Skip to content

Commit 5ff1df8

Browse files
committed
fix config comments bug and update waymo infos & mini link
1 parent ab31f64 commit 5ff1df8

File tree

3 files changed

+31
-59
lines changed

3 files changed

+31
-59
lines changed

configs/_base_/datasets/waymoD5-mv3d-3class.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# dataset settings
2-
# D5 in the config name means the whole dataset is divided into 3 folds
2+
# D5 in the config name means the whole dataset is divided into 5 folds
33
# We only use one fold for efficient experiments
44
dataset_type = 'WaymoDataset'
55
data_root = 'data/waymo/kitti_format/'

docs/en/user_guides/dataset_prepare.md

Lines changed: 15 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -133,10 +133,12 @@ sh tools/create_data.sh <partition> kitti
133133

134134
### Waymo
135135

136-
Download Waymo open dataset V1.4.1 [HERE](https://waymo.com/open/download/) and its data split [HERE](https://drive.google.com/drive/folders/18BVuF_RYJF0NjZpt8SnfzANiakoRMf0o?usp=sharing). Then put `.tfrecord` files into corresponding folders in `data/waymo/waymo_format/` and put the data split `.txt` files into `data/waymo/kitti_format/ImageSets`. Download ground truth `.bin` file for validation set [HERE](https://console.cloud.google.com/storage/browser/waymo_open_dataset_v_1_4_1/validation/ground_truth_objects) and put it into `data/waymo/waymo_format/`. A tip is that you can use `gsutil` to download the large-scale dataset with commands. You can take this [tool](https://github.com/RalphMao/Waymo-Dataset-Tool) as an example for more details. Subsequently, prepare waymo data by running:
136+
Download Waymo open dataset V1.4.1 [HERE](https://waymo.com/open/download/) and its data split [HERE](https://drive.google.com/drive/folders/18BVuF_RYJF0NjZpt8SnfzANiakoRMf0o?usp=sharing). Then put `.tfrecord` files into corresponding folders in `data/waymo/waymo_format/` and put the data split `.txt` files into `data/waymo/kitti_format/ImageSets`. Download ground truth `.bin` file for validation set [HERE](https://console.cloud.google.com/storage/browser/waymo_open_dataset_v_1_2_0/validation/ground_truth_objects) and put it into `data/waymo/waymo_format/`. A tip is that you can use `gsutil` to download the large-scale dataset with commands. You can take this [tool](https://github.com/RalphMao/Waymo-Dataset-Tool) as an example for more details. Subsequently, prepare waymo data by running:
137137

138138
```bash
139-
python tools/create_data.py waymo --root-path ./data/waymo/ --out-dir ./data/waymo/ --workers 128 --extra-tag waymo
139+
# TF_CPP_MIN_LOG_LEVEL=3 will disable all logging output from TensorFlow.
140+
# The number of `--workers` depends on the maximum number of cores in your CPU.
141+
TF_CPP_MIN_LOG_LEVEL=3 python tools/create_data.py waymo --root-path ./data/waymo --out-dir ./data/waymo --workers 128 --extra-tag waymo --version v1.4
140142
```
141143

142144
Note that:
@@ -149,28 +151,12 @@ Note that:
149151

150152
- **Ready-made Annotations**. We have provided the annotation files generated offline [here](#summary-of-annotation-files). However, the original Waymo data still needs to be converted to `kitti-format` data by yourself.
151153

152-
- **Waymo-mini**. If you just want to use a part of Waymo Dataset to verify some methods or debug quickly, you could use our provided [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_kitti_format.tar.gz) which only contains two segments in train split and one segment in val split from the original dataset. All the images, point clouds and annotations in this compressed file have been processed offline so that you can directly download and unzip it to `data/waymo/`:
154+
- **Waymo-mini**. If you just want to use a part of Waymo Dataset to verify some methods or debug quickly, you could use our provided [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_mini.tar.gz) which only contains two segments in train split and one segment in val split from the original dataset. All the images, point clouds and annotations in this compressed file have been processed offline so that you can directly download and unzip it to `data/waymo/`:
153155

154156
```bash
155-
tar -xzvf waymo_mini_kitti_format.tar.gz -C ./data/waymo
157+
tar -xzvf waymo_mini.tar.gz -C ./data/waymo_mini
156158
```
157159

158-
- **Faster evaluation**. If you want faster evaluation on Waymo, you can download the preprocessed [metainfo](https://download.openmmlab.com/mmdetection3d/data/waymo/idx2metainfo.pkl) containing `contextname` and `timestamp` to the directory `data/waymo/waymo_format/` and then modify the dataset config as the following:
159-
160-
```python
161-
val_evaluator = dict(
162-
type='WaymoMetric',
163-
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
164-
waymo_bin_file='./data/waymo/waymo_format/gt.bin',
165-
data_root='./data/waymo/waymo_format',
166-
backend_args=backend_args,
167-
convert_kitti_format=True,
168-
idx2metainfo='data/waymo/waymo_format/idx2metainfo.pkl'
169-
)
170-
```
171-
172-
Now, this trick is only used for LiDAR-based detection methods.
173-
174160
### NuScenes
175161

176162
1. Download nuScenes V1.0 full dataset data [HERE](https://www.nuscenes.org/download). Alternatively, you
@@ -272,12 +258,12 @@ python tools/dataset_converters/update_infos_to_v2.py --dataset kitti --pkl-path
272258

273259
We provide ready-made annotation files we generated offline for reference. You can directly use these files for convenice.
274260

275-
| Dataset | Train annotation file | Val annotation file | Test information file |
276-
| :--------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------: |
277-
| KITTI | [kitti_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_train.pkl) | [kitti_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_val.pkl) | [kitti_infos_test](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_test.pkl) |
278-
| NuScenes | [nuscenes_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_infos_train.pkl) [nuscenes_mini_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_mini_infos_train.pkl) | [nuscenes_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_infos_val.pkl) [nuscenes_mini_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_mini_infos_val.pkl) | |
279-
| Waymo | [waymo_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_infos_train.pkl) [waymo_mini_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_infos_train.pkl) | [waymo_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_infos_val.pkl) [waymo_mini_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_infos_val.pkl) | [waymo_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_infos_test.pkl) |
280-
| [Waymo-mini kitti-format data](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_kitti_format.tar.gz) | | | |
281-
| SUN RGB-D | [sunrgbd_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/sunrgbd/sunrgbd_infos_train.pkl) | [sunrgbd_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/sunrgbd/sunrgbd_infos_val.pkl) | |
282-
| ScanNet | [scannet_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_train.pkl) | [scannet_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_val.pkl) | [scannet_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_test.pkl) |
283-
| SemanticKitti | [semantickitti_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_train.pkl) | [semantickitti_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_val.pkl) | [semantickitti_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_test.pkl) |
261+
| Dataset | Train annotation file | Val annotation file | Test information file |
262+
| :-------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
263+
| KITTI | [kitti_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_train.pkl) | [kitti_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_val.pkl) | [kitti_infos_test](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_test.pkl) |
264+
| NuScenes | [nuscenes_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_infos_train.pkl) [nuscenes_mini_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_mini_infos_train.pkl) | [nuscenes_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_infos_val.pkl) [nuscenes_mini_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_mini_infos_val.pkl) | |
265+
| Waymo | [waymo_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_infos_train.pkl) | [waymo_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_infos_val.pkl) | [waymo_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_infos_test.pkl) [waymo_infos_test_cam_only.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_infos_test_cam_only.pkl) |
266+
| [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_mini.tar.gz) | | | |
267+
| SUN RGB-D | [sunrgbd_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/sunrgbd/sunrgbd_infos_train.pkl) | [sunrgbd_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/sunrgbd/sunrgbd_infos_val.pkl) | |
268+
| ScanNet | [scannet_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_train.pkl) | [scannet_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_val.pkl) | [scannet_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_test.pkl) |
269+
| SemanticKitti | [semantickitti_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_train.pkl) | [semantickitti_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_val.pkl) | [semantickitti_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_test.pkl) |

0 commit comments

Comments
 (0)