forked from jason9693/MusicTransformer-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
172 lines (140 loc) · 6.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from model import MusicTransformer
from model_rwkv import MusicTransformerRWKV
import custom
from custom.metrics import *
from custom.criterion import SmoothCrossEntropyLoss, CustomSchedule
from custom.config import config
from data import Data
from midi_processor_fixed.transposition_aug import augment_batch
import utils
import datetime
import time
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
# set config
parser = custom.get_argument_parser()
args = parser.parse_args()
config.load(args.model_dir, args.configs, initialize=True)
# check cuda
if torch.cuda.is_available():
config.device = torch.device('cuda')
else:
config.device = torch.device('cpu')
# load data
dataset = Data(config.pickle_dir)
print(dataset)
# load model
learning_rate = config.l_r
# define model
mt = MusicTransformerRWKV(
embedding_dim=config.embedding_dim,
vocab_size=config.vocab_size,
num_layer=config.num_layers,
max_seq=config.max_seq,
dropout=config.dropout,
debug=config.debug, loader_path=config.load_path
)
mt.to(config.device)
opt = optim.Adam(mt.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)
scheduler = CustomSchedule(config.embedding_dim, optimizer=opt)
# multi-GPU set
if torch.cuda.device_count() > 1:
single_mt = mt
mt = torch.nn.DataParallel(mt, output_device=torch.cuda.device_count()-1)
else:
single_mt = mt
# init metric set
metric_set = MetricsSet({
'accuracy': CategoricalAccuracy(),
'loss': SmoothCrossEntropyLoss(config.label_smooth, config.vocab_size, config.pad_token),
'bucket': LogitsBucketting(config.vocab_size)
})
print(mt)
print('| Summary - Device Info : {}'.format(torch.cuda.device))
# define tensorboard writer
current_time = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
train_log_dir = 'logs/'+config.experiment+'/'+current_time+'/train'
eval_log_dir = 'logs/'+config.experiment+'/'+current_time+'/eval'
train_summary_writer = SummaryWriter(train_log_dir)
eval_summary_writer = SummaryWriter(eval_log_dir)
best_acc = 0.0
# Train Start
print(">> Train start...")
idx = 0
for e in range(config.epochs):
print(">>> [Epoch was updated]")
for b in range(len(dataset.files) // config.batch_size):
scheduler.optimizer.zero_grad()
try:
batch_x, batch_y = dataset.slide_seq2seq_batch(config.batch_size, config.max_seq)
# pitch transposition and time stretch augmentation
batch_x, batch_y = augment_batch(batch_x, batch_y, config.token_eos, config.token_sos, shift_range=3)
batch_x = torch.from_numpy(batch_x).contiguous().to(config.device, non_blocking=True, dtype=torch.int)
batch_y = torch.from_numpy(batch_y).contiguous().to(config.device, non_blocking=True, dtype=torch.int)
except IndexError:
continue
start_time = time.time()
mt.train()
sample = mt.forward(batch_x)
metrics = metric_set(sample, batch_y)
loss = metrics['loss']
loss.backward()
scheduler.step()
end_time = time.time()
if config.debug:
print("[Loss]: {}".format(loss))
train_summary_writer.add_scalar('loss', metrics['loss'], global_step=idx)
train_summary_writer.add_scalar('accuracy', metrics['accuracy'], global_step=idx)
train_summary_writer.add_scalar('learning_rate', scheduler.rate(), global_step=idx)
train_summary_writer.add_scalar('iter_p_sec', end_time-start_time, global_step=idx)
# result_metrics = metric_set(sample, batch_y)
if b % 512 == 0:
single_mt.eval()
preds = []
gt = []
with torch.inference_mode():
for _ in range(512 // config.batch_size):
eval_x, eval_y = dataset.slide_seq2seq_batch(config.batch_size, config.max_seq, 'eval')
eval_x = torch.from_numpy(eval_x).contiguous().to(config.device, dtype=torch.int)
eval_y = torch.from_numpy(eval_y).contiguous().to(config.device, dtype=torch.int)
eval_preiction = single_mt.forward(eval_x)
preds.append(eval_preiction.cpu())
gt.append(eval_y.cpu())
del eval_preiction
del eval_x
del eval_y
torch.cuda.empty_cache()
preds = torch.cat(preds, dim=0)
gt = torch.cat(gt, dim=0)
# print(preds.shape, gt.shape)
eval_metrics = metric_set(preds, gt)
# if b == 0:
# train_summary_writer.add_histogram("target_analysis", batch_y, global_step=e)
# train_summary_writer.add_histogram("source_analysis", batch_x, global_step=e)
# for i, weight in enumerate(weights):
# attn_log_name = "attn/layer-{}".format(i)
# utils.attention_image_summary(
# attn_log_name, weight, step=idx, writer=eval_summary_writer)
if best_acc < eval_metrics["accuracy"]:
best_acc = eval_metrics["accuracy"]
torch.save(single_mt.state_dict(), args.model_dir+'/acc-{}.pth'.format(best_acc))
eval_summary_writer.add_scalar('loss', eval_metrics['loss'], global_step=idx)
eval_summary_writer.add_scalar('accuracy', eval_metrics['accuracy'], global_step=idx)
eval_summary_writer.add_histogram("logits_bucket", eval_metrics['bucket'], global_step=idx)
print('\n====================================================')
print('Epoch/Batch: {}/{}'.format(e, b))
print('Train >>>> Loss: {:6.6}, Accuracy: {}'.format(metrics['loss'], metrics['accuracy']))
print('Eval >>>> Loss: {:6.6}, Accuracy: {}'.format(eval_metrics['loss'], eval_metrics['accuracy']))
torch.cuda.empty_cache()
idx += 1
# switch output device to: gpu-1 ~ gpu-n
sw_start = time.time()
if torch.cuda.device_count() > 1:
mt.output_device = idx % (torch.cuda.device_count() -1) + 1
sw_end = time.time()
if config.debug:
print('output switch time: {}'.format(sw_end - sw_start) )
torch.save(single_mt.state_dict(), args.model_dir+'/final.pth'.format(idx))
eval_summary_writer.close()
train_summary_writer.close()