forked from CakeML/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calc_int.ml
391 lines (353 loc) · 14.7 KB
/
calc_int.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
(* ========================================================================= *)
(* Calculation with integer-valued reals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "realax.ml";;
(* ------------------------------------------------------------------------- *)
(* Syntax operations on integer constants of type ":real". *)
(* ------------------------------------------------------------------------- *)
let is_realintconst tm =
match tm with
Comb(Const("real_of_num",_),n) -> is_numeral n
| Comb(Const("real_neg",_),Comb(Const("real_of_num",_),n)) ->
is_numeral n && not(dest_numeral n =/ num_0)
| _ -> false;;
let dest_realintconst tm =
match tm with
Comb(Const("real_of_num",_),n) -> dest_numeral n
| Comb(Const("real_neg",_),Comb(Const("real_of_num",_),n)) ->
let nn = dest_numeral n in
if nn <>/ num_0 then minus_num(dest_numeral n)
else failwith "dest_realintconst"
| _ -> failwith "dest_realintconst";;
let mk_realintconst =
let cast_tm = `real_of_num` and neg_tm = `(--)` in
let mk_numconst n = mk_comb(cast_tm,mk_numeral n) in
fun x -> if x </ num_0 then mk_comb(neg_tm,mk_numconst(minus_num x))
else mk_numconst x;;
let is_ratconst tm =
match tm with
Comb(Comb(Const("real_div",_),p),q) ->
is_realintconst p && is_realintconst q &&
(let m = dest_realintconst p and n = dest_realintconst q in
n >/ num_1 && gcd_num m n =/ num_1)
| _ -> is_realintconst tm;;
let rat_of_term tm =
match tm with
Comb(Comb(Const("real_div",_),p),q) ->
let m = dest_realintconst p and n = dest_realintconst q in
if n >/ num_1 && gcd_num m n =/ num_1 then m // n
else failwith "rat_of_term"
| _ -> dest_realintconst tm;;
let term_of_rat =
let div_tm = `(/)` in
fun x ->
let p,q = numdom x in
let ptm = mk_realintconst p in
if q = num_1 then ptm
else mk_comb(mk_comb(div_tm,ptm),mk_realintconst q);;
(* ------------------------------------------------------------------------- *)
(* Some elementary "bootstrapping" lemmas we need below. *)
(* ------------------------------------------------------------------------- *)
let REAL_ADD_AC = prove
(`(m + n = n + m) /\
((m + n) + p = m + (n + p)) /\
(m + (n + p) = n + (m + p))`,
MESON_TAC[REAL_ADD_ASSOC; REAL_ADD_SYM]);;
let REAL_ADD_RINV = prove
(`!x. x + --x = &0`,
MESON_TAC[REAL_ADD_SYM; REAL_ADD_LINV]);;
let REAL_EQ_ADD_LCANCEL = prove
(`!x y z. (x + y = x + z) <=> (y = z)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(MP_TAC o AP_TERM `(+) (--x)`) THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_EQ_ADD_RCANCEL = prove
(`!x y z. (x + z = y + z) <=> (x = y)`,
MESON_TAC[REAL_ADD_SYM; REAL_EQ_ADD_LCANCEL]);;
let REAL_MUL_RZERO = prove
(`!x. x * &0 = &0`,
MESON_TAC[REAL_EQ_ADD_RCANCEL; REAL_ADD_LDISTRIB; REAL_ADD_LID]);;
let REAL_MUL_LZERO = prove
(`!x. &0 * x = &0`,
MESON_TAC[REAL_MUL_SYM; REAL_MUL_RZERO]);;
let REAL_NEG_NEG = prove
(`!x. --(--x) = x`,
MESON_TAC
[REAL_EQ_ADD_RCANCEL; REAL_ADD_LINV; REAL_ADD_SYM; REAL_ADD_LINV]);;
let REAL_MUL_RNEG = prove
(`!x y. x * (--y) = -- (x * y)`,
MESON_TAC[REAL_EQ_ADD_RCANCEL; REAL_ADD_LDISTRIB; REAL_ADD_LINV;
REAL_MUL_RZERO]);;
let REAL_MUL_LNEG = prove
(`!x y. (--x) * y = -- (x * y)`,
MESON_TAC[REAL_MUL_SYM; REAL_MUL_RNEG]);;
let REAL_NEG_ADD = prove
(`!x y. --(x + y) = --x + --y`,
REPEAT GEN_TAC THEN
MATCH_MP_TAC(GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL REAL_EQ_ADD_RCANCEL)))) THEN
EXISTS_TAC `x + y` THEN REWRITE_TAC[REAL_ADD_LINV] THEN
ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (a + c) + (b + d)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_ADD_RID = prove
(`!x. x + &0 = x`,
MESON_TAC[REAL_ADD_SYM; REAL_ADD_LID]);;
let REAL_NEG_0 = prove
(`--(&0) = &0`,
MESON_TAC[REAL_ADD_LINV; REAL_ADD_RID]);;
let REAL_LE_LNEG = prove
(`!x y. --x <= y <=> &0 <= x + y`,
REPEAT GEN_TAC THEN EQ_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_LADD_IMP) THENL
[DISCH_THEN(MP_TAC o SPEC `x:real`) THEN
REWRITE_TAC[ONCE_REWRITE_RULE[REAL_ADD_SYM] REAL_ADD_LINV];
DISCH_THEN(MP_TAC o SPEC `--x`) THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_ASSOC; REAL_ADD_LID;
ONCE_REWRITE_RULE[REAL_ADD_SYM] REAL_ADD_LID]]);;
let REAL_LE_NEG2 = prove
(`!x y. --x <= --y <=> y <= x`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM REAL_NEG_NEG] THEN
REWRITE_TAC[REAL_LE_LNEG] THEN
AP_TERM_TAC THEN MATCH_ACCEPT_TAC REAL_ADD_SYM);;
let REAL_LE_RNEG = prove
(`!x y. x <= --y <=> x + y <= &0`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM REAL_NEG_NEG] THEN
REWRITE_TAC[REAL_LE_LNEG; GSYM REAL_NEG_ADD] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_LE_NEG2] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM REAL_ADD_LINV] THEN
REWRITE_TAC[REAL_NEG_ADD; REAL_NEG_NEG] THEN
MATCH_ACCEPT_TAC REAL_ADD_SYM);;
let REAL_OF_NUM_POW = prove
(`!x n. (&x) pow n = &(x EXP n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[real_pow; EXP; REAL_OF_NUM_MUL]);;
let REAL_POW_NEG = prove
(`!x n. (--x) pow n = if EVEN n then x pow n else --(x pow n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[real_pow; EVEN] THEN
ASM_CASES_TAC `EVEN n` THEN
ASM_REWRITE_TAC[REAL_MUL_RNEG; REAL_MUL_LNEG; REAL_NEG_NEG]);;
let REAL_ABS_NUM = prove
(`!n. abs(&n) = &n`,
REWRITE_TAC[real_abs; REAL_OF_NUM_LE; LE_0]);;
let REAL_ABS_NEG = prove
(`!x. abs(--x) = abs x`,
REWRITE_TAC[real_abs; REAL_LE_RNEG; REAL_NEG_NEG; REAL_ADD_LID] THEN
MESON_TAC[REAL_LE_TOTAL; REAL_LE_ANTISYM; REAL_NEG_0]);;
(* ------------------------------------------------------------------------- *)
(* First, the conversions on integer constants. *)
(* ------------------------------------------------------------------------- *)
let REAL_INT_LE_CONV,REAL_INT_LT_CONV,
REAL_INT_GE_CONV,REAL_INT_GT_CONV,REAL_INT_EQ_CONV =
let tth =
TAUT `(F /\ F <=> F) /\ (F /\ T <=> F) /\
(T /\ F <=> F) /\ (T /\ T <=> T)` in
let nth = TAUT `(~T <=> F) /\ (~F <=> T)` in
let NUM2_EQ_CONV = BINOP_CONV NUM_EQ_CONV THENC GEN_REWRITE_CONV I [tth] in
let NUM2_NE_CONV =
RAND_CONV NUM2_EQ_CONV THENC
GEN_REWRITE_CONV I [nth] in
let [pth_le1; pth_le2a; pth_le2b; pth_le3] = (CONJUNCTS o prove)
(`(--(&m) <= &n <=> T) /\
(&m <= &n <=> m <= n) /\
(--(&m) <= --(&n) <=> n <= m) /\
(&m <= --(&n) <=> (m = 0) /\ (n = 0))`,
REWRITE_TAC[REAL_LE_NEG2] THEN
REWRITE_TAC[REAL_LE_LNEG; REAL_LE_RNEG] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; LE_0] THEN
REWRITE_TAC[LE; ADD_EQ_0]) in
let REAL_INT_LE_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_le1];
GEN_REWRITE_CONV I [pth_le2a; pth_le2b] THENC NUM_LE_CONV;
GEN_REWRITE_CONV I [pth_le3] THENC NUM2_EQ_CONV] in
let [pth_lt1; pth_lt2a; pth_lt2b; pth_lt3] = (CONJUNCTS o prove)
(`(&m < --(&n) <=> F) /\
(&m < &n <=> m < n) /\
(--(&m) < --(&n) <=> n < m) /\
(--(&m) < &n <=> ~((m = 0) /\ (n = 0)))`,
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3;
GSYM NOT_LE; real_lt] THEN
CONV_TAC TAUT) in
let REAL_INT_LT_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_lt1];
GEN_REWRITE_CONV I [pth_lt2a; pth_lt2b] THENC NUM_LT_CONV;
GEN_REWRITE_CONV I [pth_lt3] THENC NUM2_NE_CONV] in
let [pth_ge1; pth_ge2a; pth_ge2b; pth_ge3] = (CONJUNCTS o prove)
(`(&m >= --(&n) <=> T) /\
(&m >= &n <=> n <= m) /\
(--(&m) >= --(&n) <=> m <= n) /\
(--(&m) >= &n <=> (m = 0) /\ (n = 0))`,
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; real_ge] THEN
CONV_TAC TAUT) in
let REAL_INT_GE_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_ge1];
GEN_REWRITE_CONV I [pth_ge2a; pth_ge2b] THENC NUM_LE_CONV;
GEN_REWRITE_CONV I [pth_ge3] THENC NUM2_EQ_CONV] in
let [pth_gt1; pth_gt2a; pth_gt2b; pth_gt3] = (CONJUNCTS o prove)
(`(--(&m) > &n <=> F) /\
(&m > &n <=> n < m) /\
(--(&m) > --(&n) <=> m < n) /\
(&m > --(&n) <=> ~((m = 0) /\ (n = 0)))`,
REWRITE_TAC[pth_lt1; pth_lt2a; pth_lt2b; pth_lt3; real_gt] THEN
CONV_TAC TAUT) in
let REAL_INT_GT_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_gt1];
GEN_REWRITE_CONV I [pth_gt2a; pth_gt2b] THENC NUM_LT_CONV;
GEN_REWRITE_CONV I [pth_gt3] THENC NUM2_NE_CONV] in
let [pth_eq1a; pth_eq1b; pth_eq2a; pth_eq2b] = (CONJUNCTS o prove)
(`((&m = &n) <=> (m = n)) /\
((--(&m) = --(&n)) <=> (m = n)) /\
((--(&m) = &n) <=> (m = 0) /\ (n = 0)) /\
((&m = --(&n)) <=> (m = 0) /\ (n = 0))`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM; GSYM LE_ANTISYM] THEN
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; LE; LE_0] THEN
CONV_TAC TAUT) in
let REAL_INT_EQ_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_eq1a; pth_eq1b] THENC NUM_EQ_CONV;
GEN_REWRITE_CONV I [pth_eq2a; pth_eq2b] THENC NUM2_EQ_CONV] in
REAL_INT_LE_CONV,REAL_INT_LT_CONV,
REAL_INT_GE_CONV,REAL_INT_GT_CONV,REAL_INT_EQ_CONV;;
let REAL_INT_NEG_CONV =
let pth = prove
(`(--(&0) = &0) /\
(--(--(&x)) = &x)`,
REWRITE_TAC[REAL_NEG_NEG; REAL_NEG_0]) in
GEN_REWRITE_CONV I [pth];;
let REAL_INT_MUL_CONV =
let pth0 = prove
(`(&0 * &x = &0) /\
(&0 * --(&x) = &0) /\
(&x * &0 = &0) /\
(--(&x) * &0 = &0)`,
REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO])
and pth1,pth2 = (CONJ_PAIR o prove)
(`((&m * &n = &(m * n)) /\
(--(&m) * --(&n) = &(m * n))) /\
((--(&m) * &n = --(&(m * n))) /\
(&m * --(&n) = --(&(m * n))))`,
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
REWRITE_TAC[REAL_OF_NUM_MUL]) in
FIRST_CONV
[GEN_REWRITE_CONV I [pth0];
GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_MULT_CONV;
GEN_REWRITE_CONV I [pth2] THENC RAND_CONV(RAND_CONV NUM_MULT_CONV)];;
let REAL_INT_ADD_CONV =
let neg_tm = `(--)` in
let amp_tm = `&` in
let add_tm = `(+)` in
let dest = dest_binop `(+)` in
let m_tm = `m:num` and n_tm = `n:num` in
let pth0 = prove
(`(--(&m) + &m = &0) /\
(&m + --(&m) = &0)`,
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_RINV]) in
let [pth1; pth2; pth3; pth4; pth5; pth6] = (CONJUNCTS o prove)
(`(--(&m) + --(&n) = --(&(m + n))) /\
(--(&m) + &(m + n) = &n) /\
(--(&(m + n)) + &m = --(&n)) /\
(&(m + n) + --(&m) = &n) /\
(&m + --(&(m + n)) = --(&n)) /\
(&m + &n = &(m + n))`,
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_NEG_ADD] THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID] THEN
REWRITE_TAC[REAL_ADD_RINV; REAL_ADD_LID] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID] THEN
REWRITE_TAC[REAL_ADD_RINV; REAL_ADD_LID]) in
GEN_REWRITE_CONV I [pth0] ORELSEC
(fun tm ->
try let l,r = dest tm in
if rator l = neg_tm then
if rator r = neg_tm then
let th1 = INST [rand(rand l),m_tm; rand(rand r),n_tm] pth1 in
let tm1 = rand(rand(rand(concl th1))) in
let th2 = AP_TERM neg_tm (AP_TERM amp_tm (NUM_ADD_CONV tm1)) in
TRANS th1 th2
else
let m = rand(rand l) and n = rand r in
let m' = dest_numeral m and n' = dest_numeral n in
if m' <=/ n' then
let p = mk_numeral (n' -/ m') in
let th1 = INST [m,m_tm; p,n_tm] pth2 in
let th2 = NUM_ADD_CONV (rand(rand(lhand(concl th1)))) in
let th3 = AP_TERM (rator tm) (AP_TERM amp_tm (SYM th2)) in
TRANS th3 th1
else
let p = mk_numeral (m' -/ n') in
let th1 = INST [n,m_tm; p,n_tm] pth3 in
let th2 = NUM_ADD_CONV (rand(rand(lhand(lhand(concl th1))))) in
let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
let th4 = AP_THM (AP_TERM add_tm th3) (rand tm) in
TRANS th4 th1
else
if rator r = neg_tm then
let m = rand l and n = rand(rand r) in
let m' = dest_numeral m and n' = dest_numeral n in
if n' <=/ m' then
let p = mk_numeral (m' -/ n') in
let th1 = INST [n,m_tm; p,n_tm] pth4 in
let th2 = NUM_ADD_CONV (rand(lhand(lhand(concl th1)))) in
let th3 = AP_TERM add_tm (AP_TERM amp_tm (SYM th2)) in
let th4 = AP_THM th3 (rand tm) in
TRANS th4 th1
else
let p = mk_numeral (n' -/ m') in
let th1 = INST [m,m_tm; p,n_tm] pth5 in
let th2 = NUM_ADD_CONV (rand(rand(rand(lhand(concl th1))))) in
let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
let th4 = AP_TERM (rator tm) th3 in
TRANS th4 th1
else
let th1 = INST [rand l,m_tm; rand r,n_tm] pth6 in
let tm1 = rand(rand(concl th1)) in
let th2 = AP_TERM amp_tm (NUM_ADD_CONV tm1) in
TRANS th1 th2
with Failure _ -> failwith "REAL_INT_ADD_CONV");;
let REAL_INT_SUB_CONV =
GEN_REWRITE_CONV I [real_sub] THENC
TRY_CONV(RAND_CONV REAL_INT_NEG_CONV) THENC
REAL_INT_ADD_CONV;;
let REAL_INT_POW_CONV =
let pth1,pth2 = (CONJ_PAIR o prove)
(`(&x pow n = &(x EXP n)) /\
((--(&x)) pow n = if EVEN n then &(x EXP n) else --(&(x EXP n)))`,
REWRITE_TAC[REAL_OF_NUM_POW; REAL_POW_NEG]) in
let tth = prove
(`((if T then x:real else y) = x) /\ ((if F then x:real else y) = y)`,
REWRITE_TAC[]) in
let neg_tm = `(--)` in
(GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_EXP_CONV) ORELSEC
(GEN_REWRITE_CONV I [pth2] THENC
RATOR_CONV(RATOR_CONV(RAND_CONV NUM_EVEN_CONV)) THENC
GEN_REWRITE_CONV I [tth] THENC
(fun tm -> if rator tm = neg_tm then RAND_CONV(RAND_CONV NUM_EXP_CONV) tm
else RAND_CONV NUM_EXP_CONV tm));;
let REAL_INT_ABS_CONV =
let pth = prove
(`(abs(--(&x)) = &x) /\
(abs(&x) = &x)`,
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM]) in
GEN_REWRITE_CONV I [pth];;
let REAL_INT_RED_CONV =
let gconv_net = itlist (uncurry net_of_conv)
[`x <= y`,REAL_INT_LE_CONV;
`x < y`,REAL_INT_LT_CONV;
`x >= y`,REAL_INT_GE_CONV;
`x > y`,REAL_INT_GT_CONV;
`x:real = y`,REAL_INT_EQ_CONV;
`--x`,CHANGED_CONV REAL_INT_NEG_CONV;
`abs(x)`,REAL_INT_ABS_CONV;
`x + y`,REAL_INT_ADD_CONV;
`x - y`,REAL_INT_SUB_CONV;
`x * y`,REAL_INT_MUL_CONV;
`x pow n`,REAL_INT_POW_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let REAL_INT_REDUCE_CONV = DEPTH_CONV REAL_INT_RED_CONV;;