-
Notifications
You must be signed in to change notification settings - Fork 184
/
mmlu_eval.py
127 lines (119 loc) · 4.66 KB
/
mmlu_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Measuring Massive Multitask Language Understanding
Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt
https://arxiv.org/abs/2009.03300
"""
import random
import re
import blobfile as bf
import pandas
from . import common
from .common import (
HTML_JINJA,
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE,
MULTILINGUAL_ANSWER_REGEXES,
format_multichoice_question,
normalize_extracted_answer,
normalize_response,
)
from .types import Eval, EvalResult, SamplerBase, SingleEvalResult
subject2category = {
"abstract_algebra": "stem",
"anatomy": "other",
"astronomy": "stem",
"business_ethics": "other",
"clinical_knowledge": "other",
"college_biology": "stem",
"college_chemistry": "stem",
"college_computer_science": "stem",
"college_mathematics": "stem",
"college_medicine": "other",
"college_physics": "stem",
"computer_security": "stem",
"conceptual_physics": "stem",
"econometrics": "social_sciences",
"electrical_engineering": "stem",
"elementary_mathematics": "stem",
"formal_logic": "humanities",
"global_facts": "other",
"high_school_biology": "stem",
"high_school_chemistry": "stem",
"high_school_computer_science": "stem",
"high_school_european_history": "humanities",
"high_school_geography": "social_sciences",
"high_school_government_and_politics": "social_sciences",
"high_school_macroeconomics": "social_sciences",
"high_school_mathematics": "stem",
"high_school_microeconomics": "social_sciences",
"high_school_physics": "stem",
"high_school_psychology": "social_sciences",
"high_school_statistics": "stem",
"high_school_us_history": "humanities",
"high_school_world_history": "humanities",
"human_aging": "other",
"human_sexuality": "social_sciences",
"international_law": "humanities",
"jurisprudence": "humanities",
"logical_fallacies": "humanities",
"machine_learning": "stem",
"management": "other",
"marketing": "other",
"medical_genetics": "other",
"miscellaneous": "other",
"moral_disputes": "humanities",
"moral_scenarios": "humanities",
"nutrition": "other",
"philosophy": "humanities",
"prehistory": "humanities",
"professional_accounting": "other",
"professional_law": "humanities",
"professional_medicine": "other",
"professional_psychology": "social_sciences",
"public_relations": "social_sciences",
"security_studies": "social_sciences",
"sociology": "social_sciences",
"us_foreign_policy": "social_sciences",
"virology": "other",
"world_religions": "humanities",
}
class MMLUEval(Eval):
def __init__(self, num_examples: int | None = None, language: str = "EN-US"):
if language != "EN-US":
url = f"https://openaipublic.blob.core.windows.net/simple-evals/mmlu_{language}.csv"
else:
url = "https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv"
df = pandas.read_csv(bf.BlobFile(url))
examples = [row.to_dict() for _, row in df.iterrows()]
if num_examples:
examples = random.Random(0).sample(examples, num_examples)
self.examples = examples
def __call__(self, sampler: SamplerBase) -> EvalResult:
def fn(row: dict):
prompt_messages = [
sampler._pack_message(
content=format_multichoice_question(row), role="user"
)
]
response_text = normalize_response(sampler(prompt_messages))
extracted_answer = None
for answer_regex in MULTILINGUAL_ANSWER_REGEXES:
regex = MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(answer_regex)
match = re.search(regex, response_text)
if match:
extracted_answer = normalize_extracted_answer(match.group(1))
break
score = 1.0 if extracted_answer == row["Answer"] else 0.0
html = common.jinja_env.from_string(HTML_JINJA).render(
prompt_messages=prompt_messages,
next_message=dict(content=response_text, role="assistant"),
score=score,
correct_answer=row["Answer"],
extracted_answer=extracted_answer,
)
convo = prompt_messages + [dict(content=response_text, role="assistant")]
category = subject2category.get(row["Subject"], "other")
return SingleEvalResult(
html=html, score=score, metrics={category: score}, convo=convo
)
results = common.map_with_progress(fn, self.examples)
return common.aggregate_results(results)