Skip to content

Commit 48e6cfc

Browse files
committed
Fix class links
1 parent 1577280 commit 48e6cfc

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

docs/1-supervised-learning/1-vector-models.ipynb

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -444,14 +444,14 @@
444444
"\n",
445445
"sensAI provides a wide variety of base classes that simplify the definition of feature generators, including\n",
446446
"\n",
447-
" * [FeatureGeneratorTakeColumns](/sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorTakeColumns), which simply takes over columns from the input data frame without modifying them\n",
448-
" * [FeatureGeneratorMapColumn](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorMapColumn), which maps the values of an input column to a new feature column\n",
449-
" * [FeatureGeneratorFlattenColumns](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFlattenColumns), which generates features by flattening one or more vector-valued columns in the input\n",
450-
" * [FeatureGeneratorMapColumnDict](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorMapColumnDict), which maps an input column to several feature columns, i.e. mapping each input value to a dictionary of output values\n",
451-
" * [FeatureGeneratorFromVectorModel](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFromVectorModel), which generates features by applying a (regression or classifcation) model to the input data frame\n",
452-
" * [FeatureGeneratorFromDFT](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFromDFT), which generates features by applying a given data frame transformer to the input\n",
453-
" * [FeatureGeneratorFromColumnGenerator](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFromColumnGenerator), which uses the concept of a `ColumnGenerator` to implement a feature generator, which specifically supports index-based caching mechanisms for feature generation\n",
454-
" * [FeatureGeneratorTargetDistribution](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorTargetDistribution), which computes conditional distributions of the (optionally discretised) target variable given one or more categorical features in the input data\n",
447+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorTakeColumns`, which simply takes over columns from the input data frame without modifying them\n",
448+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorMapColumn`, which maps the values of an input column to a new feature column\n",
449+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFlattenColumns`, which generates features by flattening one or more vector-valued columns in the input\n",
450+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorMapColumnDict`, which maps an input column to several feature columns, i.e. mapping each input value to a dictionary of output values\n",
451+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFromVectorModel`, which generates features by applying a (regression or classifcation) model to the input data frame\n",
452+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFromDFT`, which generates features by applying a given data frame transformer to the input\n",
453+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFromColumnGenerator`, which uses the concept of a `ColumnGenerator` to implement a feature generator, which specifically supports index-based caching mechanisms for feature generation\n",
454+
" * :class:`sensai.featuregen.feature_generator.FeatureGeneratorTargetDistribution`, which computes conditional distributions of the (optionally discretised) target variable given one or more categorical features in the input data\n",
455455
"\n",
456456
"As a simple example, let us use `FeatureGeneratorMapColumn` to implement a second feature based on the timestamp column from the earlier data frame: the day of the week."
457457
]

0 commit comments

Comments
 (0)