1
1
from Data import ToyDataset
2
- from periodic_activations import SineActivation , CosineActivation , ModuloActivation
2
+ from periodic_activations import SineActivation , CosineActivation
3
3
import torch
4
4
from torch .utils .data import DataLoader
5
5
from Pipeline import AbstractPipelineClass
@@ -14,11 +14,11 @@ def train(self):
14
14
loss_fn = nn .CrossEntropyLoss ()
15
15
16
16
dataset = ToyDataset ()
17
- dataloader = DataLoader (dataset , batch_size = 12 , shuffle = False )
17
+ dataloader = DataLoader (dataset , batch_size = 128 , shuffle = False )
18
18
19
- optimizer = torch .optim .Adam (self .model .parameters (), lr = 1e-3 )
19
+ optimizer = torch .optim .Adam (self .model .parameters (), lr = 1e-5 )
20
20
21
- num_epochs = 10
21
+ num_epochs = 100
22
22
23
23
for ep in range (num_epochs ):
24
24
for x , y in dataloader :
@@ -39,8 +39,8 @@ def decorate_output(self, x):
39
39
return x
40
40
41
41
if __name__ == "__main__" :
42
- pipe = ToyPipeline (Model ("sin" , 12 ))
42
+ pipe = ToyPipeline (Model ("sin" , 42 ))
43
43
pipe .train ()
44
44
45
- pipe = ToyPipeline (Model ("cos" , 12 ))
46
- pipe .train ()
45
+ # pipe = ToyPipeline(Model("cos", 12))
46
+ # pipe.train()
0 commit comments