-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.cfg
71 lines (53 loc) · 1.78 KB
/
sample.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
; Sample config file for a training run
[global]
pretrain=true
train=true
run_output=/path/to/output/directory
valid_container=/path/to/container.n5
valid_dataset=path/to/dataset
; Only needed if train=true
gap_container=/path/to/container.n5
gap_dataset=path/to/dataset
gap_location=250
; z-slice index relative to dataset
; Only necessary if global.train=true
[train]
num_epochs=100
num_minibatch=64
minibatch_size=2
instance_noise=false
; Instance Noise doesn't really help, this is always set to false
; Only necessary if instance_noise=true
instance_noise_std_dev=0
anneal_noise=30
; Only needed if pretrain=false
pretrained_model=/path/to/model.h5
generator_learning_rate=1e-4
generator_optimizer=adam
; Currently not used, generator optimizer is always Adam
generator_mask_size=10
; Total thickness of mask size, diameter not radius
penalty_learning_rate=1e-4
; For applying the "penalty" for deviating outside of mask area
discriminator_learning_rate=1e-5
discriminator_optimizer=adam
; Currently not used, discriminator optimizer is always Adam
discriminator_architecture=default
; See bottom of models.py for valid options (Currently "a", "b", "c", "default")
; Anything in this format gets passed to the constructor for that architecture
discriminator_arg_[argname]=[value]
; No Square Brackets
;e.g. discriminator_arg_init_filters=19
;discriminator_arg_batch_norm=false
; Only necessary if global.pretrain=true
[pretrain]
num_epochs=100
num_minibatch=64
minibatch_size=2
generator_architecture=default
; See bottom of models.py for valid options (Currently "a", "b", "default")
generator_learning_rate=1e-4
; Anything in this format gets passed to the constructor for that architecture
generator_arg_[argname]=[value]
;e.g. generator_arg_regularization=0.0
;generator_arg_batch_norm=true