-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcalc_gauss.html
260 lines (135 loc) · 6.58 KB
/
calc_gauss.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
<!DOCTYPE html>
<html>
<head>
<script>
MathJax = {
tex: {
inlineMath: [['$', '$'], ['\\(', '\\)']]
}
};
</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script type="text/javascript" id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js">
</script>
</head>
<body>
<h1>Change waist $w_0$</h1>
<h2>Lock waist</h2>
Calculate the beam radius $w$ and the wavefront ROC $R$ at given distance $z$.
$$ z_0 = \frac{\pi w_0^2}{M^2 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ w = w_0 \sqrt{ 1 + \bigg( \frac{z}{z_0} \bigg)^2 } $$
$$ R = z \Bigg[ 1 + \bigg( \frac{z_0}{z} \bigg)^2 \Bigg] $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h2>Lock front</h2>
For specified waist radius $w_0$, find such a distance $z$ and beam quality $M^2$ at which the wavefront ROC keeps its previously calculated value.
How to find: express $z_0$ from $w(z)$ and from $R(z)$, equate both expressions and solve against $z$.
$$ z = R \Bigg[ 1 - \bigg( \frac{w_0}{w} \bigg)^2 \Bigg] $$
$$ z_0 = \sqrt{ \frac{ z^2 w_0^2 }{ w^2 - w_0^2 } } $$
$$ z_0 = \sqrt{ z (R - z) } $$
$$ M^2 = \frac{ \pi w_0^2 }{ \lambda z_0 } $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
<h1>Change Rayleigh length $z_0$</h1>
<h2>Lock waist</h2>
With fixed waist radius $w_0$, find a value of the beam quality parameter $M^2$ which yields the specified $z_0$.
$$ M^2 = \frac{ \pi w_0^2 }{ \lambda z_0 } $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ w = w_0 \sqrt{ 1 + \bigg( \frac{z}{z_0} \bigg)^2 } $$
$$ R = z \Bigg[ 1 + \bigg( \frac{z_0}{z} \bigg)^2 \Bigg] $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h2>Lock front</h2>
For specified $z_0$, find such a distance $z$ and beam quality $M^2$ at which the wavefront ROC keeps its previously calculated value. $+$ sign is for the far zone, $-$ is for the near zone.
$$ z = \frac R 2 \pm \frac{\sqrt{ R^2 - 4 z_0^2 }}2 $$
$$ w_0 = \sqrt{ \frac{w^2}{1 + \big( z/z_0 \big)^2} } $$
$$ M^2 = \frac{ \pi w_0^2 }{ \lambda z_0 } $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
<h1>Change divergence angle $V_s$</h1>
<h2>Lock waist</h2>
With fixed waist radius $w_0$, find such a value of beam quality parameter $M^2$ that yields to the specified angle.
$$ M^2 = \frac{ \pi w_0 V_s } \lambda $$
$$ z_0 = \frac{\pi w_0^2}{M^2 \lambda} $$
$$ w = w_0 \sqrt{ 1 + \bigg( \frac{z}{z_0} \bigg)^2 } $$
$$ R = z \Bigg[ 1 + \bigg( \frac{z_0}{z} \bigg)^2 \Bigg] $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h2>Lock front</h2>
For specified $V_s$, find such a distance $z$ and beam quality $M^2$ at which the wavefront ROC keeps its previously calculated value.
How to find $z$: substitute $z_0$ as $w_0/V_s$ into formulas for $w(z)$ and $R(z)$, express $w_0$ from both, equate them and solve against $z$.
$$ z = \frac{w^2}{R V_s^2} $$
$$ z_0 = \sqrt{z (R - z)} $$
$$ w_0 = \frac{w}{\sqrt{ 1 + \big( z/z_0 \big)^2} } $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
<h1>Change axial distance $z$</h1>
<h2>Lock waist</h2>
$$ z_0 = \frac{\pi w_0^2}{M^2 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ w = w_0 \sqrt{ 1 + \bigg( \frac{z}{z_0} \bigg)^2 } $$
$$ R = z \Bigg[ 1 + \bigg( \frac{z_0}{z} \bigg)^2 \Bigg] $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h2>Lock front</h2>
$$ z_0 = \sqrt{z (R - z)} $$
$$ w_0 = \frac{w}{\sqrt{ 1 + \big( z/z_0 \big)^2} } $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
<h1>Change beam quality $M^2$</h1>
<h2>Lock waist</h2>
The same as when the waist is changed.
$$ z_0 = \frac{\pi w_0^2}{M^2 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ w = w_0 \sqrt{ 1 + \bigg( \frac{z}{z_0} \bigg)^2 } $$
$$ R = z \Bigg[ 1 + \bigg( \frac{z_0}{z} \bigg)^2 \Bigg] $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h2>Lock front</h2>
Taking a new value of $M^2$, find such a distance $z$ and waist radius $w_0$ preserving constant wavefront.
How to find $z$: express $w_0^2$ from formula for $R(z)$, substitute the expression into formula for $w(z)$ and solve it against $z$.
$$ z = \frac{w^4 \pi^2 R}{\big(M^2 \lambda R\big)^2 + w^4 \pi^2} $$
$$ z_0 = \sqrt{z (R - z)} $$
$$ w_0 = \frac{w}{\sqrt{ 1 + \big( z/z_0 \big)^2} } $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
<h1>Change beam radius $w$</h1>
<h2>Lock waist</h2>
Find beam quality parameter $M^2$ giving specified beam radius at the same axial distance $z$ and with the same waist radius $w_0$.
$$ z_0 = \frac{z w_0}{\sqrt{w^2 - w_0^2}} $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ R = z \Bigg[ 1 + \bigg( \frac{z_0}{z} \bigg)^2 \Bigg] $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h2>Lock front</h2>
Find a waist radius $w_0$ and beam quality parameter $M^2$ giving specified beam radius at the same axial distance $z$.
$$ z_0 = \sqrt{z (R - z)} $$
$$ w_0 = \frac{w}{\sqrt{ 1 + \big( z/z_0 \big)^2} } $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h1>Change wavefront ROC $R$</h1>
<h2>Lock waist</h2>
Find beam quality parameter $M^2$ giving specified ROC at the same axial distance $z$ and with the same waist radius $w_0$.
$$ z_0 = \sqrt{z (R - z)} $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ w = w_0 \sqrt{ 1 + \bigg( \frac{z}{z_0} \bigg)^2 } $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h2>Lock front</h2>
Find a waist radius $w_0$ and beam quality parameter $M^2$ giving specified ROC at the same axial distance $z$.
$$ z_0 = \sqrt{z (R - z)} $$
$$ w_0 = \frac{w}{\sqrt{ 1 + \big( z/z_0 \big)^2} } $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
$$ q^{-1} = \frac 1 R + i \frac{\lambda}{\pi w^2} $$
<h1>Change complex beam parameter $q$</h1>
Assigning either real or imaginary part of complex beam parameter, we define both the beam radius $w$ and the wavefront ROC $R$ at the same time.
$$ R = \frac{1}{Re\big(q^{-1}\big)} $$
$$ w = \sqrt{\frac{\lambda}{\pi Im\big(q^{-1}\big)}} $$
<h2>Lock waist</h2>
Having fixed waist radius $w_0$, find axial distance $z$ and beam quality $M^2$ at which specified front is achieved.
$$ z = R \Bigg[ 1 - \bigg( \frac{w_0}{w} \bigg)^2 \Bigg] $$
$$ z_0 = \sqrt{z (R - z)} $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
<h2>Lock front</h2>
$$ z_0 = \sqrt{z (R - z)} $$
$$ w_0 = \frac{w}{\sqrt{ 1 + \big( z/z_0 \big)^2} } $$
$$ M^2 = \frac{\pi w_0^2}{z_0 \lambda} $$
$$ V_s = \frac{M^2 \lambda}{\pi w_0} $$
</body>
</html>