Skip to content

Commit 6f855d5

Browse files
authored
♻️ refactor type variable names from _SCT to _ScalarT (#476)
1 parent 4d5f851 commit 6f855d5

File tree

9 files changed

+54
-48
lines changed

9 files changed

+54
-48
lines changed

src/_numtype/@test/test_to_array.pyi

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@ from typing_extensions import TypeVar
55
import _numtype as _nt
66
import numpy as np
77

8-
_SCT = TypeVar("_SCT", bound=np.generic)
9-
_0D: TypeAlias = np.ndarray[tuple[()], np.dtype[_SCT]]
10-
_1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_SCT]]
11-
_2D: TypeAlias = np.ndarray[tuple[int, int], np.dtype[_SCT]]
12-
_3D: TypeAlias = np.ndarray[tuple[int, int, int], np.dtype[_SCT]]
13-
_ND: TypeAlias = np.ndarray[tuple[int, ...], np.dtype[_SCT]]
8+
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
9+
_0D: TypeAlias = np.ndarray[tuple[()], np.dtype[_ScalarT]]
10+
_1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]]
11+
_2D: TypeAlias = np.ndarray[tuple[int, int], np.dtype[_ScalarT]]
12+
_3D: TypeAlias = np.ndarray[tuple[int, int, int], np.dtype[_ScalarT]]
13+
_ND: TypeAlias = np.ndarray[tuple[int, ...], np.dtype[_ScalarT]]
1414

1515
b_0d: bool
1616
i_0d: int

src/numpy-stubs/@test/static/accept/array_constructors.pyi

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@ from typing_extensions import TypeVar, assert_type
77
import numpy as np
88
import numpy.typing as npt
99

10-
_SCT_co = TypeVar("_SCT_co", bound=np.generic, covariant=True)
10+
_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True)
1111

12-
class MyArray(np.ndarray[tuple[int], np.dtype[_SCT_co]]): ...
12+
class MyArray(np.ndarray[tuple[int], np.dtype[_ScalarT_co]]): ...
1313

1414
i8: np.int64
1515

src/numpy-stubs/@test/static/accept/multiarray.pyi

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@ import numpy.typing as npt
77

88
###
99

10-
_SCT_co = TypeVar("_SCT_co", bound=np.generic, covariant=True)
10+
_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True)
1111

12-
class SubClass(npt.NDArray[_SCT_co]): ...
12+
class SubClass(npt.NDArray[_ScalarT_co]): ...
1313

1414
subclass: SubClass[np.float64]
1515

src/numpy-stubs/@test/static/accept/twodim_base.pyi

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,9 @@ from typing_extensions import TypeVar, assert_type
44
import numpy as np
55
import numpy.typing as npt
66

7-
_SCT = TypeVar("_SCT", bound=np.generic)
7+
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
88

9-
def func1(ar: npt.NDArray[_SCT], a: int) -> npt.NDArray[_SCT]: ...
9+
def func1(ar: npt.NDArray[_ScalarT], a: int) -> npt.NDArray[_ScalarT]: ...
1010
def func2(ar: npt.NDArray[np.number], a: str) -> npt.NDArray[np.float64]: ...
1111

1212
AR_b: npt.NDArray[np.bool]

src/numpy-stubs/__init__.pyi

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1195,7 +1195,7 @@ class dtype(Generic[_ScalarT_co], metaclass=_DTypeMeta):
11951195
) -> dtype[float64]: ...
11961196

11971197
# Overload for `dtype` instances, scalar types, and instances that have a
1198-
# `dtype: dtype[_SCT]` attribute
1198+
# `dtype: dtype[_ScalarT]` attribute
11991199
@overload
12001200
def __new__( # type: ignore[overload-overlap]
12011201
cls,

src/numpy-stubs/_core/records.pyi

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -20,11 +20,11 @@ __all__ = [
2020
]
2121

2222
_T = TypeVar("_T")
23-
_SCT = TypeVar("_SCT", bound=np.generic)
23+
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
2424
_DTypeT_co = TypeVar("_DTypeT_co", bound=np.dtype, covariant=True)
2525
_ShapeT_co = TypeVar("_ShapeT_co", bound=tuple[int, ...], covariant=True)
2626

27-
_RecArray: TypeAlias = recarray[Any, np.dtype[_SCT]]
27+
_RecArray: TypeAlias = recarray[Any, np.dtype[_ScalarT]]
2828

2929
@type_check_only
3030
class _SupportsReadInto(Protocol):
@@ -220,7 +220,7 @@ def fromfile(
220220
# exported in `numpy.rec`
221221
@overload
222222
def array( # type: ignore[overload-overlap]
223-
obj: _SCT | NDArray[_SCT],
223+
obj: _ScalarT | NDArray[_ScalarT],
224224
dtype: None = None,
225225
shape: _ShapeLike | None = None,
226226
offset: int = 0,
@@ -231,7 +231,7 @@ def array( # type: ignore[overload-overlap]
231231
aligned: bool = False,
232232
byteorder: None = None,
233233
copy: bool = True,
234-
) -> _RecArray[_SCT]: ...
234+
) -> _RecArray[_ScalarT]: ...
235235
@overload
236236
def array(
237237
obj: ArrayLike,

src/numpy-stubs/_core/shape_base.pyi

Lines changed: 27 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ __all__ = ["atleast_1d", "atleast_2d", "atleast_3d", "block", "hstack", "stack",
99

1010
###
1111

12-
_SCT = TypeVar("_SCT", bound=np.generic)
12+
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
1313
_SCT0 = TypeVar("_SCT0", bound=np.generic)
1414
_SCT1 = TypeVar("_SCT1", bound=np.generic)
1515

@@ -41,11 +41,13 @@ def atleast_1d(a0: _Array1T0, a1: _Array1T1, /) -> tuple[_Array1T0, _Array1T1]:
4141
@overload
4242
def atleast_1d(a0: _Array1T, a1: _Array1T, /, *arys: _Array1T) -> tuple[_Array1T, ...]: ... # type: ignore[overload-overlap]
4343
@overload
44-
def atleast_1d(a0: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
44+
def atleast_1d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ...
4545
@overload
4646
def atleast_1d(a0: _ArrayLike[_SCT0], a2: _ArrayLike[_SCT1], /) -> tuple[NDArray[_SCT0], NDArray[_SCT1]]: ...
4747
@overload
48-
def atleast_1d(a0: _ArrayLike[_SCT], a2: _ArrayLike[_SCT], /, *arys: _ArrayLike[_SCT]) -> tuple[NDArray[_SCT], ...]: ...
48+
def atleast_1d(
49+
a0: _ArrayLike[_ScalarT], a2: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]
50+
) -> tuple[NDArray[_ScalarT], ...]: ...
4951
@overload
5052
def atleast_1d(a0: ArrayLike, /) -> NDArray[Any]: ...
5153
@overload
@@ -61,11 +63,13 @@ def atleast_2d(a0: _Array2T0, a1: _Array2T1, /) -> tuple[_Array2T0, _Array2T1]:
6163
@overload
6264
def atleast_2d(a0: _Array2T, a1: _Array2T, /, *arys: _Array2T) -> tuple[_Array2T, ...]: ... # type: ignore[overload-overlap]
6365
@overload
64-
def atleast_2d(a0: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
66+
def atleast_2d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ...
6567
@overload
6668
def atleast_2d(a0: _ArrayLike[_SCT0], a2: _ArrayLike[_SCT1], /) -> tuple[NDArray[_SCT0], NDArray[_SCT1]]: ...
6769
@overload
68-
def atleast_2d(a0: _ArrayLike[_SCT], a2: _ArrayLike[_SCT], /, *arys: _ArrayLike[_SCT]) -> tuple[NDArray[_SCT], ...]: ...
70+
def atleast_2d(
71+
a0: _ArrayLike[_ScalarT], a2: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]
72+
) -> tuple[NDArray[_ScalarT], ...]: ...
6973
@overload
7074
def atleast_2d(a0: ArrayLike, /) -> NDArray[Any]: ...
7175
@overload
@@ -81,11 +85,13 @@ def atleast_3d(a0: _Array3T0, a1: _Array3T1, /) -> tuple[_Array3T0, _Array3T1]:
8185
@overload
8286
def atleast_3d(a0: _Array3T, a1: _Array3T, /, *arys: _Array3T) -> tuple[_Array3T, ...]: ... # type: ignore[overload-overlap]
8387
@overload
84-
def atleast_3d(a0: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
88+
def atleast_3d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ...
8589
@overload
8690
def atleast_3d(a0: _ArrayLike[_SCT0], a2: _ArrayLike[_SCT1], /) -> tuple[NDArray[_SCT0], NDArray[_SCT1]]: ...
8791
@overload
88-
def atleast_3d(a0: _ArrayLike[_SCT], a2: _ArrayLike[_SCT], /, *arys: _ArrayLike[_SCT]) -> tuple[NDArray[_SCT], ...]: ...
92+
def atleast_3d(
93+
a0: _ArrayLike[_ScalarT], a2: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]
94+
) -> tuple[NDArray[_ScalarT], ...]: ...
8995
@overload
9096
def atleast_3d(a0: ArrayLike, /) -> NDArray[Any]: ...
9197
@overload
@@ -96,18 +102,18 @@ def atleast_3d(a0: ArrayLike, a2: ArrayLike, /, *arys: ArrayLike) -> tuple[NDArr
96102
#
97103
@overload
98104
def vstack(
99-
tup: Sequence[_ArrayLike[_SCT]],
105+
tup: Sequence[_ArrayLike[_ScalarT]],
100106
*,
101107
dtype: None = None,
102108
casting: np._CastingKind = "same_kind",
103-
) -> NDArray[_SCT]: ...
109+
) -> NDArray[_ScalarT]: ...
104110
@overload
105111
def vstack(
106112
tup: Sequence[ArrayLike],
107113
*,
108-
dtype: _DTypeLike[_SCT],
114+
dtype: _DTypeLike[_ScalarT],
109115
casting: np._CastingKind = "same_kind",
110-
) -> NDArray[_SCT]: ...
116+
) -> NDArray[_ScalarT]: ...
111117
@overload
112118
def vstack(
113119
tup: Sequence[ArrayLike],
@@ -119,18 +125,18 @@ def vstack(
119125
#
120126
@overload
121127
def hstack(
122-
tup: Sequence[_ArrayLike[_SCT]],
128+
tup: Sequence[_ArrayLike[_ScalarT]],
123129
*,
124130
dtype: None = None,
125131
casting: np._CastingKind = "same_kind",
126-
) -> NDArray[_SCT]: ...
132+
) -> NDArray[_ScalarT]: ...
127133
@overload
128134
def hstack(
129135
tup: Sequence[ArrayLike],
130136
*,
131-
dtype: _DTypeLike[_SCT],
137+
dtype: _DTypeLike[_ScalarT],
132138
casting: np._CastingKind = "same_kind",
133-
) -> NDArray[_SCT]: ...
139+
) -> NDArray[_ScalarT]: ...
134140
@overload
135141
def hstack(
136142
tup: Sequence[ArrayLike],
@@ -142,22 +148,22 @@ def hstack(
142148
#
143149
@overload
144150
def stack(
145-
arrays: Sequence[_ArrayLike[_SCT]],
151+
arrays: Sequence[_ArrayLike[_ScalarT]],
146152
axis: SupportsIndex = 0,
147153
out: None = None,
148154
*,
149155
dtype: None = None,
150156
casting: np._CastingKind = "same_kind",
151-
) -> NDArray[_SCT]: ...
157+
) -> NDArray[_ScalarT]: ...
152158
@overload
153159
def stack(
154160
arrays: Sequence[ArrayLike],
155161
axis: SupportsIndex = 0,
156162
out: None = None,
157163
*,
158-
dtype: _DTypeLike[_SCT],
164+
dtype: _DTypeLike[_ScalarT],
159165
casting: np._CastingKind = "same_kind",
160-
) -> NDArray[_SCT]: ...
166+
) -> NDArray[_ScalarT]: ...
161167
@overload
162168
def stack(
163169
arrays: Sequence[ArrayLike],
@@ -188,12 +194,12 @@ def stack(
188194

189195
#
190196
@overload
191-
def unstack(array: _ArrayLike[_SCT], /, *, axis: SupportsIndex = 0) -> tuple[NDArray[_SCT], ...]: ...
197+
def unstack(array: _ArrayLike[_ScalarT], /, *, axis: SupportsIndex = 0) -> tuple[NDArray[_ScalarT], ...]: ...
192198
@overload
193199
def unstack(array: ArrayLike, /, *, axis: SupportsIndex = 0) -> tuple[NDArray[Any], ...]: ...
194200

195201
#
196202
@overload
197-
def block(arrays: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
203+
def block(arrays: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ...
198204
@overload
199205
def block(arrays: ArrayLike) -> NDArray[Any]: ...

src/numpy-stubs/lib/_arraypad_impl.pyi

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ __all__ = ["pad"]
99

1010
###
1111

12-
_SCT = TypeVar("_SCT", bound=np.generic)
12+
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
1313

1414
_ModeKind: TypeAlias = L[
1515
"constant",
@@ -35,15 +35,15 @@ class _ModeFunc(Protocol):
3535
# specific modes. Consider adding more overloads to express this in the future.
3636
@overload
3737
def pad(
38-
array: _ArrayLike[_SCT],
38+
array: _ArrayLike[_ScalarT],
3939
pad_width: _ArrayLikeInt,
4040
mode: _ModeKind = ...,
4141
*,
4242
stat_length: _ArrayLikeInt | None = ...,
4343
constant_values: ArrayLike = ...,
4444
end_values: ArrayLike = ...,
4545
reflect_type: L["odd", "even"] = ...,
46-
) -> NDArray[_SCT]: ...
46+
) -> NDArray[_ScalarT]: ...
4747
@overload
4848
def pad(
4949
array: ArrayLike,
@@ -56,6 +56,6 @@ def pad(
5656
reflect_type: L["odd", "even"] = ...,
5757
) -> NDArray[Any]: ...
5858
@overload
59-
def pad(array: _ArrayLike[_SCT], pad_width: _ArrayLikeInt, mode: _ModeFunc, **kwargs: object) -> NDArray[_SCT]: ...
59+
def pad(array: _ArrayLike[_ScalarT], pad_width: _ArrayLikeInt, mode: _ModeFunc, **kwargs: object) -> NDArray[_ScalarT]: ...
6060
@overload
6161
def pad(array: ArrayLike, pad_width: _ArrayLikeInt, mode: _ModeFunc, **kwargs: object) -> NDArray[Any]: ...

src/numpy-stubs/lib/_stride_tricks_impl.pyi

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ from numpy._typing import ArrayLike, NDArray, _ArrayLike, _Shape, _ShapeLike
77

88
__all__ = ["broadcast_arrays", "broadcast_shapes", "broadcast_to"]
99

10-
_SCT = TypeVar("_SCT", bound=np.generic)
10+
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
1111

1212
class DummyArray:
1313
__array_interface__: dict[str, Any]
@@ -16,12 +16,12 @@ class DummyArray:
1616

1717
@overload
1818
def as_strided(
19-
x: _ArrayLike[_SCT],
19+
x: _ArrayLike[_ScalarT],
2020
shape: Iterable[int] | None = ...,
2121
strides: Iterable[int] | None = ...,
2222
subok: bool = ...,
2323
writeable: bool = ...,
24-
) -> NDArray[_SCT]: ...
24+
) -> NDArray[_ScalarT]: ...
2525
@overload
2626
def as_strided(
2727
x: ArrayLike,
@@ -32,13 +32,13 @@ def as_strided(
3232
) -> NDArray[Any]: ...
3333
@overload
3434
def sliding_window_view(
35-
x: _ArrayLike[_SCT],
35+
x: _ArrayLike[_ScalarT],
3636
window_shape: int | Iterable[int],
3737
axis: SupportsIndex | None = ...,
3838
*,
3939
subok: bool = ...,
4040
writeable: bool = ...,
41-
) -> NDArray[_SCT]: ...
41+
) -> NDArray[_ScalarT]: ...
4242
@overload
4343
def sliding_window_view(
4444
x: ArrayLike,
@@ -49,7 +49,7 @@ def sliding_window_view(
4949
writeable: bool = ...,
5050
) -> NDArray[Any]: ...
5151
@overload
52-
def broadcast_to(array: _ArrayLike[_SCT], shape: int | Iterable[int], subok: bool = ...) -> NDArray[_SCT]: ...
52+
def broadcast_to(array: _ArrayLike[_ScalarT], shape: int | Iterable[int], subok: bool = ...) -> NDArray[_ScalarT]: ...
5353
@overload
5454
def broadcast_to(array: ArrayLike, shape: int | Iterable[int], subok: bool = ...) -> NDArray[Any]: ...
5555
def broadcast_shapes(*args: _ShapeLike) -> _Shape: ...

0 commit comments

Comments
 (0)