-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathconnector-sets.lyx
6352 lines (4949 loc) · 130 KB
/
connector-sets.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\begin_preamble
\usepackage{url}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding utf8
\fontencoding global
\font_roman times
\font_sans helvet
\font_typewriter courier
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_amsmath 2
\use_esint 0
\use_mhchem 0
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Connector Sets
\end_layout
\begin_layout Author
Linas Vepstas
\end_layout
\begin_layout Abstract
Extract from the language-learning diary, reporting on the first small dataset
containing connector sets.
This is the 11 June 2017 update of the original 11 May 2017 report.
It includes more data and figures, and updates the figures for readability
(legibility).
It also revises notation slightly.
\end_layout
\begin_layout Section*
Introduction
\end_layout
\begin_layout Standard
This is a report on a small dataset of disjuncts and connector sets, extracted
from MST parses of a batch of sentences.
First, a recap of what these are, then a characterization of the database
contents, and finally, a short report on the grammatical similarity of
words in the dataset.
\end_layout
\begin_layout Subsection*
Summary of results
\end_layout
\begin_layout Standard
The primary results reported below are these:
\end_layout
\begin_layout Standard
* Most scores and metrics that can be assigned to connector sets give a
(scale-free) Zipfian ranking distribution, and are thus fairly boring.
\end_layout
\begin_layout Standard
* The greater the average number of observations per disjunct, the more
grammatically acceptable (accurate) the disjunct seems to be.
This is good news: it means that the general technique is not generating
ungrammatical garbage.
\end_layout
\begin_layout Standard
* Connector sets can be given a mutual information score.
The ranking distribution for this is not at all Zipfian.
The MI score seems to be quite good at identifying words that participate
in idioms, set phrases and institutional phrases.
\end_layout
\begin_layout Standard
* The average number of connectors per disjunct, which should have indicated
the part-of-speech that the word belongs to, fails to do this.
This seems to be due to the small size of the dataset, the fact that it
is polluted with lists and tables, masquerading as sentences (its a Wikipedia
sample), and that there seem the be very few verbs in the sample (Wikipedia
articles describe concepts and events, using the copula to describe them:
\begin_inset Quotes eld
\end_inset
is
\begin_inset Quotes erd
\end_inset
,
\begin_inset Quotes eld
\end_inset
has
\begin_inset Quotes erd
\end_inset
,
\begin_inset Quotes eld
\end_inset
was
\begin_inset Quotes erd
\end_inset
, and is almost devoid of narrative verbs:
\begin_inset Quotes eld
\end_inset
ran
\begin_inset Quotes erd
\end_inset
\begin_inset Quotes eld
\end_inset
jumped
\begin_inset Quotes erd
\end_inset
\begin_inset Quotes eld
\end_inset
hit
\begin_inset Quotes erd
\end_inset
,
\begin_inset Quotes eld
\end_inset
ate
\begin_inset Quotes erd
\end_inset
\begin_inset Quotes eld
\end_inset
thought
\begin_inset Quotes erd
\end_inset
\begin_inset Quotes eld
\end_inset
took
\begin_inset Quotes erd
\end_inset
.) The WP sources need to be supplemented with narrative texts, ideally from
young-adult literature.
\end_layout
\begin_layout Standard
* Cosine similarity applied to connector sets seems to be an effective way
of determining the grammatical similarity of words.
This is despite the fact that closer examination reveals that the dataset
is quite thin and poor, and the similarity is based on scant evidence.
Despite the scant evidence, the similarity scores do seem to distinguish
different kinds of nouns quite well.
A big surprise is that it also seems to cluster prepositions quite well.
There seem to be few or no verbs in the dataset, as already noted.
It seems that even small datasets are sufficient to get started with grammatica
l similarity clustering, but much larger samples are needed for discovering
more sophisticated grammar.
\end_layout
\begin_layout Subsection*
Recap
\end_layout
\begin_layout Standard
The story so far: Starting from a large text corpus, the mutual information
(MI) of word-pairs are counted.
This MI is used to perform a maximum spanning-tree (MST) parse (of a different
subset of) the corpus.
From each parse, a pseudo-disjunct is extracted for each word.
The pseudo-disjunct is like a real LG disjunct, except that each connector
in the disjunct is the word at the far end of the link.
\end_layout
\begin_layout Standard
So, for example, in in idealized world, the MST parse of the sentence "Ben
ate pizza" would produce the parse Ben <--> ate <--> pizza and from this,
we can extract the pseudo-disjunct (Ben- pizza+) on the word "ate".
Similarly, the sentence "Ben puked pizza" should produce the disjunct (Ben-
pizza+) on the word "puked".
Since these two disjuncts are the same, we can conclude that the two words
"ate" and "puked" are very similar to each other.
Considering all of the other disjuncts that arise in this example, we can
conclude that these are the only two words that are similar.
\end_layout
\begin_layout Standard
Any given word will have many pseudo-disjuncts attached to it.
Each disjunct has a count of the number of times it has been observed.
Thus, this set of disjuncts can be imagined to be a vector in a high-dimensiona
l vector space, which each disjunct being a single basis element.
The similarity of two words can be taken to be the cosine-similarity between
the disjunct-vectors.
\end_layout
\begin_layout Standard
Equivalently, the set of disjuncts can be thought of as a weighted set:
each disjunct has a weight, corresponding to the number of times it has
been observed.
A weighted set is more or less the same thing as a vector, and these two
are treated as the same, in what follows.
Note that the disjunct vectors are sparse: for any given word, almost all
coefficients will have a count of zero.
For example, the dataset that will be examined next has over a quarter
of a million different pseudo-disjuncts in it; most words have fewer than
a hundred disjuncts on them.
\end_layout
\begin_layout Standard
Some terminology and notation are introduced next, followed by a characterizatio
n of the dataset.
This is followed by a statistical analysis of the word-disjunct pairs,
and is followed by an analysis of the resulting word-similarity.
\end_layout
\begin_layout Subsection*
Terminology
\end_layout
\begin_layout Standard
It is useful to introduce some notation for counting words, disjuncts, and
connectors.
Let
\begin_inset Formula $N(w)$
\end_inset
be the number of times that the word
\begin_inset Formula $w$
\end_inset
has been observed, in the dataset.
Let
\begin_inset Formula $N(w,d)$
\end_inset
be the number of times that the disjunct
\begin_inset Formula $d$
\end_inset
has been observed on word
\begin_inset Formula $w$
\end_inset
.
The pair
\begin_inset Formula $(w,d)$
\end_inset
is referred to as a
\begin_inset Quotes eld
\end_inset
connector set
\begin_inset Quotes erd
\end_inset
or
\begin_inset Quotes eld
\end_inset
cset
\begin_inset Quotes erd
\end_inset
in the text below.
Thus, for a word
\begin_inset Formula $w$
\end_inset
, there is a set
\begin_inset Formula $(w,*)=\left\{ (w,d)|N(w,d)>0\right\} $
\end_inset
of associated csets, called the
\begin_inset Quotes eld
\end_inset
support
\begin_inset Quotes erd
\end_inset
of the word.
The size of this set can be written using the standard notation for set-sizes
as
\begin_inset Formula $\left|(w,*)\right|$
\end_inset
.
Similarly, a disjunct
\begin_inset Formula $d$
\end_inset
, is supported by the set
\begin_inset Formula $(*,d)=\left\{ (w,d)|N(w,d)>0\right\} $
\end_inset
of associated csets.
\end_layout
\begin_layout Standard
The primary contents of the database are the counts
\begin_inset Formula $N(w,d)$
\end_inset
and everything else of interest in this section can be obtained from this.
Note that
\begin_inset Formula $N(w,d)$
\end_inset
can be understood as a matrix, where the disjuncts identify columns, and
the words identify rows.
In general, this is a very sparse matrix: the number of non-zero entries
\begin_inset Formula $\left|(*,*)\right|$
\end_inset
is far less than the number of rows times the number of columns.
\end_layout
\begin_layout Standard
Every time a word is observed in an MST parse, a disjunct is extracted for
it; thus, word observations and disjunct observations are on one-to-one
correspondence.
In notation:
\begin_inset Formula
\[
\sum_{d}N(w,d)=N(w,*)=N(w)
\]
\end_inset
Similarly, the total number of times that a disjunct was observed is just
\begin_inset Formula
\[
N(*,d)=\sum_{w}N(w,d)
\]
\end_inset
\end_layout
\begin_layout Standard
Frequencies can be obtained by dividing by the total number of observations,
so that
\begin_inset Formula $p(w,d)=N(w,d)/N(*)$
\end_inset
and
\begin_inset Formula $p(w)=N(w)/N(*)$
\end_inset
with
\begin_inset Formula $N(*)=\sum_{w}N(w)$
\end_inset
the total number of observations of words.
\end_layout
\begin_layout Standard
A single disjunct is always composed of a fixed number of connectors, independen
tly of any observations; let
\begin_inset Formula $C(d,c)$
\end_inset
be the number of times that connector
\begin_inset Formula $c$
\end_inset
appears in disjunct
\begin_inset Formula $d$
\end_inset
.
Note that
\begin_inset Formula $C(d,c)$
\end_inset
is almost always either zero or one; however, a connector can appear more
than once in a disjunct, so this count can rise to 2 or 3 or very rarely
higher.
The wild-card sum
\begin_inset Formula $C(d,*)=\sum_{c}C(d,c)$
\end_inset
is the total number of connectors in the disjunct; it is the vertex degree
of all edges connecting to that disjunct.
It is also useful to define
\begin_inset Formula $C(d,+)$
\end_inset
and
\begin_inset Formula $C(d,-)$
\end_inset
as the total number of right-linking and left-linking connectors.
\end_layout
\begin_layout Subsection*
Dataset characterization
\end_layout
\begin_layout Standard
The following charts and analyses are derived from a single dataset, a relativel
y small dataset, taken as a snapshot during counting.
Its called 'en_pairs_sim'.
It contains 37413 words that have disjuncts attached to them.
These words have been observed a total of 661104 times, for an average
of 661104/37413 = 17.6 observations per word.
This dataset contains 291637 different, unique disjuncts, for an average
of 661104/291637 = 2.27 observations per disjunct.
The period appears 32536 times, suggesting that this many sentences were
observed.
Each sentence thus has an average of 661104/32536 = 20.3 words per sentence.
The dataset contains 446204 unique connector-sets, for an average of 661104/446
204 = 1.48 observations per cset.
It is this last number that makes this dataset feel thin and sparse.
\end_layout
\begin_layout Standard
The dataset is sparse in a completely different sense: viewing
\begin_inset Formula $N(w,d)$
\end_inset
as a matrix whose size is
\begin_inset Formula $37413\times291637$
\end_inset
, but only a very small number of these is non-zero: this is
\begin_inset Formula $446204/(37413\times291637)=4.089\times10^{-5}$
\end_inset
.
The sparsity of this matrix can be defined as
\begin_inset Formula $-\log_{2}$
\end_inset
of this number, which is 14.58.
\end_layout
\begin_layout Standard
The total word-entropy for the dataset is defined as
\begin_inset Formula
\[
H_{word}=-\sum_{w}p(w)\log_{2}p(w)
\]
\end_inset
and was measured to be
\begin_inset Formula $H_{word}=10.28$
\end_inset
bits.
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
This and the following entropies were measured with the word-entropy-bits,
disjunct-entropy-bits, etc.
functions in disjunct-stats.scm
\end_layout
\end_inset
The connector-set entropy is much higher.
It is defined as
\begin_inset Formula
\[
H_{cset}=-\sum_{w,d}p(w,d)\log_{2}p(w,d)
\]
\end_inset
and is measured to be
\begin_inset Formula $H_{cset}=18.30$
\end_inset
bits.
The disjunct entropy is dual to the word entropy:
\begin_inset Formula
\[
H_{disjunct}=-\sum_{d}p(*,d)\log_{2}p(*,d)
\]
\end_inset
and is measured to be
\begin_inset Formula $H_{disjunct}=16.01$
\end_inset
bits.
The total mutual information between the words and disjuncts is then
\begin_inset Formula
\[
MI_{cset}=-\sum_{w,d}p(w,d)\log_{2}\frac{p(w,d)}{p(*,d)p(w,*)}=H_{cset}-H_{word}-H_{disjunct}
\]
\end_inset
and is measured to be
\begin_inset Formula $MI_{cset}=-7.985$
\end_inset
bits.
\end_layout
\begin_layout Subsection*
Connector-set distribution
\end_layout
\begin_layout Standard
Some connector-sets will be observed far more often than others.
Likewise for the two sides of the connector-set: some words will have far
more observations, and some disjuncts will be seen more often.
\end_layout
\begin_layout Standard
Two graphs, dual to one-another.
The one on the left shows
\begin_inset Formula $N(w,*)$
\end_inset
, ranked by count.
The one on the right shows
\begin_inset Formula $N(*,d)$
\end_inset
, also ranked.
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
Obtained by running (print-ts-rank sorted-word-obs outport) from the disjunct-st
ats.scm file, on the en_pairs_sim database.
The second one prints sorted-dj-obs.
\end_layout
\end_inset
.
The first follows the canonical Zipf distribution.
The green line is an eyeballed, approximate fit, of exponent -1.1.
The second has an exponent of -0.85.
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename ../images/ranked-word-obs.eps
width 50text%
\end_inset
\begin_inset Graphics
filename ../images/ranked-dj-obs.eps
width 50text%
\end_inset
\end_layout
\begin_layout Standard
The first ten words in the word ranking are: "the" "," "." "of" "and" "in"
"to" "a" "was".
This is the ranking of how often these words appear, overall, in the MST-parsed
corpus.
The number of periods should be equal to the number of sentences in the
corpus; commas and the word
\begin_inset Quotes eld
\end_inset
the
\begin_inset Quotes erd
\end_inset
can appear more than once in a sentence.
This list is repeated in the table below.
The frequency is just the count divided by 661104.
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="10" columns="4">
<features tabularvalignment="middle">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
word
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
count
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
frequency
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $-\log_{2}$
\end_inset
frequency
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
the
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
38977
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0589
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
4.084
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
,
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
37524
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0568
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
4.139
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
.
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
32536
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0489
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
4.353
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
of
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
22654
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0343
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
4.867
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
and
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
17708
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0268
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
5.222
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
in
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
14900
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0225
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
5.471
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
to
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
12825
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0194
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
5.688
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
a
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
11882
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.0180
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout