-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathldsc_parse.py
297 lines (226 loc) · 10.6 KB
/
ldsc_parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
###this code is adapted from S-LDSC (https://github.com/bulik/ldsc) with permission.
'''
(c) 2014 Brendan Bulik-Sullivan and Hilary Finucane
This module contains functions for parsing various ldsc-defined file formats.
'''
import numpy as np
import pandas as pd
import os
def series_eq(x, y):
'''Compare series, return False if lengths not equal.'''
return len(x) == len(y) and (x == y).all()
def read_csv(fh, **kwargs):
return pd.read_csv(fh, sep='\s+', na_values='.', **kwargs)
def sub_chr(s, chr):
'''Substitute chr for @, else append chr to the end of str.'''
if '@' not in s:
s += '@'
return s.replace('@', str(chr))
def which_compression(fh):
'''Given a file prefix, figure out what sort of compression to use.'''
if os.access(fh + '.bz2', 4):
suffix = '.bz2'
compression = 'bz2'
elif os.access(fh + '.gz', 4):
suffix = '.gz'
compression = 'gzip'
elif os.access(fh, 4):
suffix = ''
compression = None
else:
raise IOError('Could not open {F}[./gz/bz2]'.format(F=fh))
return suffix, compression
def get_compression(fh):
'''Which sort of compression should we use with read_csv?'''
if fh.endswith('gz'):
compression = 'gzip'
elif fh.endswith('bz2'):
compression = 'bz2'
else:
compression = None
return compression
def read_cts(fh, match_snps):
'''Reads files for --cts-bin.'''
compression = get_compression(fh)
cts = read_csv(fh, compression=compression, header=None, names=['SNP', 'ANNOT'])
if not series_eq(cts.SNP, match_snps):
raise ValueError('--cts-bin and the .bim file must have identical SNP columns.')
return cts.ANNOT.values
def sumstats(fh, alleles=False, dropna=True):
'''Parses .sumstats files. See docs/file_formats_sumstats.txt.'''
dtype_dict = {'SNP': str, 'Z': float, 'N': float, 'A1': str, 'A2': str}
compression = get_compression(fh)
usecols = ['SNP', 'Z', 'N']
if alleles:
usecols += ['A1', 'A2']
try:
x = read_csv(fh, usecols=usecols, dtype=dtype_dict, compression=compression)
except (AttributeError, ValueError) as e:
raise ValueError('Improperly formatted sumstats file: ' + str(e.args))
if dropna:
x = x.dropna(how='any')
return x
def ldscore_fromlist(flist, num=None):
'''Sideways concatenation of a list of LD Score files.'''
ldscore_array = []
for i, fh in enumerate(flist):
y = ldscore(fh, num)
if i > 0:
if not series_eq(y.SNP, ldscore_array[0].SNP):
raise ValueError('LD Scores for concatenation must have identical SNP columns.')
else: # keep SNP column from only the first file
y = y.drop(['SNP'], axis=1)
new_col_dict = {c: c + '_' + str(i) for c in y.columns if c != 'SNP'}
y.rename(columns=new_col_dict, inplace=True)
ldscore_array.append(y)
return pd.concat(ldscore_array, axis=1)
def l2_parser(fh, compression):
'''Parse LD Score files'''
x = read_csv(fh, header=0, compression=compression)
if 'MAF' in x.columns and 'CM' in x.columns: # for backwards compatibility w/ v<1.0.0
x.drop(['MAF', 'CM'], axis=1, inplace=True)
return x
def annot_parser(fh, compression, frqfile_full=None, compression_frq=None, anno=None):
'''Parse annot files'''
df_annot = read_csv(fh, header=0, compression=compression)
if (anno is not None):
for a in anno:
assert a in df_annot.columns
df_annot = df_annot.loc[:, [c for c in df_annot.columns if (c=='SNP' or c in anno)]]
if frqfile_full is not None:
df_frq = frq_parser(frqfile_full, compression_frq)
if ('SNP' not in df_frq.columns):
raise ValueError('{f} file must contain a SNP column'.format(f=fh))
nrows = df_annot.shape[0]
df_annot = df_annot.merge(df_frq, on='SNP')
if (df_annot.shape[0] != nrows):
raise ValueError('not all SNPs in {F} have a frequency in {Q}'.format(F=fh, Q=frqfile_full))
df_annot = df_annot.loc[(.95 > df_annot.FRQ) & (df_annot.FRQ > 0.05)]
df_annot.drop(['FRQ'], axis=1, inplace=True)
df_annot = df_annot.drop(['SNP','CHR', 'BP', 'CM'], axis=1, errors='ignore').astype(float)
return df_annot
def frq_parser(fh, compression):
'''Parse frequency files.'''
df = read_csv(fh, header=0, compression=compression)
if 'MAF' in df.columns:
df.rename(columns={'MAF': 'FRQ'}, inplace=True)
return df[['SNP', 'FRQ']]
def ldscore(fh, num=None):
'''Parse .l2.ldscore files, split across num chromosomes. See docs/file_formats_ld.txt.'''
suffix = '.l2.ldscore'
if num is not None: # num files, e.g., one per chromosome
first_fh = sub_chr(fh, 1) + suffix
s, compression = which_compression(first_fh)
chr_ld = [l2_parser(sub_chr(fh, i) + suffix + s, compression) for i in range(1, num + 1)]
x = pd.concat(chr_ld) # automatically sorted by chromosome
else: # just one file
s, compression = which_compression(fh + suffix)
x = l2_parser(fh + suffix + s, compression)
x.sort_values(by=['CHR', 'BP'], inplace=True) # SEs will be wrong unless sorted
x.drop(['CHR', 'BP'], axis=1, inplace=True)
x.drop_duplicates(subset='SNP', inplace=True)
return x
def M(fh, num=None, N=2, common=False):
'''Parses .l{N}.M files, split across num chromosomes. See docs/file_formats_ld.txt.'''
parsefunc = lambda y: [float(z) for z in open(y, 'r').readline().split()]
suffix = '.l' + str(N) + '.M'
if common:
suffix += '_5_50'
if num is not None:
x = np.sum([parsefunc(sub_chr(fh, i) + suffix) for i in range(1, num + 1)], axis=0)
else:
x = parsefunc(fh + suffix)
return np.array(x).reshape((1, len(x)))
def M_fromlist(flist, num=None, N=2, common=False):
'''Read a list of .M* files and concatenate sideways.'''
return np.hstack([M(fh, num, N, common) for fh in flist])
def annot(fh_list, num=None, frqfile=None, anno=None):
'''
Parses .annot files and returns an overlap matrix. See docs/file_formats_ld.txt.
If num is not None, parses .annot files split across [num] chromosomes (e.g., the
output of parallelizing ldsc.py --l2 across chromosomes).
'''
annot_suffix = ['.annot' for fh in fh_list]
annot_compression = []
if num is not None: # 22 files, one for each chromosome
for i, fh in enumerate(fh_list):
first_fh = sub_chr(fh, 1) + annot_suffix[i]
annot_s, annot_comp_single = which_compression(first_fh)
annot_suffix[i] += annot_s
annot_compression.append(annot_comp_single)
if frqfile is not None:
frq_suffix = '.frq'
first_frqfile = sub_chr(frqfile, 1) + frq_suffix
frq_s, frq_compression = which_compression(first_frqfile)
frq_suffix += frq_s
y = []
M_tot = 0
for chr in range(1, num + 1):
if frqfile is not None:
df_annot_chr_list = [annot_parser(sub_chr(fh, chr) + annot_suffix[i], annot_compression[i],
sub_chr(frqfile, chr) + frq_suffix, frq_compression, anno=anno)
for i, fh in enumerate(fh_list)]
else:
df_annot_chr_list = [annot_parser(sub_chr(fh, chr) + annot_suffix[i], annot_compression[i], anno=anno)
for i, fh in enumerate(fh_list)]
annot_matrix_chr_list = [np.matrix(df_annot_chr) for df_annot_chr in df_annot_chr_list]
annot_matrix_chr = np.hstack(annot_matrix_chr_list)
y.append(np.dot(annot_matrix_chr.T, annot_matrix_chr))
M_tot += len(df_annot_chr_list[0])
x = sum(y)
else: # just one file
for i, fh in enumerate(fh_list):
annot_s, annot_comp_single = which_compression(fh + annot_suffix[i])
annot_suffix[i] += annot_s
annot_compression.append(annot_comp_single)
if frqfile is not None:
frq_suffix = '.frq'
frq_s, frq_compression = which_compression(frqfile + frq_suffix)
frq_suffix += frq_s
df_annot_list = [annot_parser(fh + annot_suffix[i], annot_compression[i],
frqfile + frq_suffix, frq_compression, anno=anno) for i, fh in enumerate(fh_list)]
else:
df_annot_list = [annot_parser(fh + annot_suffix[i], annot_compression[i], anno=anno)
for i, fh in enumerate(fh_list)]
annot_matrix_list = [np.matrix(y) for y in df_annot_list]
annot_matrix = np.hstack(annot_matrix_list)
x = np.dot(annot_matrix.T, annot_matrix)
M_tot = len(df_annot_list[0])
return x, M_tot
def __ID_List_Factory__(colnames, keepcol, fname_end, header=None, usecols=None):
class IDContainer(object):
def __init__(self, fname):
self.__usecols__ = usecols
self.__colnames__ = colnames
self.__keepcol__ = keepcol
self.__fname_end__ = fname_end
self.__header__ = header
self.__read__(fname)
self.n = len(self.df)
def __read__(self, fname):
end = self.__fname_end__
if end and not fname.endswith(end):
raise ValueError('{f} filename must end in {f}'.format(f=end))
comp = get_compression(fname)
self.df = pd.read_csv(fname, header=self.__header__, usecols=self.__usecols__,
sep='\s+', compression=comp)
if self.__colnames__:
self.df.columns = self.__colnames__
if self.__keepcol__ is not None:
self.IDList = self.df.iloc[:, [self.__keepcol__]].astype('object')
def loj(self, externalDf):
'''Returns indices of those elements of self.IDList that appear in exernalDf.'''
r = externalDf.columns[0]
l = self.IDList.columns[0]
merge_df = externalDf.iloc[:, [0]]
merge_df['keep'] = True
z = pd.merge(self.IDList, merge_df, how='left', left_on=l, right_on=r,
sort=False)
ii = z['keep'] == True
return np.nonzero(ii)[0]
return IDContainer
PlinkBIMFile = __ID_List_Factory__(['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], 1, '.bim', usecols=[0, 1, 2, 3, 4, 5])
PlinkFAMFile = __ID_List_Factory__(['IID'], 0, '.fam', usecols=[1])
FilterFile = __ID_List_Factory__(['ID'], 0, None, usecols=[0])
AnnotFile = __ID_List_Factory__(None, 2, None, header=0, usecols=None)
ThinAnnotFile = __ID_List_Factory__(None, None, None, header=0, usecols=None)