You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
RuntimeError: The size of tensor a (3) must match the size of tensor b (150) at non-singleton dimension 1
Additional information
I want to use softmax_focal_loss to calculate classification loss. When it forward, the prediction shape is [n, 3](n is the sample number), and the target shape is [n]. The forward calculate the true loss,but when it backward, the error occurred.
The text was updated successfully, but these errors were encountered:
Prerequisite
Environment
{'sys.platform': 'linux', 'Python': '3.8.15 (default, Nov 4 2022, 20:59:55) [GCC 11.2.0]', 'CUDA available': True, 'GPU 0,1': 'Tesla V100-PCIE-16GB', 'CUDA_HOME': '/usr/local/cuda', 'NVCC': 'Build cuda_11.3.r11.3/compiler.29920130_0', 'GCC': 'gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0', 'PyTorch': '1.9.1+cu111', 'PyTorch compiling details': 'PyTorch built with:\n - GCC 7.3\n - C++ Version: 201402\n - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.1\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86\n - CuDNN 8.0.5\n - Magma 2.5.2\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, \n', 'TorchVision': '0.10.1+cu111', 'OpenCV': '4.9.0', 'MMCV': '1.4.0', 'MMCV Compiler': 'GCC 7.5', 'MMCV CUDA Compiler': '11.3'}
Reproduces the problem - code sample
def backward(ctx, grad_output):
input_softmax, target, weight = ctx.saved_tensors
buff = input_softmax.new_zeros(input_softmax.size(0))
grad_input = input_softmax.new_zeros(input_softmax.size())
print('input_softmax ', input_softmax.shape)
ext_module.softmax_focal_loss_backward(
input_softmax,
target,
weight,
buff,
grad_input,
gamma=ctx.gamma,
alpha=ctx.alpha)
print('grad_output ',grad_output.shape)
grad_input *= grad_output
Reproduces the problem - command or script
that's a train model project.
Reproduces the problem - error message
RuntimeError: The size of tensor a (3) must match the size of tensor b (150) at non-singleton dimension 1
Additional information
I want to use softmax_focal_loss to calculate classification loss. When it forward, the prediction shape is [n, 3](n is the sample number), and the target shape is [n]. The forward calculate the true loss,but when it backward, the error occurred.
The text was updated successfully, but these errors were encountered: