|
| 1 | +.. role:: command |
| 2 | +.. role:: opt |
| 3 | +.. role:: input |
| 4 | +.. role:: output |
| 5 | + |
| 6 | +OpenMEEG from the command line |
| 7 | +------------------------------ |
| 8 | + |
| 9 | +Diagram for the low level pipeline for computing leadfields (a.k.a., gain matrices) using OpenMEEG: |
| 10 | + |
| 11 | +.. image:: _static/OpenMEEGSimple_new.png |
| 12 | + :width: 600 px |
| 13 | + :alt: dipole positions |
| 14 | + :align: center |
| 15 | + |
| 16 | +This section reviews the main OpenMEEG command line tools. |
| 17 | +The general syntax and main options are detailed for each command. |
| 18 | + |
| 19 | +Full details are available in OpenMEEG documentation. |
| 20 | +In this section, :command:`command` names are in :command:`red`, :opt:`options` are in :opt:`green` and :output:`output` files are shown in :output:`blue`. |
| 21 | + |
| 22 | +om_assemble |
| 23 | +^^^^^^^^^^^ |
| 24 | + |
| 25 | +General syntax: |
| 26 | + |
| 27 | +:command:`om_assemble` :opt:`Option` :input:`Parameters` :output:`Matrix` |
| 28 | + |
| 29 | +This program assembles the different matrices to be used in later stages. |
| 30 | +It uses the head description (the geometrical model and the conductivities of the head see `sec.geom`_, and `sec.cond`_), the sources (see `sec.sources`_) and the sensors (see `sec.sensors`_) information. |
| 31 | +:opt:`Option` selects the type of matrix to assemble. |
| 32 | +:input:`Parameters` depends on the specific option :opt:`Option`. |
| 33 | + |
| 34 | + |
| 35 | +.. note:: Abbreviated option names can be used, such as :opt:`-HM` or :opt:`-hm` instead of :opt:`-HeadMat`. |
| 36 | + |
| 37 | + |
| 38 | +We now detail the possible :opt:`options` (with their abbreviated versions given in parentheses), allowing to define various matrices to assemble. |
| 39 | + |
| 40 | +A typical command is: |
| 41 | + |
| 42 | +:command:`om_assemble` :opt:`-HeadMat` :input:`subject.geom` :input:`subject.cond` :output:`HeadMat.mat` |
| 43 | + |
| 44 | +In the above example, the :input:`Parameters` are the two file names: :input:`subject.geom` :input:`subject.cond`. More generally, the :input:`Parameters` include two such file names describing geometry and conductivity, plus additional :input:`Input`, describe below for each :opt:`Option`. |
| 45 | + |
| 46 | +General options for :command:`om_assemble` |
| 47 | +"""""""""""""""""""""""""""""""""""""""""" |
| 48 | + |
| 49 | + - :opt:`--help` (:opt:`-h`): summarizes all possible options. |
| 50 | + |
| 51 | + Head modelling options for :command:`om_assemble`: produce matrices (called head matrices) linked to the propagation of electrical signals in the head. |
| 52 | + |
| 53 | + - :opt:`-HeadMat` (:opt:`-HM`, :opt:`-hm`): :command:`om_assemble` computes the matrix called Head Matrix (a.k.a structure matrix) for the Symmetric BEM, linked to the electrical conduction within the head. The output matrix is symmetric. |
| 54 | + |
| 55 | +.. note:: The symmetric format only stores the lower half of a matrix. |
| 56 | + |
| 57 | +**Source modelling** options for :command:`om_assemble`: compute the source matrix for Symmetric BEM (right-hand side of the linear system). |
| 58 | +This matrix maps the representation of the sources to their associated electric potential in an infinite medium (:math:`v_{\Omega_1}`). |
| 59 | +Different options exist for the 2 types of source models: |
| 60 | + |
| 61 | + - :opt:`-DipSourceMat` (:opt:`-DSM`, :opt:`-dsm`): should be used when considering several isolated dipoles. |
| 62 | + This model is the most commonly used and should be used by default even if the dipoles correspond to the vertices of a cortical mesh. :input:`Input` is a file containing the dipole descriptions. |
| 63 | + For faster computations, one can consider giving the name of the domain (containing all dipoles) as a string as an optional parameter in the end of the command line (see Example). |
| 64 | + |
| 65 | + - :opt:`-SurfSourceMat` (:opt:`-SSM`, :opt:`-ssm`): should be used for continuous surfacic distributions |
| 66 | + of dipoles. :input:`Input` is a file containing a mesh that describes the surface. |
| 67 | + For faster computations, one can consider giving the name of the domain (containing all dipoles) |
| 68 | + as a string as an optional parameter in the end of the command line. |
| 69 | + |
| 70 | + - :opt:`-EITSourceMat` (:opt:`-EITSM`, :opt:`-EITsm`,): :command:`om_assemble` computes the |
| 71 | + right-hand side vector for a given set of scalp electrodes where current injection is applied |
| 72 | + (which can be used for Electrical Impedance Tomography, EIT). For this option, :input:`Input` |
| 73 | + is a file describing the electrode positions. |
| 74 | + |
| 75 | +**Sensor modelling** options for :command:`om_assemble`: compute matrices which are needed to integrate source and sensor information with computed potentials to provide the actual solution of the forward problem. The the following situations are handled: EEG, ECoG, sEEG, MEG. |
| 76 | + |
| 77 | +EEG: |
| 78 | + - :opt:`-Head2EEGMat` (:opt:`-H2EM`, :opt:`-h2em`): :command:`om_assemble` computes the linear interpolation matrix that maps OpenMEEG unknown :math:`\mathbf{X}` to the potential on the scalp at EEG sensors: :math:`\mathbf{V_{sensors}} = \mathbf{Head2EEGMat} . \mathbf{X}`. :input:`Input` is a file describing the EEG sensor positions. :math:`\mathbf{Head2EEGMat}` is stored as a sparse matrix. |
| 79 | + |
| 80 | +ECoG: |
| 81 | + - :opt:`-Head2ECoGMat` (:opt:`-H2ECogM`, :opt:`-H2ECOGM`, :opt:`-h2ecogm`): :command:`om_assemble` computes the linear interpolation matrix that maps the OpenMEEG unknown :math:`\mathbf{X}` to the potential on the scalp at EEG sensors: :math:`\mathbf{V_{sensors}} = \mathbf{Head2ECoGMat} . \mathbf{X}`. :input:`Input` contains two parameters: the file describing the ECoG sensor positions, and the name of the interface on which the ECoG electrodes should be mapped. :math:`\mathbf{Head2ECoGMat}` is stored as a sparse matrix. |
| 82 | + |
| 83 | +sEEG: |
| 84 | + - :opt:`-Head2InternalPotMat` (:opt:`-H2IPM`, :opt:`-h2ipm`): :command:`om_assemble` computes the matrix that allows |
| 85 | + the computation of potentials at internal positions from potentials and normal currents on head interfaces, as computed by the symmetric BEM. |
| 86 | + |
| 87 | + - :opt:`-DipSource2InternalPotMat` (:opt:`-DS2IPM`, :opt:`-ds2ipm`): :command:`om_assemble` computes the source contribution to the chosen internal points. It gives the potential due to isolated dipoles, as if the medium were infinite. For this option, :input:`Input` takes the form: :input:`dipoles internalPoints` where :input:`dipoles` contains the dipole description and :input:`internalPoints` is a file describing the points locations. |
| 88 | + |
| 89 | +MEG: |
| 90 | + - :opt:`-Head2MEGMat` (:opt:`-H2MM`, :opt:`-h2mm`): :command:`om_assemble` computes the contribution of Ohmic currents to the MEG sensors. :input:`Input` is a file describing the SQUIDS geometries and characteristics. |
| 91 | + |
| 92 | + - :opt:`-SurfSource2MEGMat` (:opt:`-SS2MM`, :opt:`-ss2mm`): :command:`om_assemble` computes the source contribution to the MEG sensors using the same source model as the one used for the option :opt:`-SurfSourceMat, i.e. surfacic distribution of dipoles. For this option, :input:`Input` takes the form: :input:`mesh squids` where :input:`mesh` contains a mesh describing the source surface and :input:`squids` is a file describing the SQUIDS geometries and characteristics. |
| 93 | + |
| 94 | + - :opt:`-DipSource2MEGMat` (:opt:`-DS2MM`, :opt:`-ds2mm`): :command:`om_assemble` computes the source contribution to the MEG sensors using the same source model as the one used for the option :opt:`-DipSourceMat`, i.e. isolated dipoles. For this option, :input:`Input` takes the form: :input:`dipoles squids` where :input:`dipoles` contains the dipole description and :input:`squids` is a file describing the SQUIDS geometries and characteristics. |
| 95 | + |
| 96 | + |
| 97 | + |
| 98 | + |
| 99 | +om_minverser |
| 100 | +^^^^^^^^^^^^ |
| 101 | + |
| 102 | +General syntax: |
| 103 | + |
| 104 | +:command:`om_minverser` :input:`HeadMat` :output:`HeadMatInv` |
| 105 | + |
| 106 | +This program is used to invert the symmetric matrix as provided by the command :command:`om_assemble` with the option :opt:`-HeadMat`. |
| 107 | + |
| 108 | +This command has only one option: |
| 109 | + |
| 110 | + - :opt:`--help` (:opt:`-h`): summarizes the usage of :command:`om_minverser`. |
| 111 | + |
| 112 | +.. note:: The output matrix :output:`HeadMatInv` is a symmetric matrix, like :input:`HeadMat`. |
| 113 | + |
| 114 | +om_gain |
| 115 | +^^^^^^^ |
| 116 | + |
| 117 | +General syntax: |
| 118 | + |
| 119 | +:command:`om_gain` :opt:`Option` :input:`HeadMatInv` :opt:`Parameters` SourceMat Head2EEGMat :output:`GainMatrix` |
| 120 | + |
| 121 | +This command computes the gain matrix by multiplying together matrices obtained previously (e.g. :input:`HeadMatInv` is the matrix computed using :command:`om_minverser`). |
| 122 | +The resulting gain matrix is stored in the file :output:`GainMatrix`. |
| 123 | +:opt:`Option` selects the type of matrix to build. :opt:`Parameters` depend on the specific option :opt:`Option`. |
| 124 | + |
| 125 | +General options: |
| 126 | + |
| 127 | + |
| 128 | + - :opt:`--help` (:opt:`-h`): summarizes the usage of :command:`om_gain` for all its possible options. |
| 129 | + |
| 130 | +Gain matrix type options: select the type of gain matrix to be computed by :command:`om_gain`. |
| 131 | + |
| 132 | + - :opt:`-EEG`: allows to compute an EEG or an ECoG gain matrix. For EEG :opt:`Parameters` are then: :input:`HeadMatInv SourceMat Head2EEGMat`. For ECoG :input:`Head2EEGMat` should simply be replaced by :input:`Head2ECoGMat` |
| 133 | + - :input:`SourceMat` is the matrix obtained using :command:`om_assemble` with either of the options |
| 134 | + :opt:`-SurfSourceMat` or :opt:`-DipSourceMat`, depending on the source model. |
| 135 | + - :input:`Head2EEGMat` (resp. :input:`Head2ECoGMat`) is the matrix obtained using :command:`om_assemble` with the option :opt:`-Head2EEGMat` (resp. :opt:`-Head2ECoGMat`). |
| 136 | + |
| 137 | + - :opt:`-EEG` option is also used to compute an EIT gain matrix: in this case, :input:`SourceMat` |
| 138 | + should contain the output of the :opt:`-EITsource` option of :command:`om_assemble`. Multiplying |
| 139 | + the EIT gain matrix by the vector of applied currents at each EIT electrode yields the simulated |
| 140 | + potential on the EEG electrodes. The applied current on the EIT electrodes should sum to zero. |
| 141 | + |
| 142 | + - :opt:`-MEG`: allows to compute a MEG gain matrix. :opt:`Parameters` are then: |
| 143 | + |
| 144 | + - :input:`HeadMatInv SourceMat Head2MEGMat Source2MEGMat` |
| 145 | + - :input:`SourceMat` is the matrix obtained using :command:`om_assemble` with either of the options |
| 146 | + :opt:`-SurfSourceMat` or :opt:`-DipSourceMat`, depending on the source model. :input:`Head2MEGMat` |
| 147 | + is the matrix obtained using :command:`om_assemble` with the option :opt:`-HeadMEEGMat`. |
| 148 | + :input:`Source2MEGMat` is the matrix obtained using :command:`om_assemble` with either of the |
| 149 | + options :opt:`-SurfSource2MEGMat` or :opt:`-DipSource2MEGMat`, depending on the source model. |
| 150 | + |
| 151 | + .. note:: |
| 152 | + |
| 153 | + The magnetic field is related both to the sources and to the electric potential, according to: :math:`\mathbf{M_{sensor}} = \mathbf{Source2MEGMat} * \mathbf{S} + \mathbf{Head2MEGMat}.\mathbf{X}`. |
| 154 | + |
| 155 | + - :opt:`-InternalPotential`: allows to compute an internal potential gain matrix for sensors within the volume. :opt:`Parameters` are then: |
| 156 | + |
| 157 | + - :input:`HeadMatInv SourceMat Head2InternalPotMat Source2InternalPotMat` |
| 158 | + - :input:`Head2InternalPotMat` and :input:`Source2InternalPotMat` are respectively obtained |
| 159 | + using :command:`om_assemble` with option :opt:`-Head2InternalPotMat` and :opt:`-DipSource2InternalPotMat`. |
0 commit comments