-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathregnetx-400mf_8xb128_in1k.py
58 lines (50 loc) · 1.63 KB
/
regnetx-400mf_8xb128_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
_base_ = [
'../_base_/models/regnet/regnetx_400mf.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs1024_coslr.py',
'../_base_/default_runtime.py'
]
# dataset settings
data_preprocessor = dict(
# BGR format normalization parameters
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
to_rgb=False, # The checkpoints from PyCls requires BGR format inputs.
)
# lighting params, in order of BGR, from repo. pycls
EIGVAL = [0.2175, 0.0188, 0.0045]
EIGVEC = [
[-0.5836, -0.6948, 0.4203],
[-0.5808, -0.0045, -0.814],
[-0.5675, 0.7192, 0.4009],
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='Lighting',
eigval=EIGVAL,
eigvec=EIGVEC,
alphastd=25.5, # because the value range of images is [0,255]
to_rgb=False),
dict(type='PackInputs'),
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(batch_size=128)
test_dataloader = dict(batch_size=128)
# schedule settings
# sgd with nesterov, base ls is 0.8 for batch_size 1024,
optim_wrapper = dict(optimizer=dict(lr=0.8, nesterov=True))
# runtime settings
# Precise BN hook will update the bn stats, so this hook should be executed
# before CheckpointHook(priority of 'VERY_LOW') and
# EMAHook(priority of 'NORMAL') So set the priority of PreciseBNHook to
# 'ABOVENORMAL' here.
custom_hooks = [
dict(
type='PreciseBNHook',
num_samples=8192,
interval=1,
priority='ABOVE_NORMAL')
]