-
Notifications
You must be signed in to change notification settings - Fork 598
/
Copy pathqdtrack_faster-rcnn_r101_fpn_24e_lvis.py
51 lines (50 loc) · 1.49 KB
/
qdtrack_faster-rcnn_r101_fpn_24e_lvis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# model settings
_base_ = [
'./qdtrack_faster-rcnn_r50_fpn_4e_base.py', '../../_base_/datasets/tao.py'
]
model = dict(
type='QDTrack',
detector=dict(
backbone=dict(
depth=101,
norm_cfg=dict(requires_grad=True),
style='pytorch',
init_cfg=dict(
type='Pretrained', checkpoint='torchvision://resnet101')),
rpn_head=dict(bbox_coder=dict(clip_border=True)),
roi_head=dict(
bbox_head=dict(bbox_coder=dict(
clip_border=True), num_classes=482)),
test_cfg=dict(
rcnn=dict(
score_thr=0.0001,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=300)),
init_cfg=None),
track_head=dict(train_cfg=dict(assigner=dict(neg_iou_thr=0.3))),
tracker=dict(
_delete_=True,
type='QuasiDenseTAOTracker',
init_score_thr=0.0001,
obj_score_thr=0.0001,
match_score_thr=0.5,
memo_frames=10,
memo_momentum=0.8,
momentum_obj_score=0.5,
obj_score_diff_thr=1.0,
distractor_nms_thr=0.3,
distractor_score_thr=0.5,
match_metric='bisoftmax',
match_with_cosine=True))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0 / 1000,
step=[16, 22])
total_epochs = 24
load_from = None
resume_from = None
evaluation = dict(metric=['bbox'], start=16, interval=2)
work_dir = None