QCONV conv))
(THENCQC conv (TOP_DEPTH_QCONV conv))) tm
and TOP_SWEEP_QCONV conv tm =
THENQC (REPEATQC conv)
(SUB_QCONV (TOP_SWEEP_QCONV conv)) tm in
(fun c -> TRY_CONV (ONCE_DEPTH_QCONV c)),
(fun c -> TRY_CONV (DEPTH_QCONV c)),
(fun c -> TRY_CONV (REDEPTH_QCONV c)),
(fun c -> TRY_CONV (TOP_DEPTH_QCONV c)),
(fun c -> TRY_CONV (TOP_SWEEP_QCONV c));;
(* ------------------------------------------------------------------------- *)
(* Apply at leaves of op-tree; NB any failures at leaves cause failure. *)
(* ------------------------------------------------------------------------- *)
let rec DEPTH_BINOP_CONV op conv tm =
match tm with
Comb(Comb(op',l),r) when op' = op ->
let l,r = dest_binop op tm in
let lth = DEPTH_BINOP_CONV op conv l
and rth = DEPTH_BINOP_CONV op conv r in
MK_COMB(AP_TERM op' lth,rth)
| _ -> conv tm;;
(* ------------------------------------------------------------------------- *)
(* Follow a path. *)
(* ------------------------------------------------------------------------- *)
let PATH_CONV =
let rec path_conv s cnv =
match s with
[] -> cnv
| "l"::t -> RATOR_CONV (path_conv t cnv)
| "r"::t -> RAND_CONV (path_conv t cnv)
| _::t -> ABS_CONV (path_conv t cnv) in
fun s cnv -> path_conv (explode s) cnv;;
(* ------------------------------------------------------------------------- *)
(* Follow a pattern *)
(* ------------------------------------------------------------------------- *)
let PAT_CONV =
let rec PCONV xs pat conv =
if mem pat xs then conv
else if not(exists (fun x -> free_in x pat) xs) then ALL_CONV
else if is_comb pat then
COMB2_CONV (PCONV xs (rator pat) conv) (PCONV xs (rand pat) conv)
else
ABS_CONV (PCONV xs (body pat) conv) in
fun pat -> let xs,pbod = strip_abs pat in PCONV xs pbod;;
(* ------------------------------------------------------------------------- *)
(* Symmetry conversion. *)
(* ------------------------------------------------------------------------- *)
let SYM_CONV tm =
try let th1 = SYM(ASSUME tm) in
let tm' = concl th1 in
let th2 = SYM(ASSUME tm') in
DEDUCT_ANTISYM_RULE th2 th1
with Failure _ -> failwith "SYM_CONV";;
(* ------------------------------------------------------------------------- *)
(* Conversion to a rule. *)
(* ------------------------------------------------------------------------- *)
let CONV_RULE (conv:conv) th =
EQ_MP (conv(concl th)) th;;
(* ------------------------------------------------------------------------- *)
(* Substitution conversion. *)
(* ------------------------------------------------------------------------- *)
let SUBS_CONV ths tm =
try if ths = [] then REFL tm else
let lefts = map (lhand o concl) ths in
let gvs = map (genvar o type_of) lefts in
let pat = subst (zip gvs lefts) tm in
let abs = list_mk_abs(gvs,pat) in
let th = rev_itlist
(fun y x -> CONV_RULE (RAND_CONV BETA_CONV THENC LAND_CONV BETA_CONV)
(MK_COMB(x,y))) ths (REFL abs) in
if rand(concl th) = tm then REFL tm else th
with Failure _ -> failwith "SUBS_CONV";;
(* ------------------------------------------------------------------------- *)
(* Get a few rules. *)
(* ------------------------------------------------------------------------- *)
let BETA_RULE = CONV_RULE(REDEPTH_CONV BETA_CONV);;
let GSYM = CONV_RULE(ONCE_DEPTH_CONV SYM_CONV);;
let SUBS ths = CONV_RULE (SUBS_CONV ths);;
(* ------------------------------------------------------------------------- *)
(* A cacher for conversions. *)
(* ------------------------------------------------------------------------- *)
let CACHE_CONV =
let ALPHA_HACK th =
let tm' = lhand(concl th) in
fun tm -> if tm' = tm then th else TRANS (ALPHA tm tm') th in
fun conv ->
let net = ref empty_net in
fun tm -> try tryfind (fun f -> f tm) (lookup tm (!net))
with Failure _ ->
let th = conv tm in
(net := enter [] (tm,ALPHA_HACK th) (!net); th);;