More models with different backbones will be added to the model zoo.
Backbone | Download |
---|---|
VGG-16 | vgg16.pth |
Backbone | Pooling | Loss | Top-5 Recall | Top-5 Acc. | Download (Google) | Download (Baidu) |
---|---|---|---|---|---|---|
VGG-16 | Global Pooling | Cross-Entropy | 13.70 | 99.81 | model | model, passwd: j9qd |
VGG-16 | Landmark Pooling | Cross-Entropy | 14.79 | 99.27 | model | - |
ResNet-50 | Global Pooling | Cross-Entropy | 23.52 | 99.29 | model | - |
ResNet-50 | Landmark Pooling | Cross-Entropy | 30.84 | 99.30 | model | - |
Backbone | Pooling | Loss | Top-5 Cate. Recall | Top-5 Attr. Recall. | Download (Google) | Download (Baidu) |
---|---|---|---|---|---|---|
VGG-16 | Global Pooling | Cross-Entropy | 35.91 | 25.44 | model | - |
VGG-16 | Landmark Pooling | Cross-Entropy | 37.71 | 26.69 | model | - |
ResNet-50 | Global Pooling | Cross-Entropy | 42.87 | 29.37 | model | - |
ResNet-50 | Landmark Pooling | Cross-Entropy | 48.25 | 32.57 | model | - |
Backbone | Pooling | Loss | Top-5 Acc. | Download (Google) | Download (Baidu) |
---|---|---|---|---|---|
VGG-16 | Global Pooling | Cross-Entropy | 38.76 | model | model, passwd: wz69 |
VGG-16 | Landmark Pooling | Cross-Entropy | 46.29 | model | - |
ResNet-50 | Global Pooling | Cross-Entropy | 41.81 | model | - |
ResNet-50 | Landmark Pooling | Cross-Entropy | 48.82 | model | - |
Backbone | Pooling | Loss | Top-5 Acc. | Download (Google) | Download (Baidu) |
---|---|---|---|---|---|
VGG-16 | Landmark Pooling | Cross-Entropy | 7.18 | model | model, passwd: grfx |
Backbone | Loss | Normalized Error | % of Det. Landmarks | Download (Google) | Download (Baidu) |
---|---|---|---|---|---|
VGG-16 | L2 Loss | 0.0813 | 55.35 | model | model, passwd: 4ebx |
ResNet-50 | L2 Loss | 0.0758 | 56.32 | model |
Backbone | Dataset | Embedding Projection | Loss | Fill-in-blank Acc | Compatibility AUC | Download (Google) |
---|---|---|---|---|---|---|
ResNet-18 | Disjoint | fully-connected layer | Triplet loss, Type-specific loss, Similarity loss, VSE loss | 50.4 | 0.80 | model |
ResNet-18 | Disjoint | learned metric | Triplet loss, Type-specific loss, Similarity loss, VSE loss | 55.6 | 0.84 | model |
ResNet-18 | Nondisjoint | fully-connected layer | Triplet loss, Type-specific loss, Similarity loss, VSE loss | 53.5 | 0.85 | model |
Backbone | Model type | Dataset | bbox detection Average Precision | segmentation Average Precision | Download (Google) |
---|---|---|---|---|---|
Resnet50 | Mask RCNN | DeepFashion-In-shop | 0.599 | 0.584 | model |
Model type | Dataset | Download (Google) |
---|---|---|
CP-VTON | VTON | GMM TOM |