-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmap_elements_hashkey.go
704 lines (562 loc) · 18.2 KB
/
map_elements_hashkey.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
* Atree - Scalable Arrays and Ordered Maps
*
* Copyright Flow Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package atree
import (
"errors"
"fmt"
"strings"
)
// MaxCollisionLimitPerDigest is the noncryptographic hash collision limit
// (per digest per map) we enforce in the first level. In the same map
// for the same digest, having a non-intentional collision should be rare and
// several collisions should be extremely rare. The default limit should
// be high enough to ignore accidental collisions while mitigating attacks.
var MaxCollisionLimitPerDigest = uint32(255)
// hkeyElements
type hkeyElements struct {
hkeys []Digest // sorted list of unique hashed keys
elems []element // elements corresponding to hkeys
size uint32 // total byte sizes
level uint
}
var _ elements = &hkeyElements{}
func newHkeyElements(level uint) *hkeyElements {
return &hkeyElements{
level: level,
size: hkeyElementsPrefixSize,
}
}
func newHkeyElementsWithElement(level uint, hkey Digest, elem element) *hkeyElements {
return &hkeyElements{
hkeys: []Digest{hkey},
elems: []element{elem},
size: hkeyElementsPrefixSize + digestSize + elem.Size(),
level: level,
}
}
// Map operations (has, get, set, remove, and pop iterate)
func (e *hkeyElements) getElement(
digester Digester,
level uint,
hkey Digest,
key Value,
) (element, int, error) {
if level >= digester.Levels() {
return nil, 0, NewHashLevelErrorf("hkey elements digest level is %d, want < %d", level, digester.Levels())
}
// binary search by hkey
// Find index that e.hkeys[h] == hkey
equalIndex := -1
i, j := 0, len(e.hkeys)
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
if e.hkeys[h] > hkey {
j = h
} else if e.hkeys[h] < hkey {
i = h + 1
} else {
equalIndex = h
break
}
}
// No matching hkey
if equalIndex == -1 {
return nil, 0, NewKeyNotFoundError(key)
}
return e.elems[equalIndex], equalIndex, nil
}
func (e *hkeyElements) Get(storage SlabStorage, digester Digester, level uint, hkey Digest, comparator ValueComparator, key Value) (MapKey, MapValue, error) {
elem, _, err := e.getElement(digester, level, hkey, key)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by hkeyElements.getElement().
return nil, nil, err
}
// Don't need to wrap error as external error because err is already categorized by element.Get().
return elem.Get(storage, digester, level, hkey, comparator, key)
}
func (e *hkeyElements) getElementAndNextKey(
storage SlabStorage,
digester Digester,
level uint,
hkey Digest,
comparator ValueComparator,
key Value,
) (MapKey, MapValue, MapKey, error) {
elem, index, err := e.getElement(digester, level, hkey, key)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by hkeyElements.getElement().
return nil, nil, nil, err
}
k, v, nk, err := elem.getElementAndNextKey(storage, digester, level, hkey, comparator, key)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by hkeyElements.get().
return nil, nil, nil, err
}
if nk != nil {
// Found next key in element group.
return k, v, nk, nil
}
nextIndex := index + 1
switch {
case nextIndex < len(e.elems):
// Next element is still in the same hkeyElements group.
nextElement := e.elems[nextIndex]
nextKey, err := firstKeyInElement(storage, nextElement)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by firstKeyInElement().
return nil, nil, nil, err
}
return k, v, nextKey, nil
case nextIndex == len(e.elems):
// Next element is outside this hkeyElements group, so nextKey is nil.
return k, v, nil, nil
default: // nextIndex > len(e.elems)
// This should never happen.
return nil, nil, nil, NewUnreachableError()
}
}
func (e *hkeyElements) Set(
storage SlabStorage,
address Address,
b DigesterBuilder,
digester Digester,
level uint,
hkey Digest,
comparator ValueComparator,
hip HashInputProvider,
key Value,
value Value,
) (MapKey, MapValue, error) {
// Check hkeys are not empty
if level >= digester.Levels() {
return nil, nil, NewHashLevelErrorf("hkey elements digest level is %d, want < %d", level, digester.Levels())
}
if len(e.hkeys) == 0 {
// first element
newElem, err := newSingleElement(storage, address, key, value)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by newSingleElement().
return nil, nil, err
}
e.hkeys = []Digest{hkey}
e.elems = []element{newElem}
e.size += digestSize + newElem.Size()
return newElem.key, nil, nil
}
if hkey < e.hkeys[0] {
// prepend key and value
newElem, err := newSingleElement(storage, address, key, value)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by newSingleElement().
return nil, nil, err
}
e.hkeys = append(e.hkeys, Digest(0))
copy(e.hkeys[1:], e.hkeys)
e.hkeys[0] = hkey
e.elems = append(e.elems, nil)
copy(e.elems[1:], e.elems)
e.elems[0] = newElem
e.size += digestSize + newElem.Size()
return newElem.key, nil, nil
}
if hkey > e.hkeys[len(e.hkeys)-1] {
// append key and value
newElem, err := newSingleElement(storage, address, key, value)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by newSingleElement().
return nil, nil, err
}
e.hkeys = append(e.hkeys, hkey)
e.elems = append(e.elems, newElem)
e.size += digestSize + newElem.Size()
return newElem.key, nil, nil
}
equalIndex := -1 // first index that m.hkeys[h] == hkey
lessThanIndex := 0 // last index that m.hkeys[h] > hkey
i, j := 0, len(e.hkeys)
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
if e.hkeys[h] > hkey {
lessThanIndex = h
j = h
} else if e.hkeys[h] < hkey {
i = h + 1
} else {
equalIndex = h
break
}
}
// hkey digest has collision.
if equalIndex != -1 {
// New element has the same digest as existing elem.
// elem is existing element before new element is inserted.
elem := e.elems[equalIndex]
// Enforce MaxCollisionLimitPerDigest at the first level (noncryptographic hash).
if e.level == 0 {
// Before new element with colliding digest is inserted,
// existing elem is a single element or a collision group.
// elem.Count() returns 1 for single element,
// and returns > 1 for collision group.
elementCount, err := elem.Count(storage)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by element.Count().
return nil, nil, err
}
if elementCount == 0 {
return nil, nil, NewMapElementCountError("expect element count > 0, got element count == 0")
}
// collisionCount is elementCount-1 because:
// - if elem is single element, collision count is 0 (no collsion yet)
// - if elem is collision group, collision count is 1 less than number
// of elements in collision group.
collisionCount := elementCount - 1
// Check if existing collision count reached MaxCollisionLimitPerDigest
if collisionCount >= MaxCollisionLimitPerDigest {
// Enforce collision limit on inserts and ignore updates.
_, _, err = elem.Get(storage, digester, level, hkey, comparator, key)
if err != nil {
var knfe *KeyNotFoundError
if errors.As(err, &knfe) {
// Don't allow any more collisions for a digest that
// already reached MaxCollisionLimitPerDigest.
return nil, nil, NewCollisionLimitError(MaxCollisionLimitPerDigest)
}
}
}
}
elem, keyStorable, existingMapValueStorable, err := elem.Set(storage, address, b, digester, level, hkey, comparator, hip, key, value)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by element.Set().
return nil, nil, err
}
e.elems[equalIndex] = elem
// Recompute slab size by adding all element sizes instead of using the size diff of old and new element because
// oldElem can be the same storable when the same value is reset and oldElem.ByteSize() can equal storable.ByteSize().
// Given this, size diff of the old and new element can be 0 even when its actual size changed.
size := uint32(hkeyElementsPrefixSize)
for _, element := range e.elems {
size += element.Size() + digestSize
}
e.size = size
return keyStorable, existingMapValueStorable, nil
}
// No matching hkey
newElem, err := newSingleElement(storage, address, key, value)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by newSingleElement().
return nil, nil, err
}
// insert into sorted hkeys
e.hkeys = append(e.hkeys, Digest(0))
copy(e.hkeys[lessThanIndex+1:], e.hkeys[lessThanIndex:])
e.hkeys[lessThanIndex] = hkey
// insert into sorted elements
e.elems = append(e.elems, nil)
copy(e.elems[lessThanIndex+1:], e.elems[lessThanIndex:])
e.elems[lessThanIndex] = newElem
e.size += digestSize + newElem.Size()
return newElem.key, nil, nil
}
func (e *hkeyElements) Remove(storage SlabStorage, digester Digester, level uint, hkey Digest, comparator ValueComparator, key Value) (MapKey, MapValue, error) {
// Check digest level
if level >= digester.Levels() {
return nil, nil, NewHashLevelErrorf("hkey elements digest level is %d, want < %d", level, digester.Levels())
}
if len(e.hkeys) == 0 || hkey < e.hkeys[0] || hkey > e.hkeys[len(e.hkeys)-1] {
return nil, nil, NewKeyNotFoundError(key)
}
// binary search by hkey
// Find index that e.hkeys[h] == hkey
equalIndex := -1
i, j := 0, len(e.hkeys)
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
if e.hkeys[h] > hkey {
j = h
} else if e.hkeys[h] < hkey {
i = h + 1
} else {
equalIndex = h
break
}
}
// No matching hkey
if equalIndex == -1 {
return nil, nil, NewKeyNotFoundError(key)
}
elem := e.elems[equalIndex]
oldElemSize := elem.Size()
k, v, elem, err := elem.Remove(storage, digester, level, hkey, comparator, key)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by element.Remove().
return nil, nil, err
}
if elem == nil {
// Remove this element
copy(e.elems[equalIndex:], e.elems[equalIndex+1:])
// Zero out last element to prevent memory leak
e.elems[len(e.elems)-1] = nil
// Reslice elements
e.elems = e.elems[:len(e.elems)-1]
// Remove hkey for this element
copy(e.hkeys[equalIndex:], e.hkeys[equalIndex+1:])
e.hkeys = e.hkeys[:len(e.hkeys)-1]
// Adjust size
e.size -= digestSize + oldElemSize
return k, v, nil
}
e.elems[equalIndex] = elem
e.size += elem.Size() - oldElemSize
return k, v, nil
}
func (e *hkeyElements) Element(i int) (element, error) {
if i >= len(e.elems) {
return nil, NewIndexOutOfBoundsError(uint64(i), 0, uint64(len(e.elems)))
}
return e.elems[i], nil
}
func (e *hkeyElements) PopIterate(storage SlabStorage, fn MapPopIterationFunc) error {
// Iterate and reset elements backwards
for i := len(e.elems) - 1; i >= 0; i-- {
elem := e.elems[i]
err := elem.PopIterate(storage, fn)
if err != nil {
// Don't need to wrap error as external error because err is already categorized by element.PopIterate().
return err
}
}
// Reset data slab
e.hkeys = nil
e.elems = nil
e.size = hkeyElementsPrefixSize
return nil
}
// Slab operations (split, merge, and lend/borrow)
func (e *hkeyElements) Merge(elems elements) error {
rElems, ok := elems.(*hkeyElements)
if !ok {
return NewSlabMergeError(fmt.Errorf("cannot merge elements of different types (%T, %T)", e, elems))
}
e.hkeys = append(e.hkeys, rElems.hkeys...)
e.elems = append(e.elems, rElems.elems...)
e.size += rElems.Size() - hkeyElementsPrefixSize
// Set merged elements to nil to prevent memory leak
for i := 0; i < len(rElems.elems); i++ {
rElems.elems[i] = nil
}
return nil
}
func (e *hkeyElements) Split() (elements, elements, error) {
// This computes the ceil of split to give the first slab more elements.
dataSize := e.Size() - hkeyElementsPrefixSize
midPoint := (dataSize + 1) >> 1
leftSize := uint32(0)
leftCount := 0
for i, elem := range e.elems {
elemSize := elem.Size() + digestSize
if leftSize+elemSize >= midPoint {
// i is mid point element. Place i on the small side.
if leftSize <= dataSize-leftSize-elemSize {
leftSize += elemSize
leftCount = i + 1
} else {
leftCount = i
}
break
}
// left slab size < midPoint
leftSize += elemSize
}
rightCount := len(e.elems) - leftCount
// Create right slab elements
rightElements := &hkeyElements{level: e.level}
rightElements.hkeys = make([]Digest, rightCount)
copy(rightElements.hkeys, e.hkeys[leftCount:])
rightElements.elems = make([]element, rightCount)
copy(rightElements.elems, e.elems[leftCount:])
rightElements.size = dataSize - leftSize + hkeyElementsPrefixSize
e.hkeys = e.hkeys[:leftCount]
e.elems = e.elems[:leftCount]
e.size = hkeyElementsPrefixSize + leftSize
// NOTE: prevent memory leak
for i := leftCount; i < len(e.hkeys); i++ {
e.elems[i] = nil
}
return e, rightElements, nil
}
// LendToRight rebalances elements by moving elements from left to right
func (e *hkeyElements) LendToRight(re elements) error {
minSize := minThreshold - mapDataSlabPrefixSize - hkeyElementsPrefixSize
rightElements := re.(*hkeyElements)
if e.level != rightElements.level {
return NewSlabRebalanceError(
NewHashLevelErrorf("left slab digest level %d != right slab digest level %d", e.level, rightElements.level),
)
}
count := len(e.elems) + len(rightElements.elems)
size := e.Size() + rightElements.Size() - hkeyElementsPrefixSize*2
leftCount := len(e.elems)
leftSize := e.Size() - hkeyElementsPrefixSize
midPoint := (size + 1) >> 1
// Left elements size is as close to midPoint as possible while right elements size >= minThreshold
for i := len(e.elems) - 1; i >= 0; i-- {
elemSize := e.elems[i].Size() + digestSize
if leftSize-elemSize < midPoint && size-leftSize >= uint32(minSize) {
break
}
leftSize -= elemSize
leftCount--
}
// Update the right elements
//
// It is easier and less error-prone to realloc elements for the right elements.
hkeys := make([]Digest, count-leftCount)
n := copy(hkeys, e.hkeys[leftCount:])
copy(hkeys[n:], rightElements.hkeys)
elements := make([]element, count-leftCount)
n = copy(elements, e.elems[leftCount:])
copy(elements[n:], rightElements.elems)
rightElements.hkeys = hkeys
rightElements.elems = elements
rightElements.size = size - leftSize + hkeyElementsPrefixSize
// Update left slab
// NOTE: prevent memory leak
for i := leftCount; i < len(e.elems); i++ {
e.elems[i] = nil
}
e.hkeys = e.hkeys[:leftCount]
e.elems = e.elems[:leftCount]
e.size = hkeyElementsPrefixSize + leftSize
return nil
}
// BorrowFromRight rebalances slabs by moving elements from right slab to left slab.
func (e *hkeyElements) BorrowFromRight(re elements) error {
minSize := minThreshold - mapDataSlabPrefixSize - hkeyElementsPrefixSize
rightElements := re.(*hkeyElements)
if e.level != rightElements.level {
return NewSlabRebalanceError(
NewHashLevelErrorf("left slab digest level %d != right slab digest level %d", e.level, rightElements.level),
)
}
size := e.Size() + rightElements.Size() - hkeyElementsPrefixSize*2
leftCount := len(e.elems)
leftSize := e.Size() - hkeyElementsPrefixSize
midPoint := (size + 1) >> 1
for _, elem := range rightElements.elems {
elemSize := elem.Size() + digestSize
if leftSize+elemSize > midPoint {
if size-leftSize-elemSize >= uint32(minSize) {
// Include this element in left elements
leftSize += elemSize
leftCount++
}
break
}
leftSize += elemSize
leftCount++
}
rightStartIndex := leftCount - len(e.elems)
// Update left elements
e.hkeys = append(e.hkeys, rightElements.hkeys[:rightStartIndex]...)
e.elems = append(e.elems, rightElements.elems[:rightStartIndex]...)
e.size = leftSize + hkeyElementsPrefixSize
// Update right slab
// TODO: copy elements to front instead?
// NOTE: prevent memory leak
for i := 0; i < rightStartIndex; i++ {
rightElements.elems[i] = nil
}
rightElements.hkeys = rightElements.hkeys[rightStartIndex:]
rightElements.elems = rightElements.elems[rightStartIndex:]
rightElements.size = size - leftSize + hkeyElementsPrefixSize
return nil
}
func (e *hkeyElements) CanLendToLeft(size uint32) bool {
if len(e.elems) == 0 {
return false
}
if len(e.elems) < 2 {
return false
}
minSize := minThreshold - mapDataSlabPrefixSize
if e.Size()-size < uint32(minSize) {
return false
}
lendSize := uint32(0)
for i := 0; i < len(e.elems); i++ {
lendSize += e.elems[i].Size() + digestSize
if e.Size()-lendSize < uint32(minSize) {
return false
}
if lendSize >= size {
return true
}
}
return false
}
func (e *hkeyElements) CanLendToRight(size uint32) bool {
if len(e.elems) == 0 {
return false
}
if len(e.elems) < 2 {
return false
}
minSize := minThreshold - mapDataSlabPrefixSize
if e.Size()-size < uint32(minSize) {
return false
}
lendSize := uint32(0)
for i := len(e.elems) - 1; i >= 0; i-- {
lendSize += e.elems[i].Size() + digestSize
if e.Size()-lendSize < uint32(minSize) {
return false
}
if lendSize >= size {
return true
}
}
return false
}
// Other operations
func (e *hkeyElements) Size() uint32 {
return e.size
}
func (e *hkeyElements) Count() uint32 {
return uint32(len(e.elems))
}
func (e *hkeyElements) firstKey() Digest {
if len(e.hkeys) > 0 {
return e.hkeys[0]
}
return 0
}
func (e *hkeyElements) hasPointer() bool {
for _, elem := range e.elems {
if elem.hasPointer() {
return true
}
}
return false
}
func (e *hkeyElements) String() string {
var s []string
for i := 0; i < len(e.elems); i++ {
s = append(s, fmt.Sprintf("%d:%s", e.hkeys[i], e.elems[i].String()))
}
return strings.Join(s, " ")
}