-
Notifications
You must be signed in to change notification settings - Fork 0
/
algorithm_voronoi.py
805 lines (680 loc) · 27 KB
/
algorithm_voronoi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
# -*- coding: utf-8 -*-
#############################################################################
#
# Voronoi diagram calculator/ Delaunay triangulator
# Translated to Python by Bill Simons
# September, 2005
#
# Additional changes by Carson Farmer added November 2010
#
# Calculate Delaunay triangulation or the Voronoi polygons for a set of
# 2D input points.
#
# Derived from code bearing the following notice:
#
# The author of this software is Steven Fortune. Copyright (c) 1994 by AT&T
# Bell Laboratories.
# Permission to use, copy, modify, and distribute this software for any
# purpose without fee is hereby granted, provided that this entire notice
# is included in all copies of any software which is or includes a copy
# or modification of this software and in all copies of the supporting
# documentation for such software.
# THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
# WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY
# REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
# OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
#
# Comments were incorporated from Shane O'Sullivan's translation of the
# original code into C++ (http://mapviewer.skynet.ie/voronoi.html)
#
# Steve Fortune's homepage: http://netlib.bell-labs.com/cm/cs/who/sjf/index.html
#
#############################################################################
def usage():
print """
voronoi - compute Voronoi diagram or Delaunay triangulation
voronoi [-t -p -d] [filename]
Voronoi reads from filename (or standard input if no filename given) for a set
of points in the plane and writes either the Voronoi diagram or the Delaunay
triangulation to the standard output. Each input line should consist of two
real numbers, separated by white space.
If option -t is present, the Delaunay triangulation is produced.
Each output line is a triple i j k, which are the indices of the three points
in a Delaunay triangle. Points are numbered starting at 0.
If option -t is not present, the Voronoi diagram is produced.
There are four output record types.
s a b indicates that an input point at coordinates a b was seen.
l a b c indicates a line with equation ax + by = c.
v a b indicates a vertex at a b.
e l v1 v2 indicates a Voronoi segment which is a subsegment of line number l
with endpoints numbered v1 and v2. If v1 or v2 is -1, the line
extends to infinity.
Other options include:
d Print debugging info
p Produce output suitable for input to plot (1), rather than the forms
described above.
On unsorted data uniformly distributed in the unit square, voronoi uses about
20n+140 bytes of storage.
AUTHOR
Steve J. Fortune (1987) A Sweepline Algorithm for Voronoi Diagrams,
Algorithmica 2, 153-174.
"""
#############################################################################
#
# For programmatic use two functions are available:
#
# computeVoronoiDiagram(points)
#
# Takes a list of point objects (which must have x and y fields).
# Returns a 3-tuple of:
#
# (1) a list of 2-tuples, which are the x,y coordinates of the
# Voronoi diagram vertices
# (2) a list of 3-tuples (a,b,c) which are the equations of the
# lines in the Voronoi diagram: a*x + b*y = c
# (3) a list of 3-tuples, (l, v1, v2) representing edges of the
# Voronoi diagram. l is the index of the line, v1 and v2 are
# the indices of the vetices at the end of the edge. If
# v1 or v2 is -1, the line extends to infinity.
#
# computeDelaunayTriangulation(points):
#
# Takes a list of point objects (which must have x and y fields).
# Returns a list of 3-tuples: the indices of the points that form a
# Delaunay triangle.
#
#############################################################################
import math
import sys
import getopt
TOLERANCE = 1e-9
BIG_FLOAT = 1e38
#------------------------------------------------------------------
class Context(object):
def __init__(self):
self.doPrint = 0
self.debug = 0
self.plot = 0
self.triangulate = False
self.vertices = [] # list of vertex 2-tuples: (x,y)
self.lines = [] # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c
self.edges = [] # edge 3-tuple: (line index, vertex 1 index, vertex 2 index) if either vertex index is -1, the edge extends to infiinity
self.triangles = [] # 3-tuple of vertex indices
self.polygons = {} # a dict of site:[edges] pairs
def circle(self,x,y,rad):
pass
def clip_line(self,edge):
pass
def line(self,x0,y0,x1,y1):
pass
def outSite(self,s):
if(self.debug):
print "site (%d) at %f %f" % (s.sitenum, s.x, s.y)
elif(self.triangulate):
pass
elif(self.plot):
self.circle (s.x, s.y, cradius)
elif(self.doPrint):
print "s %f %f" % (s.x, s.y)
def outVertex(self,s):
self.vertices.append((s.x,s.y))
if(self.debug):
print "vertex(%d) at %f %f" % (s.sitenum, s.x, s.y)
elif(self.triangulate):
pass
elif(self.doPrint and not self.plot):
print "v %f %f" % (s.x,s.y)
def outTriple(self,s1,s2,s3):
self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum))
if(self.debug):
print "circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum)
elif(self.triangulate and self.doPrint and not self.plot):
print "%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum)
def outBisector(self,edge):
self.lines.append((edge.a, edge.b, edge.c))
if(self.debug):
print "line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b, edge.c, edge.reg[0].sitenum, edge.reg[1].sitenum)
elif(self.triangulate):
if(self.plot):
self.line(edge.reg[0].x, edge.reg[0].y, edge.reg[1].x, edge.reg[1].y)
elif(self.doPrint and not self.plot):
print "l %f %f %f" % (edge.a, edge.b, edge.c)
def outEdge(self,edge):
sitenumL = -1
if edge.ep[Edge.LE] is not None:
sitenumL = edge.ep[Edge.LE].sitenum
sitenumR = -1
if edge.ep[Edge.RE] is not None:
sitenumR = edge.ep[Edge.RE].sitenum
if edge.reg[0].sitenum not in self.polygons:
self.polygons[edge.reg[0].sitenum] = []
if edge.reg[1].sitenum not in self.polygons:
self.polygons[edge.reg[1].sitenum] = []
self.polygons[edge.reg[0].sitenum].append((edge.edgenum,sitenumL,sitenumR))
self.polygons[edge.reg[1].sitenum].append((edge.edgenum,sitenumL,sitenumR))
self.edges.append((edge.edgenum,sitenumL,sitenumR))
if(not self.triangulate):
if self.plot:
self.clip_line(edge)
elif(self.doPrint):
print "e %d" % edge.edgenum,
print " %d " % sitenumL,
print "%d" % sitenumR
#------------------------------------------------------------------
def voronoi(siteList,context):
try:
edgeList = EdgeList(siteList.xmin,siteList.xmax,len(siteList))
priorityQ = PriorityQueue(siteList.ymin,siteList.ymax,len(siteList))
siteIter = siteList.iterator()
bottomsite = siteIter.next()
context.outSite(bottomsite)
newsite = siteIter.next()
minpt = Site(-BIG_FLOAT,-BIG_FLOAT)
while True:
if not priorityQ.isEmpty():
minpt = priorityQ.getMinPt()
if (newsite and (priorityQ.isEmpty() or cmp(newsite,minpt) < 0)):
# newsite is smallest - this is a site event
context.outSite(newsite)
# get first Halfedge to the LEFT and RIGHT of the new site
lbnd = edgeList.leftbnd(newsite)
rbnd = lbnd.right
# if this halfedge has no edge, bot = bottom site (whatever that is)
# create a new edge that bisects
bot = lbnd.rightreg(bottomsite)
edge = Edge.bisect(bot,newsite)
context.outBisector(edge)
# create a new Halfedge, setting its pm field to 0 and insert
# this new bisector edge between the left and right vectors in
# a linked list
bisector = Halfedge(edge,Edge.LE)
edgeList.insert(lbnd,bisector)
# if the new bisector intersects with the left edge, remove
# the left edge's vertex, and put in the new one
p = lbnd.intersect(bisector)
if p is not None:
priorityQ.delete(lbnd)
priorityQ.insert(lbnd,p,newsite.distance(p))
# create a new Halfedge, setting its pm field to 1
# insert the new Halfedge to the right of the original bisector
lbnd = bisector
bisector = Halfedge(edge,Edge.RE)
edgeList.insert(lbnd,bisector)
# if this new bisector intersects with the right Halfedge
p = bisector.intersect(rbnd)
if p is not None:
# push the Halfedge into the ordered linked list of vertices
priorityQ.insert(bisector,p,newsite.distance(p))
newsite = siteIter.next()
elif not priorityQ.isEmpty():
# intersection is smallest - this is a vector (circle) event
# pop the Halfedge with the lowest vector off the ordered list of
# vectors. Get the Halfedge to the left and right of the above HE
# and also the Halfedge to the right of the right HE
lbnd = priorityQ.popMinHalfedge()
llbnd = lbnd.left
rbnd = lbnd.right
rrbnd = rbnd.right
# get the Site to the left of the left HE and to the right of
# the right HE which it bisects
bot = lbnd.leftreg(bottomsite)
top = rbnd.rightreg(bottomsite)
# output the triple of sites, stating that a circle goes through them
mid = lbnd.rightreg(bottomsite)
context.outTriple(bot,top,mid)
# get the vertex that caused this event and set the vertex number
# couldn't do this earlier since we didn't know when it would be processed
v = lbnd.vertex
siteList.setSiteNumber(v)
context.outVertex(v)
# set the endpoint of the left and right Halfedge to be this vector
if lbnd.edge.setEndpoint(lbnd.pm,v):
context.outEdge(lbnd.edge)
if rbnd.edge.setEndpoint(rbnd.pm,v):
context.outEdge(rbnd.edge)
# delete the lowest HE, remove all vertex events to do with the
# right HE and delete the right HE
edgeList.delete(lbnd)
priorityQ.delete(rbnd)
edgeList.delete(rbnd)
# if the site to the left of the event is higher than the Site
# to the right of it, then swap them and set 'pm' to RIGHT
pm = Edge.LE
if bot.y > top.y:
bot,top = top,bot
pm = Edge.RE
# Create an Edge (or line) that is between the two Sites. This
# creates the formula of the line, and assigns a line number to it
edge = Edge.bisect(bot, top)
context.outBisector(edge)
# create a HE from the edge
bisector = Halfedge(edge, pm)
# insert the new bisector to the right of the left HE
# set one endpoint to the new edge to be the vector point 'v'
# If the site to the left of this bisector is higher than the right
# Site, then this endpoint is put in position 0; otherwise in pos 1
edgeList.insert(llbnd, bisector)
if edge.setEndpoint(Edge.RE - pm, v):
context.outEdge(edge)
# if left HE and the new bisector don't intersect, then delete
# the left HE, and reinsert it
p = llbnd.intersect(bisector)
if p is not None:
priorityQ.delete(llbnd);
priorityQ.insert(llbnd, p, bot.distance(p))
# if right HE and the new bisector don't intersect, then reinsert it
p = bisector.intersect(rrbnd)
if p is not None:
priorityQ.insert(bisector, p, bot.distance(p))
else:
break
he = edgeList.leftend.right
while he is not edgeList.rightend:
context.outEdge(he.edge)
he = he.right
Edge.EDGE_NUM = 0
except Exception, err:
print "######################################################"
print str(err)
#------------------------------------------------------------------
def isEqual(a,b,relativeError=TOLERANCE):
# is nearly equal to within the allowed relative error
norm = max(abs(a),abs(b))
return (norm < relativeError) or (abs(a - b) < (relativeError * norm))
#------------------------------------------------------------------
class Site(object):
def __init__(self,x=0.0,y=0.0,sitenum=0):
self.x = x
self.y = y
self.sitenum = sitenum
def dump(self):
print "Site #%d (%g, %g)" % (self.sitenum,self.x,self.y)
def __cmp__(self,other):
if self.y < other.y:
return -1
elif self.y > other.y:
return 1
elif self.x < other.x:
return -1
elif self.x > other.x:
return 1
else:
return 0
def distance(self,other):
dx = self.x - other.x
dy = self.y - other.y
return math.sqrt(dx*dx + dy*dy)
#------------------------------------------------------------------
class Edge(object):
LE = 0
RE = 1
EDGE_NUM = 0
DELETED = {} # marker value
def __init__(self):
self.a = 0.0
self.b = 0.0
self.c = 0.0
self.ep = [None,None]
self.reg = [None,None]
self.edgenum = 0
def dump(self):
print "(#%d a=%g, b=%g, c=%g)" % (self.edgenum,self.a,self.b,self.c)
print "ep",self.ep
print "reg",self.reg
def setEndpoint(self, lrFlag, site):
self.ep[lrFlag] = site
if self.ep[Edge.RE - lrFlag] is None:
return False
return True
@staticmethod
def bisect(s1,s2):
newedge = Edge()
newedge.reg[0] = s1 # store the sites that this edge is bisecting
newedge.reg[1] = s2
# to begin with, there are no endpoints on the bisector - it goes to infinity
# ep[0] and ep[1] are None
# get the difference in x dist between the sites
dx = float(s2.x - s1.x)
dy = float(s2.y - s1.y)
adx = abs(dx) # make sure that the difference in positive
ady = abs(dy)
# get the slope of the line
newedge.c = float(s1.x * dx + s1.y * dy + (dx*dx + dy*dy)*0.5)
if adx > ady :
# set formula of line, with x fixed to 1
newedge.a = 1.0
newedge.b = dy/dx
newedge.c /= dx
else:
# set formula of line, with y fixed to 1
newedge.b = 1.0
newedge.a = dx/dy
newedge.c /= dy
newedge.edgenum = Edge.EDGE_NUM
Edge.EDGE_NUM += 1
return newedge
#------------------------------------------------------------------
class Halfedge(object):
def __init__(self,edge=None,pm=Edge.LE):
self.left = None # left Halfedge in the edge list
self.right = None # right Halfedge in the edge list
self.qnext = None # priority queue linked list pointer
self.edge = edge # edge list Edge
self.pm = pm
self.vertex = None # Site()
self.ystar = BIG_FLOAT
def dump(self):
print "Halfedge--------------------------"
print "left: ", self.left
print "right: ", self.right
print "edge: ", self.edge
print "pm: ", self.pm
print "vertex: ",
if self.vertex: self.vertex.dump()
else: print "None"
print "ystar: ", self.ystar
def __cmp__(self,other):
if self.ystar > other.ystar:
return 1
elif self.ystar < other.ystar:
return -1
elif self.vertex.x > other.vertex.x:
return 1
elif self.vertex.x < other.vertex.x:
return -1
else:
return 0
def leftreg(self,default):
if not self.edge:
return default
elif self.pm == Edge.LE:
return self.edge.reg[Edge.LE]
else:
return self.edge.reg[Edge.RE]
def rightreg(self,default):
if not self.edge:
return default
elif self.pm == Edge.LE:
return self.edge.reg[Edge.RE]
else:
return self.edge.reg[Edge.LE]
# returns True if p is to right of halfedge self
def isPointRightOf(self,pt):
e = self.edge
topsite = e.reg[1]
right_of_site = pt.x > topsite.x
if(right_of_site and self.pm == Edge.LE):
return True
if(not right_of_site and self.pm == Edge.RE):
return False
if(e.a == 1.0):
dyp = pt.y - topsite.y
dxp = pt.x - topsite.x
fast = 0;
if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)):
above = dyp >= e.b * dxp
fast = above
else:
above = pt.x + pt.y * e.b > e.c
if(e.b < 0.0):
above = not above
if (not above):
fast = 1
if (not fast):
dxs = topsite.x - (e.reg[0]).x
above = e.b * (dxp*dxp - dyp*dyp) < dxs*dyp*(1.0+2.0*dxp/dxs + e.b*e.b)
if(e.b < 0.0):
above = not above
else: # e.b == 1.0
yl = e.c - e.a * pt.x
t1 = pt.y - yl
t2 = pt.x - topsite.x
t3 = yl - topsite.y
above = t1*t1 > t2*t2 + t3*t3
if(self.pm==Edge.LE):
return above
else:
return not above
#--------------------------
# create a new site where the Halfedges el1 and el2 intersect
def intersect(self,other):
e1 = self.edge
e2 = other.edge
if (e1 is None) or (e2 is None):
return None
# if the two edges bisect the same parent return None
if e1.reg[1] is e2.reg[1]:
return None
d = e1.a * e2.b - e1.b * e2.a
if isEqual(d,0.0):
return None
xint = (e1.c*e2.b - e2.c*e1.b) / d
yint = (e2.c*e1.a - e1.c*e2.a) / d
if(cmp(e1.reg[1],e2.reg[1]) < 0):
he = self
e = e1
else:
he = other
e = e2
rightOfSite = xint >= e.reg[1].x
if((rightOfSite and he.pm == Edge.LE) or
(not rightOfSite and he.pm == Edge.RE)):
return None
# create a new site at the point of intersection - this is a new
# vector event waiting to happen
return Site(xint,yint)
#------------------------------------------------------------------
class EdgeList(object):
def __init__(self,xmin,xmax,nsites):
if xmin > xmax: xmin,xmax = xmax,xmin
self.hashsize = int(2*math.sqrt(nsites+4))
self.xmin = xmin
self.deltax = float(xmax - xmin)
self.hash = [None]*self.hashsize
self.leftend = Halfedge()
self.rightend = Halfedge()
self.leftend.right = self.rightend
self.rightend.left = self.leftend
self.hash[0] = self.leftend
self.hash[-1] = self.rightend
def insert(self,left,he):
he.left = left
he.right = left.right
left.right.left = he
left.right = he
def delete(self,he):
he.left.right = he.right
he.right.left = he.left
he.edge = Edge.DELETED
# Get entry from hash table, pruning any deleted nodes
def gethash(self,b):
if(b < 0 or b >= self.hashsize):
return None
he = self.hash[b]
if he is None or he.edge is not Edge.DELETED:
return he
# Hash table points to deleted half edge. Patch as necessary.
self.hash[b] = None
return None
def leftbnd(self,pt):
# Use hash table to get close to desired halfedge
bucket = int(((pt.x - self.xmin)/self.deltax * self.hashsize))
if(bucket < 0):
bucket =0;
if(bucket >=self.hashsize):
bucket = self.hashsize-1
he = self.gethash(bucket)
if(he is None):
i = 1
while True:
he = self.gethash(bucket-i)
if (he is not None): break;
he = self.gethash(bucket+i)
if (he is not None): break;
i += 1
# Now search linear list of halfedges for the corect one
if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)):
he = he.right
while he is not self.rightend and he.isPointRightOf(pt):
he = he.right
he = he.left;
else:
he = he.left
while (he is not self.leftend and not he.isPointRightOf(pt)):
he = he.left
# Update hash table and reference counts
if(bucket > 0 and bucket < self.hashsize-1):
self.hash[bucket] = he
return he
#------------------------------------------------------------------
class PriorityQueue(object):
def __init__(self,ymin,ymax,nsites):
self.ymin = ymin
self.deltay = ymax - ymin
self.hashsize = int(4 * math.sqrt(nsites))
self.count = 0
self.minidx = 0
self.hash = []
for i in range(self.hashsize):
self.hash.append(Halfedge())
def __len__(self):
return self.count
def isEmpty(self):
return self.count == 0
def insert(self,he,site,offset):
he.vertex = site
he.ystar = site.y + offset
last = self.hash[self.getBucket(he)]
next = last.qnext
while((next is not None) and cmp(he,next) > 0):
last = next
next = last.qnext
he.qnext = last.qnext
last.qnext = he
self.count += 1
def delete(self,he):
if (he.vertex is not None):
last = self.hash[self.getBucket(he)]
while last.qnext is not he:
last = last.qnext
last.qnext = he.qnext
self.count -= 1
he.vertex = None
def getBucket(self,he):
bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize)
if bucket < 0: bucket = 0
if bucket >= self.hashsize: bucket = self.hashsize-1
if bucket < self.minidx: self.minidx = bucket
return bucket
def getMinPt(self):
while(self.hash[self.minidx].qnext is None):
self.minidx += 1
he = self.hash[self.minidx].qnext
x = he.vertex.x
y = he.ystar
return Site(x,y)
def popMinHalfedge(self):
curr = self.hash[self.minidx].qnext
self.hash[self.minidx].qnext = curr.qnext
self.count -= 1
return curr
#------------------------------------------------------------------
class SiteList(object):
def __init__(self,pointList):
self.__sites = []
self.__sitenum = 0
self.__xmin = pointList[0].x
self.__ymin = pointList[0].y
self.__xmax = pointList[0].x
self.__ymax = pointList[0].y
for i,pt in enumerate(pointList):
self.__sites.append(Site(pt.x,pt.y,i))
if pt.x < self.__xmin: self.__xmin = pt.x
if pt.y < self.__ymin: self.__ymin = pt.y
if pt.x > self.__xmax: self.__xmax = pt.x
if pt.y > self.__ymax: self.__ymax = pt.y
self.__sites.sort()
def setSiteNumber(self,site):
site.sitenum = self.__sitenum
self.__sitenum += 1
class Iterator(object):
def __init__(this,lst): this.generator = (s for s in lst)
def __iter__(this): return this
def next(this):
try:
return this.generator.next()
except StopIteration:
return None
def iterator(self):
return SiteList.Iterator(self.__sites)
def __iter__(self):
return SiteList.Iterator(self.__sites)
def __len__(self):
return len(self.__sites)
def _getxmin(self): return self.__xmin
def _getymin(self): return self.__ymin
def _getxmax(self): return self.__xmax
def _getymax(self): return self.__ymax
xmin = property(_getxmin)
ymin = property(_getymin)
xmax = property(_getxmax)
ymax = property(_getymax)
#------------------------------------------------------------------
def computeVoronoiDiagram(points):
""" Takes a list of point objects (which must have x and y fields).
Returns a 3-tuple of:
(1) a list of 2-tuples, which are the x,y coordinates of the
Voronoi diagram vertices
(2) a list of 3-tuples (a,b,c) which are the equations of the
lines in the Voronoi diagram: a*x + b*y = c
(3) a list of 3-tuples, (l, v1, v2) representing edges of the
Voronoi diagram. l is the index of the line, v1 and v2 are
the indices of the vetices at the end of the edge. If
v1 or v2 is -1, the line extends to infinity.
"""
siteList = SiteList(points)
context = Context()
voronoi(siteList,context)
return (context.vertices,context.lines,context.edges)
#------------------------------------------------------------------
def computeDelaunayTriangulation(points):
""" Takes a list of point objects (which must have x and y fields).
Returns a list of 3-tuples: the indices of the points that form a
Delaunay triangle.
"""
siteList = SiteList(points)
context = Context()
context.triangulate = True
voronoi(siteList,context)
return context.triangles
#-----------------------------------------------------------------------------
if __name__=="__main__":
try:
optlist,args = getopt.getopt(sys.argv[1:],"thdp")
except getopt.GetoptError:
usage()
sys.exit(2)
doHelp = 0
c = Context()
c.doPrint = 1
for opt in optlist:
if opt[0] == "-d": c.debug = 1
if opt[0] == "-p": c.plot = 1
if opt[0] == "-t": c.triangulate = 1
if opt[0] == "-h": doHelp = 1
if not doHelp:
pts = []
fp = sys.stdin
if len(args) > 0:
fp = open(args[0],'r')
for line in fp:
fld = line.split()
x = float(fld[0])
y = float(fld[1])
pts.append(Site(x,y))
if len(args) > 0: fp.close()
if doHelp or len(pts) == 0:
usage()
sys.exit(2)
sl = SiteList(pts)
voronoi(sl,c)