|
| 1 | +# Copyright (c) OpenMMLab. All rights reserved. |
| 2 | +"""Support for multi-model fusion, and currently only the Weighted Box Fusion |
| 3 | +(WBF) fusion method is supported. |
| 4 | +
|
| 5 | +References: https://github.com/ZFTurbo/Weighted-Boxes-Fusion |
| 6 | +
|
| 7 | +Example: |
| 8 | +
|
| 9 | + python demo/demo_multi_model.py demo/demo.jpg \ |
| 10 | + ./configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_1x_coco.py \ |
| 11 | + ./configs/retinanet/retinanet_r50-caffe_fpn_1x_coco.py \ |
| 12 | + --checkpoints \ |
| 13 | + https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth \ # noqa |
| 14 | + https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth \ |
| 15 | + --weights 1 2 |
| 16 | +""" |
| 17 | + |
| 18 | +import argparse |
| 19 | +import os.path as osp |
| 20 | + |
| 21 | +import mmcv |
| 22 | +import mmengine |
| 23 | +from mmengine.fileio import isdir, join_path, list_dir_or_file |
| 24 | +from mmengine.logging import print_log |
| 25 | +from mmengine.structures import InstanceData |
| 26 | + |
| 27 | +from mmdet.apis import DetInferencer |
| 28 | +from mmdet.models.utils import weighted_boxes_fusion |
| 29 | +from mmdet.registry import VISUALIZERS |
| 30 | +from mmdet.structures import DetDataSample |
| 31 | + |
| 32 | +IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', |
| 33 | + '.tiff', '.webp') |
| 34 | + |
| 35 | + |
| 36 | +def parse_args(): |
| 37 | + parser = argparse.ArgumentParser( |
| 38 | + description='MMDetection multi-model inference demo') |
| 39 | + parser.add_argument( |
| 40 | + 'inputs', type=str, help='Input image file or folder path.') |
| 41 | + parser.add_argument( |
| 42 | + 'config', |
| 43 | + type=str, |
| 44 | + nargs='*', |
| 45 | + help='Config file(s), support receive multiple files') |
| 46 | + parser.add_argument( |
| 47 | + '--checkpoints', |
| 48 | + type=str, |
| 49 | + nargs='*', |
| 50 | + help='Checkpoint file(s), support receive multiple files, ' |
| 51 | + 'remember to correspond to the above config', |
| 52 | + ) |
| 53 | + parser.add_argument( |
| 54 | + '--weights', |
| 55 | + type=float, |
| 56 | + nargs='*', |
| 57 | + default=None, |
| 58 | + help='weights for each model, remember to ' |
| 59 | + 'correspond to the above config') |
| 60 | + parser.add_argument( |
| 61 | + '--fusion-iou-thr', |
| 62 | + type=float, |
| 63 | + default=0.55, |
| 64 | + help='IoU value for boxes to be a match in wbf') |
| 65 | + parser.add_argument( |
| 66 | + '--skip-box-thr', |
| 67 | + type=float, |
| 68 | + default=0.0, |
| 69 | + help='exclude boxes with score lower than this variable in wbf') |
| 70 | + parser.add_argument( |
| 71 | + '--conf-type', |
| 72 | + type=str, |
| 73 | + default='avg', # avg, max, box_and_model_avg, absent_model_aware_avg |
| 74 | + help='how to calculate confidence in weighted boxes in wbf') |
| 75 | + parser.add_argument( |
| 76 | + '--out-dir', |
| 77 | + type=str, |
| 78 | + default='outputs', |
| 79 | + help='Output directory of images or prediction results.') |
| 80 | + parser.add_argument( |
| 81 | + '--device', default='cuda:0', help='Device used for inference') |
| 82 | + parser.add_argument( |
| 83 | + '--pred-score-thr', |
| 84 | + type=float, |
| 85 | + default=0.3, |
| 86 | + help='bbox score threshold') |
| 87 | + parser.add_argument( |
| 88 | + '--batch-size', type=int, default=1, help='Inference batch size.') |
| 89 | + parser.add_argument( |
| 90 | + '--show', |
| 91 | + action='store_true', |
| 92 | + help='Display the image in a popup window.') |
| 93 | + parser.add_argument( |
| 94 | + '--no-save-vis', |
| 95 | + action='store_true', |
| 96 | + help='Do not save detection vis results') |
| 97 | + parser.add_argument( |
| 98 | + '--no-save-pred', |
| 99 | + action='store_true', |
| 100 | + help='Do not save detection json results') |
| 101 | + parser.add_argument( |
| 102 | + '--palette', |
| 103 | + default='none', |
| 104 | + choices=['coco', 'voc', 'citys', 'random', 'none'], |
| 105 | + help='Color palette used for visualization') |
| 106 | + |
| 107 | + args = parser.parse_args() |
| 108 | + |
| 109 | + if args.no_save_vis and args.no_save_pred: |
| 110 | + args.out_dir = '' |
| 111 | + |
| 112 | + return args |
| 113 | + |
| 114 | + |
| 115 | +def main(): |
| 116 | + args = parse_args() |
| 117 | + |
| 118 | + results = [] |
| 119 | + cfg_visualizer = None |
| 120 | + dataset_meta = None |
| 121 | + |
| 122 | + inputs = [] |
| 123 | + filename_list = [] |
| 124 | + if isdir(args.inputs): |
| 125 | + dir = list_dir_or_file( |
| 126 | + args.inputs, list_dir=False, suffix=IMG_EXTENSIONS) |
| 127 | + for filename in dir: |
| 128 | + img = mmcv.imread(join_path(args.inputs, filename)) |
| 129 | + inputs.append(img) |
| 130 | + filename_list.append(filename) |
| 131 | + else: |
| 132 | + img = mmcv.imread(args.inputs) |
| 133 | + inputs.append(img) |
| 134 | + img_name = osp.basename(args.inputs) |
| 135 | + filename_list.append(img_name) |
| 136 | + |
| 137 | + for i, (config, |
| 138 | + checkpoint) in enumerate(zip(args.config, args.checkpoints)): |
| 139 | + inferencer = DetInferencer( |
| 140 | + config, checkpoint, device=args.device, palette=args.palette) |
| 141 | + |
| 142 | + result_raw = inferencer( |
| 143 | + inputs=inputs, |
| 144 | + batch_size=args.batch_size, |
| 145 | + no_save_vis=True, |
| 146 | + pred_score_thr=args.pred_score_thr) |
| 147 | + |
| 148 | + if i == 0: |
| 149 | + cfg_visualizer = inferencer.cfg.visualizer |
| 150 | + dataset_meta = inferencer.model.dataset_meta |
| 151 | + results = [{ |
| 152 | + 'bboxes_list': [], |
| 153 | + 'scores_list': [], |
| 154 | + 'labels_list': [] |
| 155 | + } for _ in range(len(result_raw['predictions']))] |
| 156 | + |
| 157 | + for res, raw in zip(results, result_raw['predictions']): |
| 158 | + res['bboxes_list'].append(raw['bboxes']) |
| 159 | + res['scores_list'].append(raw['scores']) |
| 160 | + res['labels_list'].append(raw['labels']) |
| 161 | + |
| 162 | + visualizer = VISUALIZERS.build(cfg_visualizer) |
| 163 | + visualizer.dataset_meta = dataset_meta |
| 164 | + |
| 165 | + for i in range(len(results)): |
| 166 | + bboxes, scores, labels = weighted_boxes_fusion( |
| 167 | + results[i]['bboxes_list'], |
| 168 | + results[i]['scores_list'], |
| 169 | + results[i]['labels_list'], |
| 170 | + weights=args.weights, |
| 171 | + iou_thr=args.fusion_iou_thr, |
| 172 | + skip_box_thr=args.skip_box_thr, |
| 173 | + conf_type=args.conf_type) |
| 174 | + |
| 175 | + pred_instances = InstanceData() |
| 176 | + pred_instances.bboxes = bboxes |
| 177 | + pred_instances.scores = scores |
| 178 | + pred_instances.labels = labels |
| 179 | + |
| 180 | + fusion_result = DetDataSample(pred_instances=pred_instances) |
| 181 | + |
| 182 | + img_name = filename_list[i] |
| 183 | + |
| 184 | + if not args.no_save_pred: |
| 185 | + out_json_path = ( |
| 186 | + args.out_dir + '/preds/' + img_name.split('.')[0] + '.json') |
| 187 | + mmengine.dump( |
| 188 | + { |
| 189 | + 'labels': labels.tolist(), |
| 190 | + 'scores': scores.tolist(), |
| 191 | + 'bboxes': bboxes.tolist() |
| 192 | + }, out_json_path) |
| 193 | + |
| 194 | + out_file = osp.join(args.out_dir, 'vis', |
| 195 | + img_name) if not args.no_save_vis else None |
| 196 | + |
| 197 | + visualizer.add_datasample( |
| 198 | + img_name, |
| 199 | + inputs[i][..., ::-1], |
| 200 | + data_sample=fusion_result, |
| 201 | + show=args.show, |
| 202 | + draw_gt=False, |
| 203 | + wait_time=0, |
| 204 | + pred_score_thr=args.pred_score_thr, |
| 205 | + out_file=out_file) |
| 206 | + |
| 207 | + if not args.no_save_vis: |
| 208 | + print_log(f'results have been saved at {args.out_dir}') |
| 209 | + |
| 210 | + |
| 211 | +if __name__ == '__main__': |
| 212 | + main() |
0 commit comments