-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_VGG19.py
440 lines (323 loc) · 13.9 KB
/
train_VGG19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
images_folder = '/data/DERI-MMH/datasets/ROIs' # in case of tra test on rois
test_images_folder ='/data/DERI-MMH/datasets/all_patches' # k= 3 with act ELU at the end not good
path_to_save_check_points='/data/DERI-MMH/datasets/early_stopping/cnn_classifier' + '/cnn_f4' # wi means wieght init was used
path_to_checkpoints=path_to_save_check_points
# FOLD 4
batch_size = 4
Max_Epochs = 10
LEARNING_RATE = 5e-5 # 0.005
WEIGHT_DECAY = 5e-6 # 0.0005
patience = 7
perplexity = 60
n_iter =300
NUM_WORKERS=0
PIN_MEMORY=True
from sklearn import manifold
import pandas as pd
from sklearn.metrics import classification_report,confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import os
import PIL
import cv2
import numpy as np
from PIL import Image
from torch.utils.data import DataLoader
import torch.optim as optim
import torch
from torchvision import transforms
from torch import nn
from torch.utils.model_zoo import load_url as load_state_dict_from_url
from torchinfo import summary
import random
import torch.nn.functional as F
from tqdm import tqdm
#from mhaSelf_moaba import *
fold = os.path.basename(os.path.normpath(train_clinical_path))[:-4]
#print(fold)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(0.5),
transforms.RandomVerticalFlip(0.5),
transforms.Resize((512,512)),
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.05, hue=0.01),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, df1, images_folder, transform=None):
self.df1 = df1
self.images_folder = images_folder
self.images_name = df1['Long Slide ID']
self.y = df1['Grade']
self.transform = transform
def __len__(self):
return self.y.shape[0]
def __getitem__(self, index):
img_path=os.path.join(self.images_folder,
self.images_name[index])
image=Image.open(img_path)
y_label = self.y[index]
if self.transform is not None:
image = self.transform(image)
return (image,y_label,self.images_name[index])
def load_data(df1, image_dir):
train_data =CustomDataset(df1, image_dir,transform=train_transforms)
return train_data
def Data_Loader(df1,images_folder,batch_size,num_workers=NUM_WORKERS,pin_memory=PIN_MEMORY):
test_ids = CustomDataset(df1=df1 ,images_folder=images_folder,transform=train_transforms)
data_loader = DataLoader(test_ids,batch_size=batch_size,num_workers=num_workers,pin_memory=pin_memory,shuffle=True)
return data_loader
df_clinical_train = pd.read_csv(train_clinical_path)
#val_loader = pd.read_csv(val_clinical_path)
df_clinical_test1 = pd.read_csv(test_clinical_path)
train_loader = Data_Loader(df_clinical_train,images_folder,batch_size)
#Fusion_val_loader = Data_Loader(df_clinical_val,images_folder,9)
val_loader = Data_Loader(df_clinical_test1,test_images_folder,batch_size)
print(f"length of traing loader is:{ len(train_loader)}") #this shoud be = Total_images/ batch size
print(f"lenght of validation loader {len(val_loader)}")
### Specify all the Losses (Train+ Validation), and Validation Dice score to plot on learing-curve
avg_train_losses = [] # losses of all training epochs
avg_valid_losses = [] #losses of all training epochs
### 1- To stop the training before model overfits
class EarlyStopping:
def __init__(self, patience=None, verbose=True, delta=0, trace_func=print):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.best_score1 = None
self.early_stop = False
self.val_loss_min = np.Inf
self.max_score = 0
self.delta = delta
self.trace_func = trace_func
def __call__(self, val_loss,val_metric):
score = -val_loss
score1=-val_metric
if (self.best_score is None) and (self.best_score1 is None):
self.best_score = score
self.best_score1 = score1
self.verbose_(val_loss,val_metric)
elif (score < self.best_score + self.delta) or (score1 > self.best_score1 + self.delta):
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.best_score1 = score1
self.verbose_(val_loss,val_metric)
self.counter = 0
def verbose_(self, val_loss,val_metric):
if self.verbose:
self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}).')
self.trace_func(f'Validation metric increased ({self.max_score:.6f} --> {val_metric:.6f}).')
self.val_loss_min = val_loss
self.max_score = val_metric
model_urls = {
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth'
}
class PathNet(nn.Module):
def __init__(self, features, path_dim=64, act=None, num_classes=3):
super(PathNet, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 1024),
nn.ReLU(True),
nn.Dropout(0.25),
nn.Linear(1024, 1024),
nn.ReLU(True),
nn.Dropout(0.25),
nn.Linear(1024, path_dim),
nn.ReLU(True),
nn.Dropout(0.05)
)
self.linear = nn.Linear(path_dim, num_classes)
self.act = act
#self.output_range = Parameter(torch.FloatTensor([6]), requires_grad=False)
#self.output_shift = Parameter(torch.FloatTensor([-3]), requires_grad=False)
#dfs_freeze(self.features)
def forward(self,x):
#x = kwargs['x_path']
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
features = self.classifier(x)
hazard = self.linear(features)
if self.act is not None:
hazard = self.act(hazard)
if isinstance(self.act, nn.Sigmoid):
hazard = hazard * self.output_range + self.output_shift
return features,hazard
#return hazard
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfgs = {
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def get_vgg(arch='vgg19_bn', cfg='E', act=None, batch_norm=True, label_dim=3, pretrained=True, progress=True):
model = PathNet(make_layers(cfgs[cfg], batch_norm=batch_norm), act=act, num_classes=label_dim)
if pretrained:
pretrained_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
for key in list(pretrained_dict.keys()):
if 'classifier' in key: pretrained_dict.pop(key)
model.load_state_dict(pretrained_dict, strict=False)
print("Initializing Path Weights")
return model
model = get_vgg().to(device=DEVICE,dtype=torch.float32)
def train_fn(loader_train,loader_valid, model, optimizer,loss_fn1, scaler):
train_losses = [] # loss of each batch
valid_losses = [] # loss of each batch
loop = tqdm(loader_train)
model.train()
for batch_idx, (img1,gt1,label) in enumerate(loop):
img1 = img1.to(device=DEVICE,dtype=torch.float32)
gt1 = gt1.to(device=DEVICE,dtype=torch.long)
# forward
with torch.cuda.amp.autocast():
feat ,out1= model(img1)
loss = loss_fn1(out1, gt1)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# update tqdm loop
loop.set_postfix(loss=loss.item())
train_losses.append(loss.item())
loop_v = tqdm(loader_valid)
model.eval()
for batch_idx, (img1,gt1,label) in enumerate(loop_v):
img1 = img1.to(device=DEVICE,dtype=torch.float32)
gt1 = gt1.to(device=DEVICE,dtype=torch.long)
# forward
with torch.no_grad():
feat ,out1 = model(img1)
loss = loss_fn1(out1, gt1)
loop_v.set_postfix(loss=loss.item())
valid_losses.append(loss.item())
train_loss_per_epoch = np.average(train_losses)
valid_loss_per_epoch = np.average(valid_losses)
## all epochs
avg_train_losses.append(train_loss_per_epoch)
avg_valid_losses.append(valid_loss_per_epoch)
return train_loss_per_epoch,valid_loss_per_epoch
def save_checkpoint(state, filename=path_to_save_check_points+".pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
epoch_len = len(str(Max_Epochs))
early_stopping = EarlyStopping(patience=10, verbose=True)
def main():
#model = model.to(DEVICE=DEVICE,dtype=torch.float)
loss_fn1 = nn.CrossEntropyLoss()
scaler = torch.cuda.amp.GradScaler()
for epoch in range(Max_Epochs):
if epoch<10:
LEARNING_RATE = 0.00005
if epoch>10:
LEARNING_RATE = 0.000005
optimizer = optim.Adam(model.parameters(),lr=LEARNING_RATE)
train_loss,valid_loss=train_fn(train_loader,val_loader, model, optimizer, loss_fn1,scaler)
print_msg = (f'[{epoch:>{epoch_len}}/{Max_Epochs:>{epoch_len}}] ' +
f'train_loss: {train_loss:.5f} ' +
f'valid_loss: {valid_loss:.5f}')
print(print_msg)
#dice_score = check_Dice_Score(val_loader, model, DEVICE=DEVICE)
#avg_valid_DS.append(dice_score.detach().cpu().numpy())
early_stopping(valid_loss, train_loss)
if early_stopping.early_stop:
print("Early stopping Reached at :",epoch)
### save model ######
checkpoint = {
"state_dict": model.state_dict(),
"optimizer":optimizer.state_dict(),
}
save_checkpoint(checkpoint)
break
if __name__ == "__main__":
main()
def eval_plt(test_loader,model,device):
truelabels = []
predictions = []
proba = []
pre = []
with torch.no_grad():
model.eval()
for data, target,img_name in test_loader:
data = data.to(device=device,dtype=torch.float)
target = target.to(device=device,dtype=torch.float)
truelabels.extend(target.cpu().numpy())
feat,output = model(data)
probs = F.softmax(output, dim=1)[:, 1]# assuming logits has the shape [batch_size, nb_classes]
#top_p, top_class = prob.topk(1, dim = 1)
preds = torch.argmax(output, dim=1) # this to plot the confusion matrix
_, predicted = torch.max(output.data, 1)
predictions.extend(predicted.cpu().numpy())
proba.extend(probs.cpu().numpy())
pre.extend(preds.cpu().numpy())
from sklearn.metrics import f1_score
print('F1-score micro for MLP classifer:')
print(f1_score(truelabels, predictions, average='micro'))
print(classification_report(truelabels, predictions))
cm = confusion_matrix(truelabels, pre)
classes= ['GradeII', 'GradeIII', 'GradeIV']
tick_marks = np.arange(len(classes))
df_cm = pd.DataFrame(cm, index = classes, columns = classes)
plt.figure(figsize = (7,7))
sns.heatmap(df_cm, annot=True, cmap=plt.cm.Blues, fmt='g')
plt.xlabel("Predicted label", fontsize = 20)
plt.ylabel("Ground Truth", fontsize = 20)
plt.show()
return truelabels,predictions, proba, pre
truelabels,predictions, proba, pre= eval_plt(val_loader,model,DEVICE)
def get_representations(model, iterator,device):
model.eval().to(device)
outputs = []
labels = []
feature = []
with torch.no_grad():
for (x, y,imge_name) in tqdm(iterator):
x = x.to(device)
y = y.to(device)
y = y.data.cpu()
feat ,y_pred = model(x)
outputs.append(y_pred.data.cpu())
feature.append(feat.data.cpu())
labels.append(y)
outputs = torch.cat(outputs, dim=0)
feature = torch.cat(feature, dim=0)
labels = torch.cat(labels, dim=0)
return outputs,feature ,labels
def get_tsne(data, n_components=2, n_images=None):
if n_images is not None:
data = data[:n_images]
tsne = manifold.TSNE(n_components=n_components, random_state=0, perplexity=perplexity, n_iter=n_iter)
tsne_data = tsne.fit_transform(data)
return tsne_data
outputs, feature,labels = get_representations(model, val_loader,DEVICE)
def plot_representations(data, labels, classes, n_images=None):
if n_images is not None:
data = data[:n_images]
labels = labels[:n_images]
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
scatter = ax.scatter(data[:, 0], data[:, 1], c=labels, cmap='tab10')
handles, labels = scatter.legend_elements()
ax.legend(handles=handles, labels=classes)
plt.savefig('tsne_'+fold+'.png')
N_IMAGES = 2_000
classes = [0,1,2]
output_tsne_data = get_tsne(feature, n_images=N_IMAGES)
plot_representations(output_tsne_data, labels, classes, n_images=N_IMAGES)