|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# General Imports\n" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": null, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import os\n", |
| 17 | + "import inspect\n", |
| 18 | + "import sys\n", |
| 19 | + "import pandas as pd\n", |
| 20 | + "import charts\n", |
| 21 | + "from opengrid_dev import config\n", |
| 22 | + "c = config.Config()\n", |
| 23 | + "\n", |
| 24 | + "from opengrid_dev.library import misc, houseprint\n", |
| 25 | + "\n", |
| 26 | + "import matplotlib.pyplot as plt\n", |
| 27 | + "%matplotlib inline\n", |
| 28 | + "plt.rcParams['figure.figsize'] = 16,8" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "c.opengrid_libdir" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "## Houseprint" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "hp = houseprint.Houseprint()\n", |
| 54 | + "hp.init_tmpo()\n", |
| 55 | + "hp._tmpos.debug = False" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": null, |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "hp.sync_tmpos()" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "## Create dataframes with minute data for a single year, by sensortype\n", |
| 72 | + "\n", |
| 73 | + "Only run if needed. Hourly frames can be created by loading these minute pickles. " |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "for sensortype in ['gas', \n", |
| 83 | + " 'water',\n", |
| 84 | + " 'electricity'\n", |
| 85 | + " ]:\n", |
| 86 | + " print('Processing {}'.format(sensortype))\n", |
| 87 | + " for y in ['2016']:\n", |
| 88 | + " print('year {}'.format(y))\n", |
| 89 | + " head = pd.Timestamp('{}0101'.format(y), tz='Europe/Brussels')\n", |
| 90 | + " tail = pd.Timestamp('{}0101 02:00:00'.format(int(y)+1), tz='Europe/Brussels')\n", |
| 91 | + " df = hp.get_data(sensortype=sensortype, head=head, tail=tail, diff=True, resample='min')\n", |
| 92 | + " df.rename(columns=lambda x: x[:4], inplace=True)\n", |
| 93 | + " df = df.tz_convert('Europe/Brussels')\n", |
| 94 | + " path = os.path.join(c.get('data', 'folder'), '{}_{}_min.pkl'.format(sensortype, y))\n", |
| 95 | + " df.to_pickle(path, compression='gzip')\n", |
| 96 | + " \n", |
| 97 | + " # Create a dataset with minute values for the 3 sensors for gas\n", |
| 98 | + " if sensortype == 'gas':\n", |
| 99 | + " df = df[['313b', 'd5a7', 'ba14']]\n", |
| 100 | + " dflim = df.loc[pd.Timestamp('2016-12-05 00:00:00', tz='Europe/Brussels'):pd.Timestamp('2016-12-19 00:00:00', tz='Europe/Brussels')]\n", |
| 101 | + " path = os.path.join(c.get('data', 'folder'), '{}_dec2016_min.pkl'.format(sensortype))\n", |
| 102 | + " dflim.to_pickle(path, compression='gzip')\n", |
| 103 | + " " |
| 104 | + ] |
| 105 | + }, |
| 106 | + { |
| 107 | + "cell_type": "code", |
| 108 | + "execution_count": null, |
| 109 | + "metadata": {}, |
| 110 | + "outputs": [], |
| 111 | + "source": [ |
| 112 | + "# Minute values for water for march 2015\n", |
| 113 | + "head = pd.Timestamp('20150301', tz='Europe/Brussels')\n", |
| 114 | + "tail = pd.Timestamp('20150401', tz='Europe/Brussels')\n", |
| 115 | + "df = hp.get_data(sensortype='water', head=head, tail=tail, diff=True, resample='min')\n", |
| 116 | + "df.rename(columns=lambda x: x[:4], inplace=True)\n", |
| 117 | + "df = df.tz_convert('Europe/Brussels')\n", |
| 118 | + "path = os.path.join(c.get('data', 'folder'), 'water_march2015_min.pkl')\n", |
| 119 | + "df.to_pickle(path, compression='gzip')" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": { |
| 126 | + "scrolled": true |
| 127 | + }, |
| 128 | + "outputs": [], |
| 129 | + "source": [ |
| 130 | + "## Create dataframes with hourly data\n", |
| 131 | + "for sensortype in ['water', 'gas', 'electricity']:\n", |
| 132 | + " print('Processing {}'.format(sensortype))\n", |
| 133 | + " for y in ['2016']:\n", |
| 134 | + " print('year {}'.format(y))\n", |
| 135 | + " path_min = os.path.join(c.get('data', 'folder'), '{}_{}_min.pkl'.format(sensortype, y))\n", |
| 136 | + " df = pd.read_pickle(path_min, compression='gzip')\n", |
| 137 | + " # hourly: mean values\n", |
| 138 | + " df_hour = df.resample(rule='H').mean()\n", |
| 139 | + " # remove uncomplete sensors and sensors we don't want in the test dataset\n", |
| 140 | + " for sensor in ['565d']:\n", |
| 141 | + " try:\n", |
| 142 | + " df_hour = df_hour.drop(labels=[sensor], axis=1)\n", |
| 143 | + " except:\n", |
| 144 | + " pass \n", |
| 145 | + " df_hour = df_hour.loc[head:pd.Timestamp('{}0101'.format(int(y)+1), tz='Europe/Brussels')]\n", |
| 146 | + " df_hour = df_hour.dropna(axis=1, how='any')\n", |
| 147 | + " \n", |
| 148 | + " try:\n", |
| 149 | + " df_hour.plot()\n", |
| 150 | + " except:\n", |
| 151 | + " print(\"No full hourly data for {}\".format(y))\n", |
| 152 | + " \n", |
| 153 | + " path_hour = os.path.join(c.get('data', 'folder'), '{}_{}_hour.pkl'.format(sensortype, y))\n", |
| 154 | + " df_hour.to_pickle(path_hour, compression='gzip')" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "markdown", |
| 159 | + "metadata": {}, |
| 160 | + "source": [ |
| 161 | + "## Weather data " |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "from opengrid_dev.library import forecastwrapper\n", |
| 171 | + "start = pd.Timestamp('20151225', tz='Europe/Brussels')\n", |
| 172 | + "end = pd.Timestamp('20170101', tz='Europe/Brussels')\n", |
| 173 | + "\n", |
| 174 | + "\n", |
| 175 | + "Weather_Ukkel = forecastwrapper.Weather(location='Ukkel', start=start, end=end)" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "columns = ['GlobalHorizontalIrradiance', 'humidity', 'temperature', 'windSpeed']\n", |
| 185 | + "df = Weather_Ukkel.hours()[columns]\n", |
| 186 | + "df.info()" |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": null, |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "df = df.applymap(float).fillna(value=0)\n", |
| 196 | + "df.info()" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": null, |
| 202 | + "metadata": {}, |
| 203 | + "outputs": [], |
| 204 | + "source": [ |
| 205 | + "path = os.path.join(c.get('data', 'folder'), 'weather_2016_hour.pkl')\n", |
| 206 | + "df.to_pickle(path, compression='gzip')" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": null, |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [], |
| 214 | + "source": [] |
| 215 | + } |
| 216 | + ], |
| 217 | + "metadata": { |
| 218 | + "kernelspec": { |
| 219 | + "display_name": "Python 3", |
| 220 | + "language": "python", |
| 221 | + "name": "python3" |
| 222 | + }, |
| 223 | + "language_info": { |
| 224 | + "codemirror_mode": { |
| 225 | + "name": "ipython", |
| 226 | + "version": 3 |
| 227 | + }, |
| 228 | + "file_extension": ".py", |
| 229 | + "mimetype": "text/x-python", |
| 230 | + "name": "python", |
| 231 | + "nbconvert_exporter": "python", |
| 232 | + "pygments_lexer": "ipython3", |
| 233 | + "version": "3.5.2" |
| 234 | + } |
| 235 | + }, |
| 236 | + "nbformat": 4, |
| 237 | + "nbformat_minor": 1 |
| 238 | +} |
0 commit comments