We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
{'sys.platform': 'win32', 'Python': '3.10.11 (tags/v3.10.11:7d4cc5a, Apr 5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]', 'CUDA available': True, 'GPU 0': 'NVIDIA GeForce RTX 3060', 'CUDA_HOME': 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2', 'NVCC': 'Not Available', 'MSVC': '用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.37.32822 版', 'GCC': 'n/a', 'PyTorch': '2.3.0+cu118', 'PyTorch compiling details': 'PyTorch built with:\n - C++ Version: 201703\n - MSVC 192930151\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.3.6 (Git Hash 86e6af5974177e513fd3fee58425e1063e7f1361)\n - OpenMP 2019\n - LAPACK is enabled (usually provided by MKL)\n - CPU capability usage: AVX2\n - CUDA Runtime 11.8\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.7\n - Magma 2.5.4\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n', 'TorchVision': '0.18.0+cu118', 'OpenCV': '4.9.0', 'MMCV': '1.7.2', 'MMCV Compiler': 'n/a', 'MMCV CUDA Compiler': 'n/a'}
尝试自己编译过,在配置好cl,nvcc的情况下,build_ext仍然报错 且任何调试方法都无法继续定位“系统找不到指定的文件”到底是哪个文件,错误发生在哪一步。 尝试跟踪build_ext只能得到错误发生在Lib\distutils\command\build_ext.py中,这步已经不能调试了。
参见modelscope/facechain#587 阿里的modelscope系列下所有模型均采用mmcv1.7.2,迁移工作量巨大,短时间内难以迁移。 请为torch2.2以上版本继续提供预编译的mmcv1.7.2包,谢谢。
running build_ext error: [WinError 2] 系统找不到指定的文件。
No response
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Prerequisite
Environment
{'sys.platform': 'win32', 'Python': '3.10.11 (tags/v3.10.11:7d4cc5a, Apr 5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]', 'CUDA available': True, 'GPU 0': 'NVIDIA GeForce RTX 3060', 'CUDA_HOME': 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2', 'NVCC': 'Not Available', 'MSVC': '用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.37.32822 版', 'GCC': 'n/a', 'PyTorch': '2.3.0+cu118', 'PyTorch compiling details': 'PyTorch built with:\n - C++ Version: 201703\n - MSVC 192930151\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.3.6 (Git Hash 86e6af5974177e513fd3fee58425e1063e7f1361)\n - OpenMP 2019\n - LAPACK is enabled (usually provided by MKL)\n - CPU capability usage: AVX2\n - CUDA Runtime 11.8\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.7\n - Magma 2.5.4\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n', 'TorchVision': '0.18.0+cu118', 'OpenCV': '4.9.0', 'MMCV': '1.7.2', 'MMCV Compiler': 'n/a', 'MMCV CUDA Compiler': 'n/a'}
Reproduces the problem - code sample
尝试自己编译过,在配置好cl,nvcc的情况下,build_ext仍然报错
且任何调试方法都无法继续定位“系统找不到指定的文件”到底是哪个文件,错误发生在哪一步。
尝试跟踪build_ext只能得到错误发生在Lib\distutils\command\build_ext.py中,这步已经不能调试了。
Reproduces the problem - command or script
参见modelscope/facechain#587
阿里的modelscope系列下所有模型均采用mmcv1.7.2,迁移工作量巨大,短时间内难以迁移。
请为torch2.2以上版本继续提供预编译的mmcv1.7.2包,谢谢。
Reproduces the problem - error message
running build_ext
error: [WinError 2] 系统找不到指定的文件。
Additional information
No response
The text was updated successfully, but these errors were encountered: