diff --git a/tests/xgboost/test_xgboost_converters_base_score.py b/tests/xgboost/test_xgboost_converters_base_score.py index 7f221855..7ce1697a 100644 --- a/tests/xgboost/test_xgboost_converters_base_score.py +++ b/tests/xgboost/test_xgboost_converters_base_score.py @@ -35,9 +35,8 @@ def test_xgbregressor_sparse_base_score(self): rf = XGBRegressor(n_estimators=3, max_depth=4, random_state=0, base_score=0.5) rf.fit(X_sp, y) expected = rf.predict(X).astype(np.float32).reshape((-1, 1)) - expected_sparse = rf.predict(X_sp).astype(np.float32).reshape((-1, 1)) - diff = np.abs(expected - expected_sparse) - self.assertNotEqual(diff.min(), diff.max(), atol=1e-5) + # expected sparse is expected ot be diffrent than expected, + # expected_sparse = rf.predict(X_sp).astype(np.float32).reshape((-1, 1)) onx = convert_xgboost( rf, @@ -64,9 +63,8 @@ def test_xgbregressor_sparse_no_base_score(self): rf = XGBRegressor(n_estimators=3, max_depth=4, random_state=0) rf.fit(X_sp, y) expected = rf.predict(X).astype(np.float32).reshape((-1, 1)) - expected_sparse = rf.predict(X_sp).astype(np.float32).reshape((-1, 1)) - diff = np.abs(expected - expected_sparse) - self.assertNotEqual(diff.min(), diff.max(), atol=1e-5) + # expected sparse is expected ot be diffrent than expected, + # expected_sparse = rf.predict(X_sp).astype(np.float32).reshape((-1, 1)) onx = convert_xgboost( rf, @@ -94,9 +92,8 @@ def test_xgbclassifier_sparse_base_score(self): rf = XGBClassifier(n_estimators=3, max_depth=4, random_state=0, base_score=0.5) rf.fit(X_sp, y) expected = rf.predict_proba(X).astype(np.float32).reshape((-1, 1)) - expected_sparse = rf.predict_proba(X_sp).astype(np.float32).reshape((-1, 1)) - diff = np.abs(expected - expected_sparse) - self.assertNotEqual(diff.min(), diff.max(), atol=1e-5) + # expected sparse is expected ot be diffrent than expected, + # expected_sparse = rf.predict_proba(X_sp).astype(np.float32).reshape((-1, 1)) onx = convert_xgboost( rf, @@ -124,9 +121,8 @@ def test_xgbclassifier_sparse_no_base_score(self): rf = XGBClassifier(n_estimators=3, max_depth=4, random_state=0) rf.fit(X_sp, y) expected = rf.predict_proba(X).astype(np.float32).reshape((-1, 1)) - expected_sparse = rf.predict_proba(X_sp).astype(np.float32).reshape((-1, 1)) - diff = np.abs(expected - expected_sparse) - self.assertNotEqual(diff.min(), diff.max(), atol=1e-5) + # expected sparse is expected ot be diffrent than expected, + # expected_sparse = rf.predict_proba(X_sp).astype(np.float32).reshape((-1, 1)) onx = convert_xgboost( rf,