-
Notifications
You must be signed in to change notification settings - Fork 198
/
demo.cpp
213 lines (187 loc) · 7.67 KB
/
demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include "opencv2/opencv.hpp"
#include <map>
#include <vector>
#include <string>
#include <iostream>
const std::map<std::string, int> str2backend{
{"opencv", cv::dnn::DNN_BACKEND_OPENCV}, {"cuda", cv::dnn::DNN_BACKEND_CUDA},
{"timvx", cv::dnn::DNN_BACKEND_TIMVX}, {"cann", cv::dnn::DNN_BACKEND_CANN}
};
const std::map<std::string, int> str2target{
{"cpu", cv::dnn::DNN_TARGET_CPU}, {"cuda", cv::dnn::DNN_TARGET_CUDA},
{"npu", cv::dnn::DNN_TARGET_NPU}, {"cuda_fp16", cv::dnn::DNN_TARGET_CUDA_FP16}
};
class YuNet
{
public:
YuNet(const std::string& model_path,
const cv::Size& input_size = cv::Size(320, 320),
float conf_threshold = 0.6f,
float nms_threshold = 0.3f,
int top_k = 5000,
int backend_id = 0,
int target_id = 0)
: model_path_(model_path), input_size_(input_size),
conf_threshold_(conf_threshold), nms_threshold_(nms_threshold),
top_k_(top_k), backend_id_(backend_id), target_id_(target_id)
{
model = cv::FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_);
}
/* Overwrite the input size when creating the model. Size format: [Width, Height].
*/
void setInputSize(const cv::Size& input_size)
{
input_size_ = input_size;
model->setInputSize(input_size_);
}
cv::Mat infer(const cv::Mat image)
{
cv::Mat res;
model->detect(image, res);
return res;
}
private:
cv::Ptr<cv::FaceDetectorYN> model;
std::string model_path_;
cv::Size input_size_;
float conf_threshold_;
float nms_threshold_;
int top_k_;
int backend_id_;
int target_id_;
};
cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, float fps = -1.f)
{
static cv::Scalar box_color{0, 255, 0};
static std::vector<cv::Scalar> landmark_color{
cv::Scalar(255, 0, 0), // right eye
cv::Scalar( 0, 0, 255), // left eye
cv::Scalar( 0, 255, 0), // nose tip
cv::Scalar(255, 0, 255), // right mouth corner
cv::Scalar( 0, 255, 255) // left mouth corner
};
static cv::Scalar text_color{0, 255, 0};
auto output_image = image.clone();
if (fps >= 0)
{
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
}
for (int i = 0; i < faces.rows; ++i)
{
// Draw bounding boxes
int x1 = static_cast<int>(faces.at<float>(i, 0));
int y1 = static_cast<int>(faces.at<float>(i, 1));
int w = static_cast<int>(faces.at<float>(i, 2));
int h = static_cast<int>(faces.at<float>(i, 3));
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Confidence as text
float conf = faces.at<float>(i, 14);
cv::putText(output_image, cv::format("%.4f", conf), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color);
// Draw landmarks
for (int j = 0; j < landmark_color.size(); ++j)
{
int x = static_cast<int>(faces.at<float>(i, 2*j+4)), y = static_cast<int>(faces.at<float>(i, 2*j+5));
cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2);
}
}
return output_image;
}
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
"{help h | | Print this message}"
"{input i | | Set input to a certain image, omit if using camera}"
"{model m | face_detection_yunet_2023mar.onnx | Set path to the model}"
"{backend b | opencv | Set DNN backend}"
"{target t | cpu | Set DNN target}"
"{save s | false | Whether to save result image or not}"
"{vis v | false | Whether to visualize result image or not}"
/* model params below*/
"{conf_threshold | 0.9 | Set the minimum confidence for the model to identify a face. Filter out faces of conf < conf_threshold}"
"{nms_threshold | 0.3 | Set the threshold to suppress overlapped boxes. Suppress boxes if IoU(box1, box2) >= nms_threshold, the one of higher score is kept.}"
"{top_k | 5000 | Keep top_k bounding boxes before NMS. Set a lower value may help speed up postprocessing.}"
);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string input_path = parser.get<std::string>("input");
std::string model_path = parser.get<std::string>("model");
std::string backend = parser.get<std::string>("backend");
std::string target = parser.get<std::string>("target");
bool save_flag = parser.get<bool>("save");
bool vis_flag = parser.get<bool>("vis");
// model params
float conf_threshold = parser.get<float>("conf_threshold");
float nms_threshold = parser.get<float>("nms_threshold");
int top_k = parser.get<int>("top_k");
const int backend_id = str2backend.at(backend);
const int target_id = str2target.at(target);
// Instantiate YuNet
YuNet model(model_path, cv::Size(320, 320), conf_threshold, nms_threshold, top_k, backend_id, target_id);
// If input is an image
if (!input_path.empty())
{
auto image = cv::imread(input_path);
// Inference
model.setInputSize(image.size());
auto faces = model.infer(image);
// Print faces
std::cout << cv::format("%d faces detected:\n", faces.rows);
for (int i = 0; i < faces.rows; ++i)
{
int x1 = static_cast<int>(faces.at<float>(i, 0));
int y1 = static_cast<int>(faces.at<float>(i, 1));
int w = static_cast<int>(faces.at<float>(i, 2));
int h = static_cast<int>(faces.at<float>(i, 3));
float conf = faces.at<float>(i, 14);
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f\n", i, x1, y1, w, h, conf);
}
// Draw reults on the input image
if (save_flag || vis_flag)
{
auto res_image = visualize(image, faces);
if (save_flag)
{
std::cout << "Results are saved to result.jpg\n";
cv::imwrite("result.jpg", res_image);
}
if (vis_flag)
{
cv::namedWindow(input_path, cv::WINDOW_AUTOSIZE);
cv::imshow(input_path, res_image);
cv::waitKey(0);
}
}
}
else // Call default camera
{
int device_id = 0;
auto cap = cv::VideoCapture(device_id);
int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH));
int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT));
model.setInputSize(cv::Size(w, h));
auto tick_meter = cv::TickMeter();
cv::Mat frame;
while (cv::waitKey(1) < 0)
{
bool has_frame = cap.read(frame);
if (!has_frame)
{
std::cout << "No frames grabbed! Exiting ...\n";
break;
}
// Inference
tick_meter.start();
cv::Mat faces = model.infer(frame);
tick_meter.stop();
// Draw results on the input image
auto res_image = visualize(frame, faces, (float)tick_meter.getFPS());
// Visualize in a new window
cv::imshow("YuNet Demo", res_image);
tick_meter.reset();
}
}
return 0;
}