From 4cc85f487256414d32b45cd50cbc59ceb64732bd Mon Sep 17 00:00:00 2001 From: Stephen Farr Date: Mon, 4 Mar 2024 19:09:51 +0100 Subject: [PATCH] Add MACE model support (#61) * implement MACE * change NL to fix PBCs * improve simple_nl code * triclinic simple_nl * update to openmm-torch 1.1 syntax * update * cleanup file * update notebook * fix colab install * Overall refactor of macepotential.py * Removed deprecated utils.py module * Fixed formatting * Removed examples as new ones will be created for the new implementation * Removed import of utils * Fixed improper use of backquotes and single quotes, removed unnecessary model writing, and corrected default value of returnEnergyType parameter * Fix to ensure correct device allocation * Fixed typo --------- Co-authored-by: Joao Morado --- openmmml/models/__init__.py | 2 +- openmmml/models/macepotential.py | 409 +++++++++++++++++++++++++++++++ 2 files changed, 410 insertions(+), 1 deletion(-) create mode 100644 openmmml/models/macepotential.py diff --git a/openmmml/models/__init__.py b/openmmml/models/__init__.py index ee25f5a..688da71 100644 --- a/openmmml/models/__init__.py +++ b/openmmml/models/__init__.py @@ -1 +1 @@ -from . import anipotential \ No newline at end of file +from . import anipotential, macepotential \ No newline at end of file diff --git a/openmmml/models/macepotential.py b/openmmml/models/macepotential.py new file mode 100644 index 0000000..2f3e970 --- /dev/null +++ b/openmmml/models/macepotential.py @@ -0,0 +1,409 @@ +""" +macepotential.py: Implements the MACE potential function. + +This is part of the OpenMM molecular simulation toolkit originating from +Simbios, the NIH National Center for Physics-Based Simulation of +Biological Structures at Stanford, funded under the NIH Roadmap for +Medical Research, grant U54 GM072970. See https://simtk.org. + +Portions copyright (c) 2021 Stanford University and the Authors. +Authors: Peter Eastman +Contributors: Stephen Farr, Joao Morado + +Permission is hereby granted, free of charge, to any person obtaining a +copy of this software and associated documentation files (the "Software"), +to deal in the Software without restriction, including without limitation +the rights to use, copy, modify, merge, publish, distribute, sublicense, +and/or sell copies of the Software, and to permit persons to whom the +Software is furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL +THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, +DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR +OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE +USE OR OTHER DEALINGS IN THE SOFTWARE. +""" +import openmm +from openmmml.mlpotential import MLPotential, MLPotentialImpl, MLPotentialImplFactory +from typing import Iterable, Optional, Tuple + + +class MACEPotentialImplFactory(MLPotentialImplFactory): + """This is the factory that creates MACEPotentialImpl objects.""" + + def createImpl( + self, name: str, modelPath: Optional[str] = None, **args + ) -> MLPotentialImpl: + return MACEPotentialImpl(name, modelPath) + + +class MACEPotentialImpl(MLPotentialImpl): + """This is the MLPotentialImpl implementing the MACE potential. + + The MACE potential is constructed using MACE to build a PyTorch model, + and then integrated into the OpenMM System using a TorchForce. + This implementation supports both MACE-OFF23 and locally trained MACE models. + + To use one of the pre-trained MACE-OFF23 models, specify the model name. For example: + >>> potential = MLPotential('mace-off23-small') + + Other available MACE-OFF23 models include 'mace-off23-medium' and 'mace-off23-large'. + + To use a locally trained MACE model, provide the path to the model file. For example: + >>> potential = MLPotential('mace', modelPath='MACE.model') + + During system creation, you can optionally specify the precision of the model using the + `precision` keyword argument. Supported options are 'single' and 'double'. For example: + >>> system = potential.createSystem(topology, precision='single') + + By default, the implementation uses the precision of the loaded MACE model. + According to the MACE documentation, 'single' precision is recommended for MD (faster but + less accurate), while 'double' precision is recommended for geometry optimization. + + Additionally, you can request computation of the full atomic energy, including the atom + self-energy, instead of the default interaction energy, by setting `returnEnergyType` to + 'energy'. For example: + >>> system = potential.createSystem(topology, returnEnergyType='energy') + + The default is to compute the interaction energy, which can be made explicit by setting + `returnEnergyType='interaction_energy'`. + + Attributes + ---------- + name : str + The name of the MACE model. + modelPath : str + The path to the locally trained MACE model if `name` is 'mace'. + """ + + def __init__(self, name: str, modelPath) -> None: + """ + Initialize the MACEPotentialImpl. + + Parameters + ---------- + name : str + The name of the MACE model. + Options include 'mace-off23-small', 'mace-off23-medium', 'mace-off23-large', and 'mace'. + modelPath : str, optional + The path to the locally trained MACE model if `name` is 'mace'. + """ + self.name = name + self.modelPath = modelPath + + def addForces( + self, + topology: openmm.app.Topology, + system: openmm.System, + atoms: Optional[Iterable[int]], + forceGroup: int, + precision: Optional[str] = None, + returnEnergyType: str = "interaction_energy", + **args, + ) -> None: + """ + Add the MACEForce to the OpenMM System. + + Parameters + ---------- + topology : openmm.app.Topology + The topology of the system. + system : openmm.System + The system to which the force will be added. + atoms : iterable of int + The indices of the atoms to include in the model. If `None`, all atoms are included. + forceGroup : int + The force group to which the force should be assigned. + precision : str, optional + The precision of the model. Supported options are 'single' and 'double'. + If `None`, the default precision of the model is used. + returnEnergyType : str, optional + Whether to return the interaction energy or the energy including the self-energy. + Default is 'interaction_energy'. Supported options are 'interaction_energy' and 'energy'. + """ + import torch + import openmmtorch + + try: + from mace.tools import utils, to_one_hot, atomic_numbers_to_indices + from mace.calculators.foundations_models import mace_off + except ImportError as e: + raise ImportError( + f"Failed to import mace with error: {e}. " + "Install mace with 'pip install mace-torch'." + ) + try: + from e3nn.util import jit + except ImportError as e: + raise ImportError( + f"Failed to import e3nn with error: {e}. " + "Install e3nn with 'pip install e3nn'." + ) + try: + from NNPOps.neighbors import getNeighborPairs + except ImportError as e: + raise ImportError( + f"Failed to import NNPOps with error: {e}. " + "Install NNPOps with 'conda install -c conda-forge nnpops'." + ) + + assert returnEnergyType in [ + "interaction_energy", + "energy", + ], f"Unsupported returnEnergyType: '{returnEnergyType}'. Supported options are 'interaction_energy' or 'energy'." + + # Load the model to the CPU (OpenMM-Torch takes care of loading to the right devices) + if self.name.startswith("mace-off23"): + size = self.name.split("-")[-1] + assert ( + size in ["small", "medium", "large"] + ), f"Unsupported MACE model: '{self.name}'. Available MACE-OFF23 models are 'mace-off23-small', 'mace-off23-medium', 'mace-off23-large'" + model = mace_off(model=size, device="cpu", return_raw_model=True) + elif self.name == "mace": + if self.modelPath is not None: + model = torch.load(self.modelPath, map_location="cpu") + else: + raise ValueError("No modelPath provided for local MACE model.") + else: + raise ValueError(f"Unsupported MACE model: {self.name}") + + # Compile the model. + model = jit.compile(model) + + # Get the atomic numbers of the ML region. + includedAtoms = list(topology.atoms()) + if atoms is not None: + includedAtoms = [includedAtoms[i] for i in atoms] + atomicNumbers = [atom.element.atomic_number for atom in includedAtoms] + + # Set the precision that the model will be used with. + modelDefaultDtype = next(model.parameters()).dtype + if precision is None: + dtype = modelDefaultDtype + elif precision == "single": + dtype = torch.float32 + elif precision == "double": + dtype = torch.float64 + else: + raise ValueError( + f"Unsupported precision {precision} for the model. " + "Supported values are 'single' and 'double'." + ) + if dtype != modelDefaultDtype: + print( + f"Model dtype is {modelDefaultDtype} " + f"and requested dtype is {dtype}. " + "The model will be converted to the requested dtype." + ) + + # One hot encoding of atomic numbers + zTable = utils.AtomicNumberTable([int(z) for z in model.atomic_numbers]) + nodeAttrs = to_one_hot( + torch.tensor( + atomic_numbers_to_indices(atomicNumbers, z_table=zTable), + dtype=torch.long, + ).unsqueeze(-1), + num_classes=len(zTable), + ) + + class MACEForce(torch.nn.Module): + """ + MACEForce class to be used with TorchForce. + + Parameters + ---------- + model : torch.jit._script.RecursiveScriptModule + The compiled MACE model. + dtype : torch.dtype + The precision with which the model will be used. + energyScale : float + Conversion factor for the energy, viz. eV to kJ/mol. + lengthScale : float + Conversion factor for the length, viz. nm to Angstrom. + indices : torch.Tensor + The indices of the atoms to calculate the energy for. + returnEnergyType : str + Whether to return the interaction energy or the energy including the self-energy. + inputDict : dict + The input dictionary passed to the model. + """ + + def __init__( + self, + model: torch.jit._script.RecursiveScriptModule, + nodeAttrs: torch.Tensor, + atoms: Optional[Iterable[int]], + periodic: bool, + dtype: torch.dtype, + returnEnergyType: str, + ) -> None: + """ + Initialize the MACEForce. + + Parameters + ---------- + model : torch.jit._script.RecursiveScriptModule + The MACE model. + nodeAttrs : torch.Tensor + The one-hot encoded atomic numbers. + atoms : iterable of int + The indices of the atoms. If `None`, all atoms are included. + periodic : bool + Whether the system is periodic. + dtype : torch.dtype + The precision of the model. + returnEnergyType : str + Whether to return the interaction energy or the energy including the self-energy. + """ + super(MACEForce, self).__init__() + + self.dtype = dtype + self.model = model.to(self.dtype) + self.energyScale = 96.4853 + self.lengthScale = 10.0 + self.returnEnergyType = returnEnergyType + + if atoms is None: + self.indices = None + else: + self.indices = torch.tensor(sorted(atoms), dtype=torch.int64) + + # Create the default input dict. + self.register_buffer("ptr", torch.tensor([0, nodeAttrs.shape[0]], dtype=torch.long, requires_grad=False)) + self.register_buffer("node_attrs", nodeAttrs.to(self.dtype)) + self.register_buffer("batch", torch.zeros(nodeAttrs.shape[0], dtype=torch.long, requires_grad=False)) + self.register_buffer("pbc", torch.tensor([periodic, periodic, periodic], dtype=torch.bool, requires_grad=False)) + + self.inputDict = { + "ptr": self.ptr, + "node_attrs": self.node_attrs, + "batch": self.batch, + "pbc": self.pbc, + } + + def _getNeighborPairs( + self, positions: torch.Tensor, cell: Optional[torch.Tensor] + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Get the shifts and edge indices. + + Notes + ----- + This method calculates the shifts and edge indices by determining neighbor pairs (`neighbors`) + and respective wrapped distances (`wrappedDeltas`) using `NNPOps.neighbors.getNeighborPairs`. + After obtaining the `neighbors` and `wrappedDeltas`, the pairs with negative indices (r>cutoff) + are filtered out, and the edge indices and shifts are finally calculated. + + Parameters + ---------- + positions : torch.Tensor + The positions of the atoms. + cell : torch.Tensor + The cell vectors. + + Returns + ------- + edgeIndex : torch.Tensor + The edge indices. + shifts : torch.Tensor + The shifts. + """ + # Get the neighbor pairs, shifts and edge indices. + neighbors, wrappedDeltas, _, _ = getNeighborPairs( + positions, self.model.r_max, -1, cell + ) + mask = neighbors >= 0 + neighbors = neighbors[mask].view(2, -1) + wrappedDeltas = wrappedDeltas[mask[0], :] + + edgeIndex = torch.hstack((neighbors, neighbors.flip(0))).to(torch.int64) + if cell is not None: + deltas = positions[edgeIndex[0]] - positions[edgeIndex[1]] + wrappedDeltas = torch.vstack((wrappedDeltas, -wrappedDeltas)) + shiftsIdx = torch.mm(deltas - wrappedDeltas, torch.linalg.inv(cell)) + shifts = torch.mm(shiftsIdx, cell) + else: + shifts = torch.zeros((edgeIndex.shape[1], 3), dtype=self.dtype, device=positions.device) + + return edgeIndex, shifts + + def forward( + self, positions: torch.Tensor, boxvectors: Optional[torch.Tensor] = None + ) -> torch.Tensor: + """ + Forward pass of the model. + + Parameters + ---------- + positions : torch.Tensor + The positions of the atoms. + box_vectors : torch.Tensor + The box vectors. + + Returns + ------- + energy : torch.Tensor + The predicted energy in kJ/mol. + """ + # Setup positions and cell. + if self.indices is not None: + positions = positions[self.indices] + + positions = positions.to(self.dtype) * self.lengthScale + + if boxvectors is not None: + cell = boxvectors.to(self.dtype) * self.lengthScale + else: + cell = None + + # Get the shifts and edge indices. + edgeIndex, shifts = self._getNeighborPairs(positions, cell) + + # Update input dictionary. + self.inputDict["positions"] = positions + self.inputDict["edge_index"] = edgeIndex + self.inputDict["shifts"] = shifts + + # Predict the energy. + energy = self.model(self.inputDict, compute_force=False)[ + self.returnEnergyType + ] + + assert ( + energy is not None + ), "The model did not return any energy. Please check the input." + + return energy * self.energyScale + + isPeriodic = ( + topology.getPeriodicBoxVectors() is not None + ) or system.usesPeriodicBoundaryConditions() + + maceForce = MACEForce( + model, + nodeAttrs, + atoms, + isPeriodic, + dtype, + returnEnergyType, + ) + + # Convert it to TorchScript. + module = torch.jit.script(maceForce) + + # Create the TorchForce and add it to the System. + force = openmmtorch.TorchForce(module) + force.setForceGroup(forceGroup) + force.setUsesPeriodicBoundaryConditions(isPeriodic) + system.addForce(force) + + +MLPotential.registerImplFactory("mace", MACEPotentialImplFactory()) +MLPotential.registerImplFactory("mace-off23-small", MACEPotentialImplFactory()) +MLPotential.registerImplFactory("mace-off23-medium", MACEPotentialImplFactory()) +MLPotential.registerImplFactory("mace-off23-large", MACEPotentialImplFactory())