forked from WCSim/WCSim
-
Notifications
You must be signed in to change notification settings - Fork 51
/
nuPRISMconvert.cc
405 lines (378 loc) · 17.8 KB
/
nuPRISMconvert.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#include <iostream>
#include <TH1F.h>
#include <stdio.h>
#include <stdlib.h>
#include <TFile.h>
#include <TTree.h>
#include <TKey.h>
#include <WCSimRootEvent.hh>
/* converts position and direction branches in the fiTQun tree to nuPRISM coordinate system
* and copies the rest of the branches into a new fiTQun tree
*/
void convertfiTQun(TTree* fiTQun, TTree* fiTQunCv) {
// copies fiTQun tree to a new tree without any position and direction branches
fiTQun->SetBranchStatus("*", 1);
fiTQun->SetBranchStatus("fq*pos*",0);
fiTQun->SetBranchStatus("fq*dir*",0);
fiTQunCv = fiTQun->CloneTree();
fiTQun->CopyAddresses(fiTQunCv, kTRUE);
// sets branches back to be processed
fiTQun->SetBranchStatus("fq*pos*",1);
fiTQun->SetBranchStatus("fq*dir*",1);
// initialize position and direction variables and their converted counterparts
const Int_t MAX_TEMP = 100;
Int_t fqntwnd;
Float_t fqtwnd_prftpos[MAX_TEMP][3]; // pre-fitter vertex position
Float_t fqtwnd_prftposCv[MAX_TEMP][3];
Int_t fqnse;
Float_t fq1rpos[MAX_TEMP][7][3]; // 1 ring fit vertex
Float_t fq1rposCv[MAX_TEMP][7][3];
Float_t fq1rdir[MAX_TEMP][7][3]; // 1 ring fit direction
Float_t fq1rdirCv[MAX_TEMP][7][3];
Float_t fqpi0pos[2][3]; // Pi0 fit vertex position
Float_t fqpi0posCv[2][3];
Float_t fqpi0dir1[2][3]; // Pi0 fit direction of the first photon
Float_t fqpi0dir1Cv[2][3];
Float_t fqpi0dir2[2][3]; // Pi0 fit direction of the second photon
Float_t fqpi0dir2Cv[2][3];
Float_t fqpi0dirtot[2][3]; // Pi0 fit direction of the Pi0
Float_t fqpi0dirtotCv[2][3];
Int_t fqnmrfit;
Float_t fqmrpos[MAX_TEMP][6][3]; // Multi-Ring fit vertex position of each ring
Float_t fqmrposCv[MAX_TEMP][6][3];
Float_t fqmrdir[MAX_TEMP][6][3]; // Multi-Ring fit direction of each ring
Float_t fqmrdirCv[MAX_TEMP][6][3];
Int_t fqmsnfit;
Float_t fqmspos[MAX_TEMP][20][3]; // Multi-Segment Muon fit vertex position of each segment
Float_t fqmsposCv[MAX_TEMP][20][3];
Float_t fqmsdir[MAX_TEMP][20][3]; // Multi-Segment Muon fit direction of each segment
Float_t fqmsdirCv[MAX_TEMP][20][3];
Int_t fqtestn1r;
Float_t fqtest1rpos[MAX_TEMP][3]; // test 1 ring fit vertex
Float_t fqtest1rposCv[MAX_TEMP][3];
Float_t fqtest1rdir[MAX_TEMP][3]; // test 1 ring fit directio
Float_t fqtest1rdirCv[MAX_TEMP][3];
Int_t fqtestnpi0;
Float_t fqtestpi0pos[MAX_TEMP][3]; // test Pi0 fit vertex position
Float_t fqtestpi0posCv[MAX_TEMP][3];
Float_t fqtestpi0dir1[MAX_TEMP][3]; // test Pi0 fit direction of the first photon
Float_t fqtestpi0dir1Cv[MAX_TEMP][3];
Float_t fqtestpi0dir2[MAX_TEMP][3]; // test Pi0 fit direction of the second photon
Float_t fqtestpi0dir2Cv[MAX_TEMP][3];
Float_t fqtestpi0dirtot[MAX_TEMP][3]; // test Pi0 fit direction of the Pi0
Float_t fqtestpi0dirtotCv[MAX_TEMP][3];
// initializes branches in fiTQunCv output
TBranch *bfqtwnd_prftpos = fiTQunCv->Branch("fqtwnd_prftpos",fqtwnd_prftposCv,"fqtwnd_prftpos[fqntwnd][3]/F");
TBranch *bfq1rpos = fiTQunCv->Branch("fq1rpos",fq1rposCv,"fq1rpos[fqnse][7][3]/F");
TBranch *bfq1rdir = fiTQunCv->Branch("fq1rdir",fq1rdirCv,"fq1rdir[fqnse][7][3]/F");
TBranch *bfqpi0pos = fiTQunCv->Branch("fqpi0pos",fqpi0posCv,"fqpi0pos[2][3]/F");
TBranch *bfqpi0dir1 = fiTQunCv->Branch("fqpi0dir1",fqpi0dir1Cv,"fqpi0dir1[2][3]/F");
TBranch *bfqpi0dir2 = fiTQunCv->Branch("fqpi0dir2",fqpi0dir2Cv,"fqpi0dir2[2][3]/F");
TBranch *bfqpi0dirtot = fiTQunCv->Branch("fqpi0dirtot",fqpi0dirtotCv,"fqpi0dirtot[2][3]/F");
TBranch *bfqmrpos = fiTQunCv->Branch("fqmrpos",fqmrposCv,"fqmrpos[fqnmrfit][6][3]/F");
TBranch *bfqmrdir = fiTQunCv->Branch("fqmrdir",fqmrdirCv,"fqmrdir[fqnmrfit][6][3]/F");
TBranch *bfqmspos = fiTQunCv->Branch("fqmspos",fqmsposCv,"fqmspos[fqmsnfit][20][3]/F");
TBranch *bfqmsdir = fiTQunCv->Branch("fqmsdir",fqmsdirCv,"fqmsdir[fqmsnfit][20][3]/F");
TBranch *bfqtest1rpos = fiTQunCv->Branch("fqtest1rpos",fqtest1rposCv,"fqtest1rpos[fqtestn1r][3]/F");
TBranch *bfqtest1rdir = fiTQunCv->Branch("fqtest1rdir",fqtest1rdirCv,"fqtest1rdir[fqtestn1r][3]/F");
TBranch *bfqtestpi0pos = fiTQunCv->Branch("fqtestpi0pos",fqtestpi0posCv,"fqtestpi0pos[fqtestnpi0][3]/F");
TBranch *bfqtestpi0dir1 = fiTQunCv->Branch("fqtestpi0dir1",fqtestpi0dir1Cv,"fqtestpi0dir1[fqtestnpi0][3]/F");
TBranch *bfqtestpi0dir2 = fiTQunCv->Branch("fqtestpi0dir2",fqtestpi0dir2Cv,"fqtestpi0dir2[fqtestnpi0][3]/F");
TBranch *bfqtestpi0dirtot = fiTQunCv->Branch("fqtestpi0dirtot",fqtestpi0dirtotCv,"fqtestpi0dirtot[fqtestnpi0][3]/F");
fiTQun->SetBranchAddress("fqntwnd", &fqntwnd);
fiTQun->SetBranchAddress("fqtwnd_prftpos", &fqtwnd_prftpos);
fiTQun->SetBranchAddress("fqnse", &fqnse);
fiTQun->SetBranchAddress("fq1rpos", &fq1rpos);
fiTQun->SetBranchAddress("fq1rdir", &fq1rdir);
fiTQun->SetBranchAddress("fqpi0pos", &fqpi0pos);
fiTQun->SetBranchAddress("fqpi0dir1", &fqpi0dir1);
fiTQun->SetBranchAddress("fqpi0dir2", &fqpi0dir2);
fiTQun->SetBranchAddress("fqpi0dirtot", &fqpi0dirtot);
fiTQun->SetBranchAddress("fqnmrfit", &fqnmrfit);
fiTQun->SetBranchAddress("fqmrpos", &fqmrpos);
fiTQun->SetBranchAddress("fqmrdir", &fqmrdir);
fiTQun->SetBranchAddress("fqmsnfit", &fqmsnfit);
fiTQun->SetBranchAddress("fqmspos", &fqmspos);
fiTQun->SetBranchAddress("fqmsdir", &fqmsdir);
fiTQun->SetBranchAddress("fqtestn1r", &fqtestn1r);
fiTQun->SetBranchAddress("fqtest1rpos", &fqtest1rpos);
fiTQun->SetBranchAddress("fqtest1rdir", &fqtest1rdir);
fiTQun->SetBranchAddress("fqtestnpi0", &fqtestnpi0);
fiTQun->SetBranchAddress("fqtestpi0pos", &fqtestpi0pos);
fiTQun->SetBranchAddress("fqtestpi0dir1", &fqtestpi0dir1);
fiTQun->SetBranchAddress("fqtestpi0dir2", &fqtestpi0dir2);
fiTQun->SetBranchAddress("fqtestpi0dirtot", &fqtestpi0dirtot);
// gets the total number of entries
int fqEntries = fiTQun->GetEntries();
double offset = 2151.035; // particle gun y-offset of position in centimeters
// for each entry in the fiTQun input
// changes the fiTQun output's WCSim coordinates to the global nuPRISM coordinate geometry
for (int entry=0;entry<fqEntries;entry++) {
fiTQun->GetEntry(entry);
// time-window information
for (int i=0;i<fqntwnd;i++) {
for (int axis=0;axis<3;axis++) {
if (axis == 0) { // set the x-axis to the z-axis
fqtwnd_prftposCv[i][0] = fqtwnd_prftpos[i][axis];
} else if (axis == 1) { // set the y-axis to the x-axis
fqtwnd_prftposCv[i][1] = fqtwnd_prftpos[i][axis];
} else if (axis == 2) { // set the z-axis to the y-axis
fqtwnd_prftposCv[i][2] = fqtwnd_prftpos[i][axis];
}
}
}
// 1-ring fits
for (int i=0;i<fqnse;i++) {
for (int j=0;j<7;j++) {
for (int axis=0;axis<3;axis++) {
if (axis == 0) {
fq1rposCv[i][j][0] = fq1rpos[i][j][axis];
fq1rdirCv[i][j][0] = fq1rdir[i][j][axis];
} else if (axis == 1) {
fq1rposCv[i][j][1] = fq1rpos[i][j][axis];
fq1rdirCv[i][j][1] = fq1rdir[i][j][axis];
} else if (axis == 2) {
fq1rposCv[i][j][2] = fq1rpos[i][j][axis];
fq1rdirCv[i][j][2] = fq1rdir[i][j][axis];
}
}
}
}
// Pi0 fits
for (int i=0;i<2;i++) {
for (int axis=0;axis<3;axis++) {
if (axis == 0) {
fqpi0posCv[i][0] = fqpi0pos[i][axis];
fqpi0dir1Cv[i][0] = fqpi0dir1[i][axis];
fqpi0dir2Cv[i][0] = fqpi0dir2[i][axis];
fqpi0dirtotCv[i][0] = fqpi0dirtot[i][axis];
} else if (axis == 1) {
fqpi0posCv[i][1] = fqpi0pos[i][axis];
fqpi0dir1Cv[i][1] = fqpi0dir1[i][axis];
fqpi0dir2Cv[i][1] = fqpi0dir2[i][axis];
fqpi0dirtotCv[i][1] = fqpi0dirtot[i][axis];
} else if (axis == 2) {
fqpi0posCv[i][2] = fqpi0pos[i][axis];
fqpi0dir1Cv[i][2] = fqpi0dir1[i][axis];
fqpi0dir2Cv[i][2] = fqpi0dir2[i][axis];
fqpi0dirtotCv[i][2] = fqpi0dirtot[i][axis];
}
}
}
// multi-ring fits
for (int i=0;i<fqnmrfit;i++) {
for (int j=0;j<6;j++) {
for (int axis=0;axis<3;axis++) {
if (axis == 0) {
fqmrposCv[i][j][0] = fqmrpos[i][j][axis];
fqmrdirCv[i][j][0] = fqmrdir[i][j][axis];
} else if (axis == 1) {
fqmrposCv[i][j][1] = fqmrpos[i][j][axis];
fqmrdirCv[i][j][1] = fqmrdir[i][j][axis];
} else if (axis == 2) {
fqmrposCv[i][j][2] = fqmrpos[i][j][axis];
fqmrdirCv[i][j][2] = fqmrdir[i][j][axis];
}
}
}
}
// multi-segment muon fits
for (int i=0;i<fqmsnfit;i++) {
for (int j=0;j<20;j++) {
for (int axis=0;axis<3;axis++) {
if (axis == 0) {
fqmsposCv[i][j][0] = fqmspos[i][j][axis];
fqmsdirCv[i][j][0] = fqmsdir[i][j][axis];
} else if (axis == 1) {
fqmsposCv[i][j][1] = fqmspos[i][j][axis];
fqmsdirCv[i][j][1] = fqmsdir[i][j][axis];
} else if (axis == 2) {
fqmsposCv[i][j][2] = fqmspos[i][j][axis];
fqmsdirCv[i][j][2] = fqmsdir[i][j][axis];
}
}
}
}
// test 1-ring fits
for (int i=0;i<fqtestn1r;i++) {
for (int axis=0;axis<3;axis++) {
if (axis == 0) {
fqtest1rposCv[i][0] = fqtest1rpos[i][axis];
fqtest1rdirCv[i][0] = fqtest1rdir[i][axis];
} else if (axis == 1) {
fqtest1rposCv[i][1] = fqtest1rpos[i][axis];
fqtest1rdirCv[i][1] = fqtest1rdir[i][axis];
} else if (axis == 2) {
fqtest1rposCv[i][2] = fqtest1rpos[i][axis];
fqtest1rdirCv[i][2] = fqtest1rdir[i][axis];
}
}
}
// test Pi0 fits
for (int i=0;i<fqtestnpi0;i++) {
for (int axis=0;axis<3;axis++) {
if (axis == 0) {
fqtestpi0posCv[i][0] = fqtestpi0pos[i][axis];
fqtestpi0dir1Cv[i][0] = fqtestpi0dir1[i][axis];
fqtestpi0dir2Cv[i][0] = fqtestpi0dir2[i][axis];
fqtestpi0dirtotCv[i][0] = fqtestpi0dirtot[i][axis];
} else if (axis == 1) {
fqtestpi0posCv[i][1] = fqtestpi0pos[i][axis];
fqtestpi0dir1Cv[i][1] = fqtestpi0dir1[i][axis];
fqtestpi0dir2Cv[i][1] = fqtestpi0dir2[i][axis];
fqtestpi0dirtotCv[i][1] = fqtestpi0dirtot[i][axis];
} else if (axis == 2) {
fqtestpi0posCv[i][2] = fqtestpi0pos[i][axis];
fqtestpi0dir1Cv[i][2] = fqtestpi0dir1[i][axis];
fqtestpi0dir2Cv[i][2] = fqtestpi0dir2[i][axis];
fqtestpi0dirtotCv[i][2] = fqtestpi0dirtot[i][axis];
}
}
}
// fill all branches for each entry
bfqtwnd_prftpos->Fill();
bfq1rpos->Fill();
bfq1rdir->Fill();
bfqpi0pos->Fill();
bfqpi0dir1->Fill();
bfqpi0dir2->Fill();
bfqpi0dirtot->Fill();
bfqmrpos->Fill();
bfqmrdir->Fill();
bfqmspos->Fill();
bfqmsdir->Fill();
bfqtest1rpos->Fill();
bfqtest1rdir->Fill();
bfqtestpi0pos->Fill();
bfqtestpi0dir1->Fill();
bfqtestpi0dir2->Fill();
bfqtestpi0dirtot->Fill();
}
fiTQunCv->Write("",TObject::kOverwrite);
}
/* extracts the true information from the wcsimT tree
* the position and direction information is converted to nuPRISM geometry
* and then all the information are saved in the new wcsimEx tree
*/
void extractTruth(TTree* wcsimT, TTree* wcsimEx) {
WCSimRootTrigger * wcsimrootTrigger;
WCSimRootEvent * wcsimrootEvent;
wcsimrootEvent = new WCSimRootEvent();
wcsimT->SetBranchAddress("wcsimrootevent" ,&wcsimrootEvent);
// initializes variables
const Int_t maxtrack = 200;
Int_t ntrack;
Int_t parent[maxtrack];
Int_t pid[maxtrack];
Double_t dir[maxtrack][4];
Double_t start[maxtrack][4];
Double_t stop[maxtrack][4];
Double_t mom[maxtrack];
Double_t mass[maxtrack];
Double_t energy[maxtrack];
Double_t startvol[maxtrack];
Double_t stopvol[maxtrack];
Double_t time[maxtrack];
// sets output Ttree to above variables
wcsimEx->Branch("ntrack",&ntrack,"ntrack/I");
wcsimEx->Branch("parent",parent,"parent[ntrack]/I");
wcsimEx->Branch("pid",pid,"pid[ntrack]/I");
wcsimEx->Branch("dir",dir,"dir[ntrack][4]/D");
wcsimEx->Branch("start",start,"start[ntrack][4]/D");
wcsimEx->Branch("stop",stop,"stop[ntrack][4]/D");
wcsimEx->Branch("mom",mom,"mom[ntrack]/D");
wcsimEx->Branch("mass",mass,"mass[ntrack]/D");
wcsimEx->Branch("energy",energy,"energy[ntrack]/D");
wcsimEx->Branch("startvol",startvol,"startvol[ntrack]/D");
wcsimEx->Branch("stopvol",stopvol,"stopvol[ntrack]/D");
wcsimEx->Branch("time",time,"time[ntrack]/D");
// for each event in the wcsimT input
int Entries = wcsimT->GetEntries();
for (int ev=0; ev<Entries; ev++) {
wcsimT->GetEvent(ev);
wcsimrootTrigger = wcsimrootEvent->GetTrigger(0);
ntrack = wcsimrootTrigger->GetNtrack();
if(ntrack>0) {
// Loop through elements in the TClonesArray of WCSimTracks
// for each particle in the event set the respective variable's information
for (int par=0; par<ntrack; par++) {
// wcsimroottrack holds all info about particle
TObject *element = (wcsimrootTrigger->GetTracks())->At(par);
WCSimRootTrack *wcsimroottrack = dynamic_cast<WCSimRootTrack*>(element);
for (int axis=0;axis<4;axis++) {
if (axis == 0) { // set wcsim x-axis to nuPRISM x-axis
start[par][0] = wcsimroottrack->GetStart(axis)/100;
stop[par][0] = wcsimroottrack->GetStop(axis)/100;
dir[par][0] = wcsimroottrack->GetDir(axis);
} else if (axis == 1) { // set wcsim y-axis to nuPRISM y-axis
start[par][1] = wcsimroottrack->GetStart(axis)/100;
stop[par][1] = wcsimroottrack->GetStop(axis)/100;
dir[par][1] = wcsimroottrack->GetDir(axis);
} else if (axis == 2) { // set wcsim z-axis to nuPRISM z-axis
start[par][2] = wcsimroottrack->GetStart(axis)/100;
stop[par][2] = wcsimroottrack->GetStop(axis)/100;
dir[par][2] = wcsimroottrack->GetDir(axis);
} else if (axis == 3) {
start[par][3] = wcsimroottrack->GetStart(axis)/100;
stop[par][3] = wcsimroottrack->GetStop(axis)/100;
dir[par][3] = wcsimroottrack->GetDir(axis);
}
}
parent[par]=wcsimroottrack->GetParenttype();
pid[par]=wcsimroottrack->GetIpnu();
mom[par]=wcsimroottrack->GetP();
mass[par]=wcsimroottrack->GetM();
energy[par]=wcsimroottrack->GetE();
startvol[par]=wcsimroottrack->GetStartvol();
stopvol[par]=wcsimroottrack->GetStopvol();
time[par]=wcsimroottrack->GetTime();
}
// fill the wcsimEx with all the current event's information in the current loop
wcsimEx->Fill();
}
}
wcsimEx->Write("",TObject::kOverwrite);
}
int convertNuPrism(char* input, char* output, bool dofiTQun=0, bool copy=0){
char *filename = input;
char *outfilename = output;
bool toCopy = copy;
bool useFiTQun = dofiTQun;
TFile *file = new TFile(filename,"read");
if (!file->IsOpen()){
std::cout << "Error, could not open input file: " << filename << std::endl;
exit(-1);
}
// creates new trees for output file
TFile* outFile = TFile::Open(outfilename, "RECREATE");
TTree* fiTQunCv = new TTree("fiTQunCv", "fiTQun Converted Geometry");
TTree* wcsimEx = new TTree("wcsimEx","Converted Particle Info");
// gets the old trees from the fiTQun file
TTree* wcsimT = (TTree*) file->Get("wcsimT");
TTree* wcsimGeoT = (TTree*) file->Get("wcsimGeoT");
TTree* fiTQun = (TTree*) file->Get("fiTQun"); // gets the old fiTQun information
TTree* Settings = (TTree*) file->Get("Settings");
// prepares trees to be copied
TTree* newEventTree;
TTree* newGeomTree;
TTree* newSettings;
if (toCopy) {
newEventTree = wcsimT->CloneTree();
newGeomTree = wcsimGeoT->CloneTree();
if (Settings) {
newSettings = Settings->CloneTree();
}
}
if(useFiTQun) convertfiTQun(fiTQun, fiTQunCv);
extractTruth(wcsimT, wcsimEx);
// copies the other trees
if (toCopy){
newEventTree->Write();
newGeomTree->Write();
if (Settings) {
newSettings->Write();
}
}
outFile->Close();
return 0;
}