-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtranscribe.py
executable file
·330 lines (276 loc) · 12.9 KB
/
transcribe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python3
"""
This script, borrowing heavily from Google's cloud-vision sample repository,
uses the Vision API's OCR capabilities to automatically transcribe Peanuts comic strips.
In addition, it uses nltk (http://www.nltk.org/index.html) to process (e.g. tokenize)
the text.
To install the necessary libraries: `pip install -r requirements.txt`
To download necessary nltk data: follow the instructions at http://www.nltk.org/data.html
To run the script: ./transcribe.py <args> (see "Usage notes" at bottom of file)
This will save the transcriptions to .txt files that have been distinguished by year
(which seems to be Z7777 and Anjum's desired format).
"""
import base64, os, sys, nltk, redis, re, enchant
from googleapiclient import discovery, errors
from oauth2client.client import GoogleCredentials
from nltk.metrics.distance import edit_distance
DISCOVERY_URL = 'https://{api}.googleapis.com/$discovery/rest?version={apiVersion}'
BATCH_SIZE = 10
STRIP_FOLDER = 'strips/'
class VisionApi:
"""Constructs and uses the Google Vision API service."""
def __init__(self, api_discovery_file='vision_api.json'):
self.credentials = GoogleCredentials.get_application_default()
self.service = discovery.build('vision', 'v1', credentials=self.credentials,
discoveryServiceUrl=DISCOVERY_URL)
def detect_text(self, input_filenames, num_retries=3, max_results=6):
"""Uses the Vision API to detect text in the given file."""
images = {}
for filename in input_filenames:
with open(filename, 'rb') as image_file:
images[filename] = image_file.read()
batch_request = []
for filename in images:
batch_request.append({
'image': {
'content': base64.b64encode(images[filename]).decode('UTF-8')
},
'features': [{
'type': 'TEXT_DETECTION',
'maxResults': max_results,
}]
})
request = self.service.images().annotate(body={'requests': batch_request})
try:
responses = request.execute(num_retries=num_retries)
if 'responses' not in responses:
return {}
text_response = {}
for filename, response in zip(images, responses['responses']):
if 'error' in response:
print("API Error for %s: %s" % (
filename,
response['error']['message']
if 'message' in response['error']
else ''))
continue
if 'textAnnotations' in response:
text_response[filename] = response['textAnnotations']
else:
text_response[filename] = []
return text_response
except errors.HttpError as e:
print("Http Error for %s: %s" % (filename, e))
except KeyError as e2:
print("Key error: %s" % e2)
class Transcriber:
"""Processses API responses and saves final transcriptions to disk."""
def __init__(self, sent_detector_path='tokenizers/punkt/english.pickle',
save_directory='transcribed/'):
self.tokenizer = nltk.data.load(sent_detector_path).tokenize
self.save_directory = save_directory
self.redis_docs_client = redis.StrictRedis(db=6)
self.redis_docs_client.ping() # initial check on redis connection
def transcribe(self, filename, texts, year):
"""
Obtains all of the text and associated bboxes in the annotations,
then processes it to create a final transcription.
Saves the result to disk as transcribed/<YEAR>.txt.
(This is an appendance, not an overwrite!)
"""
if texts:
chkr = SpellChecker()
# Extract the description and bounding boxes
document, bboxes = '', {}
for i, text in enumerate(texts):
if i == 0 or (i < 3 \
and text['description'].lower() == 'peanuts'):
continue
try:
word = chkr.suggest(text['description'].lower())
document += word + ' ' if word else ''
bboxes[text['description']] = text['boundingPoly']
except KeyError as e:
print('KeyError: %s\n%s' % (e, text))
# Uncomment the following in order to see each image's words:
# print("Words found in %s: %s" % (filename, document))
# Uncomment the following in order to see each text's bbox:
# print(bboxes)
# Obtain the date from the filename
tail = filename[filename.rfind('/') + 1:]
tail = tail[:tail.rfind('.')]
month, day, year = tail[:2], tail[2:], str(year)
# Check if the command was called with the 'dir' option
is_standalone = True if int(year) < 1000 else False
# Prepare the save file for appendance
save_filename = self.save_directory \
+ ('test' if is_standalone else year) \
+ '.txt'
os.makedirs(os.path.dirname(save_filename), exist_ok=True)
f = open(save_filename, 'a+')
if os.stat(save_filename).st_size > 0:
f.write('\n') # for formatting
if is_standalone:
f.write('-'.join(s for s in (month, day)) + '\n')
else:
f.write('-'.join(s for s in (year, month, day)) + '\n')
document = truecase(document.strip())
for sentence in self.tokenizer(document):
f.write(sentence + '\n')
# [At this point:] Successful transcription!
f.write('\n')
f.close()
self.redis_docs_client.set(filename, document)
elif texts == []:
print('%s had no discernible text.' % filename)
def document_is_processed(self, filename):
"""
Checks whether a document (image file) has already been processed.
"""
if self.redis_docs_client.get(filename):
print("%s has already been transcribed." % filename)
return True
return False
class SpellChecker:
"""This class checks text for spelling errors and offers suggestions
for words not contained in PyEnchant's internal dictionary.
Implementation partially borrowed from Coaden (http://stackoverflow.com/a/24192883).
"""
# Theoretically if I add enough stuff to this, everything can be corrected
common_misspellings = {
'ounus': 'Linus', 'c': '', 'c.': '', '(mnot': "I'm not", '(m': "I'm",
'imreally': "I'm really", '(mnot!': "I'm not!", 'schulz': '', 'dont': "don't",
'm': "I'm", '60': 'go', "ol'": "ol'" # ol' is fine
}
# (Commonly) omitted characters
omitted_chars = ['i', 'y']
# A small punctuation collection
punctuation = set(('.', ',', "'", '!', '?', ':', ';'))
def __init__(self, lang='en_US', max_dist=3):
self.d = enchant.Dict(lang)
self.max_dist = max_dist
def insert_char(self, word, char):
"""
Attempts to create a correct spelling by inserting the character CHAR
at different spots within WORD.
Reasoning: letters like 'i' and 'y' often seem to be lost in detection.
"""
for j in range(len(word) + 1):
with_char = word[:j] + char + word[j:]
if self.d.check(with_char):
return with_char
return False
def suggest(self, word):
if word in SpellChecker.common_misspellings:
return SpellChecker.common_misspellings[word]
elif self.d.check(word) \
or any(p in word for p in SpellChecker.punctuation):
# (a) No suggestions; the word is already spelled correctly
# (b) Don't mess with the punctuation!
return word
# Try sticking commonly omitted characters in the word somewhere
for c in SpellChecker.omitted_chars:
with_char = self.insert_char(word, c)
if with_char:
return with_char
suggestions = self.d.suggest(word)
for suggestion in suggestions:
if edit_distance(word, suggestion) <= self.max_dist:
return suggestion
return word
def extract(texts):
"""
Extracts truecased text from the first file associated
with the given information. Does not save anything to disk.
At the moment, this function is used solely for testing.
"""
texts = [t for _, t in texts.items()][0] # first file only
document = ''.join(text['description'] for text in texts)
return truecase(document)
def truecase(text):
"""
Returns the truecased version of TEXT (i.e. infers proper capitalization for it).
Credit to tobigue (http://stackoverflow.com/a/7711517) for this implementation!
"""
truecased_sents = [] # list of truecased sentences
# Apply POS-tagging, infer capitalization from POS-tags, and capitalize first words
tagged_sent = nltk.pos_tag([word.lower() for word in nltk.word_tokenize(text)])
normalized_sent = [w.capitalize() if t in ["NN", "NNS"] else w for (w, t) in tagged_sent]
normalized_sent[0] = normalized_sent[0].capitalize()
# Use regular expressions to get punctuation right
pretty_string = re.sub(" (?=[\.,'!?:;])", "", ' '.join(normalized_sent))
return pretty_string
def process_text_from_files(vision, transcriber, input_filenames, year):
"""Calls the Vision API on a file and transcribes the results."""
texts = vision.detect_text(input_filenames)
for filename, text in texts.items():
print('>> Transcribing ' + filename + '...')
transcriber.transcribe(filename, text, year)
def batch(iterable, batch_size=BATCH_SIZE):
"""Groups an iterable into batches of the specified size.
>>> tuple(batch([1, 2, 3, 4, 5], batch_size=2))
((1, 2), (3, 4), (5))
"""
b = []
for i in iterable:
b.append(i)
if len(b) == batch_size:
yield tuple(b)
b = []
if b:
yield tuple(b)
def main(starting_year, ending_year, input_dir=None):
"""
Walks through all the image files for the specified years,
transcribing any text from them and persisting it to disk.
"""
# Create a client object for the Vision API
vision = VisionApi()
# Create a Transcriber object that will extract and transcribe text
transcriber = Transcriber()
int_start, int_end = int(starting_year), int(ending_year)
if input_dir:
int_end = int_start
for year in range(int_start, int_end + 1):
directory = STRIP_FOLDER + str(year) if not input_dir else input_dir
all_files = []
# Recursively construct a list of all the files in the directory
for folder, subs, files in os.walk(directory):
for filename in files:
all_files.append(os.path.join(folder, filename))
priority_files = [] # the files we'll actually process
for filename in all_files:
if transcriber.document_is_processed(filename):
continue
priority_files.append(filename)
for filenames in batch(priority_files):
process_text_from_files(vision, transcriber, filenames, year)
# Usage notes
# ===========
# transcribe.py can be called with multiple flavors of arguments.
# (1) `./transcribe.py <year>`: transcribes all comic strips from a single year
# (2) `./transcribe.py <startYear> <endYear>`: transcribes strips from a range of yrs
# (3) `./transcribe.py all`: transcribes all comic strips from all years
# (4) `./transcribe.py dir <input_dir>`: transcribes images from the given dir
if __name__ == '__main__':
num_args, bad_input = len(sys.argv), True
if num_args == 3:
# Looking for options (2) or (4)
if sys.argv[1] == 'dir':
input_dir = sys.argv[2]
main(0, 0, input_dir) # the 0s are meaningless here
else:
start_year, end_year = sys.argv[1], sys.argv[2]
main(start_year, end_year)
bad_input = False
elif num_args == 2:
# Looking for options (1) or (3)
if sys.argv[1] == 'all':
main(1950, 2000)
else:
main(sys.argv[1], sys.argv[1])
bad_input = False
if bad_input: # command error
print('Your command was not recognized.')
print('Usage: `./transcribe.py <year>`, `./transcribe.py <startYear> <endYear>`, ' \
+ '`./transcribe.py all`, `./transcribe.py dir <input_dir>`')