|
444 | 444 | "\n",
|
445 | 445 | "sensAI provides a wide variety of base classes that simplify the definition of feature generators, including\n",
|
446 | 446 | "\n",
|
447 |
| - " * [FeatureGeneratorTakeColumns](/sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorTakeColumns), which simply takes over columns from the input data frame without modifying them\n", |
448 |
| - " * [FeatureGeneratorMapColumn](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorMapColumn), which maps the values of an input column to a new feature column\n", |
449 |
| - " * [FeatureGeneratorFlattenColumns](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFlattenColumns), which generates features by flattening one or more vector-valued columns in the input\n", |
450 |
| - " * [FeatureGeneratorMapColumnDict](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorMapColumnDict), which maps an input column to several feature columns, i.e. mapping each input value to a dictionary of output values\n", |
451 |
| - " * [FeatureGeneratorFromVectorModel](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFromVectorModel), which generates features by applying a (regression or classifcation) model to the input data frame\n", |
452 |
| - " * [FeatureGeneratorFromDFT](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFromDFT), which generates features by applying a given data frame transformer to the input\n", |
453 |
| - " * [FeatureGeneratorFromColumnGenerator](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorFromColumnGenerator), which uses the concept of a `ColumnGenerator` to implement a feature generator, which specifically supports index-based caching mechanisms for feature generation\n", |
454 |
| - " * [FeatureGeneratorTargetDistribution](sensAI/docs/sensai/featuregen/feature_generator.html#sensai.featuregen.feature_generator.FeatureGeneratorTargetDistribution), which computes conditional distributions of the (optionally discretised) target variable given one or more categorical features in the input data\n", |
| 447 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorTakeColumns`, which simply takes over columns from the input data frame without modifying them\n", |
| 448 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorMapColumn`, which maps the values of an input column to a new feature column\n", |
| 449 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFlattenColumns`, which generates features by flattening one or more vector-valued columns in the input\n", |
| 450 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorMapColumnDict`, which maps an input column to several feature columns, i.e. mapping each input value to a dictionary of output values\n", |
| 451 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFromVectorModel`, which generates features by applying a (regression or classifcation) model to the input data frame\n", |
| 452 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFromDFT`, which generates features by applying a given data frame transformer to the input\n", |
| 453 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorFromColumnGenerator`, which uses the concept of a `ColumnGenerator` to implement a feature generator, which specifically supports index-based caching mechanisms for feature generation\n", |
| 454 | + " * :class:`sensai.featuregen.feature_generator.FeatureGeneratorTargetDistribution`, which computes conditional distributions of the (optionally discretised) target variable given one or more categorical features in the input data\n", |
455 | 455 | "\n",
|
456 | 456 | "As a simple example, let us use `FeatureGeneratorMapColumn` to implement a second feature based on the timestamp column from the earlier data frame: the day of the week."
|
457 | 457 | ]
|
|
0 commit comments