diff --git a/binder/environment.yml b/binder/environment.yml index b97d87d..14f8d5e 100644 --- a/binder/environment.yml +++ b/binder/environment.yml @@ -16,7 +16,7 @@ dependencies: - netcdf4=1.6.2 - geopy - pyresample -- earthaccess>=0.5.2 +- earthaccess>=0.6.1 - fiona - zarr - ipympl @@ -35,9 +35,11 @@ dependencies: - pipreqsnb - conda-lock>=1.2.1 - mamba>=1.0 +- coiled>=0.9.30 - pip - pip: - git+https://github.com/icesat2py/icepyx.git + - git+https://github.com/ICESat2-SlideRule/h5coro.git@main - awscliv2 platforms: - linux-64 diff --git a/notebooks/ICESat-2_Cloud_Access/nsidc_daac_uwg_cloud_access_tutorial.ipynb b/notebooks/ICESat-2_Cloud_Access/ATL06-direct-access.ipynb similarity index 100% rename from notebooks/ICESat-2_Cloud_Access/nsidc_daac_uwg_cloud_access_tutorial.ipynb rename to notebooks/ICESat-2_Cloud_Access/ATL06-direct-access.ipynb diff --git a/notebooks/ICESat-2_Cloud_Access/nsidc_daac_uwg_cloud_access_tutorial_rendered.ipynb b/notebooks/ICESat-2_Cloud_Access/ATL06-direct-access_rendered.ipynb similarity index 100% rename from notebooks/ICESat-2_Cloud_Access/nsidc_daac_uwg_cloud_access_tutorial_rendered.ipynb rename to notebooks/ICESat-2_Cloud_Access/ATL06-direct-access_rendered.ipynb diff --git a/notebooks/ICESat-2_Cloud_Access/ATL10-h5coro.ipynb b/notebooks/ICESat-2_Cloud_Access/ATL10-h5coro.ipynb new file mode 100644 index 0000000..4e9ef66 --- /dev/null +++ b/notebooks/ICESat-2_Cloud_Access/ATL10-h5coro.ipynb @@ -0,0 +1,893 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e86eaecf-a612-4dbb-8bdc-5b5dfddf65b9", + "metadata": { + "user_expressions": [] + }, + "source": [ + "
\n", + "\n", + "\n", + "# **Processing Large-scale Time Series of ICESat-2 Sea Ice Height in the Cloud**\n", + "\n", + "
\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "bc15319c-5110-4aaa-8932-db8b4055a167", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## **1. Tutorial Overview**\n", + "\n", + "This tutorial is designed for the \"DAAC data access in the cloud hands-on experience\" session at the 2023 NSIDC DAAC [User Working Group (UWG)](https://nsidc.org/data/data-programs/nsidc-daac/about-daac#anchor-2) Meeting. \n", + "\n", + "The NSIDC DAAC archives and distributes Daily and Monthly Gridded [Sea Ice Freeboard (ATL20)](https://nsidc.org/data/atl20) and [Polar Sea Surface Height Anomaly (ATL21)](https://nsidc.org/data/atl21) data sets from the ICESat-2 Mission, derived from the lower level [ATL10](https://nsidc.org/data/atl10) data set. However, we may want these lower level point data to be gridded and averaged at a weekly cadence, or using a different projection or other gridding parameters. \n", + "\n", + "This tutorial session is in two parts: \n", + "* We will first guide you through this Jupyter Notebook running in the AWS `us-west-2` region, where data are hosted in the NASA Earthdata Cloud. The notebook utilizes several libraries to performantly search, access, read, and grid the data including `earthaccess`, `h5coro`, and `geopandas`.\n", + "\n", + "* This notebook will focus on the Ross Sea, Antarctica. But let’s say we want to scale this analysis to the entire continent. In the second portion, we will present how to scale and run this same workflow from a script (see [workflow.py](./h5cloud/workflow.py) in the `h5cloud` folder within this notebook's directory) that can be run from your laptop, using [Coiled](https://www.coiled.io/). \n", + "\n", + "### **Credits**\n", + "\n", + "The notebook was created by Andy Barrett and Luis Lopez of NSIDC.\n", + "\n", + "For questions regarding the notebook, or to report problems, please create a new issue in the [NSIDC-Data-Tutorials repo](https://github.com/nsidc/NSIDC-Data-Tutorials/issues).\n", + "\n", + "### **Learning Objectives**\n", + "\n", + "By the end of this demonstration you will be able to: \n", + "1. Use `earthaccess` to authenticate with Earthdata Login, search for ICESat-2 data using spatial and temporal filters, and directly access files in the cloud.\n", + "2. Open data granules using `h5coro` to efficiently read HDF5 data from the NSIDC DAAC S3 bucket.\n", + "3. Load data into a geopandas.DataFrame containing geodetic coordinates, ancillary variables, and date/time converted from ATLAS Epoch.\n", + "4. Grid track data to EASE-Grid v2 6.25 km projected grid using drop-in-the-bucket resampling. \n", + "5. Calculate mean statistics and assign aggregated data to grid cells. \n", + "5. Visualize aggregated sea ice height data on a map.\n", + "\n", + "### **Prerequisites**\n", + "\n", + "1. We are running this notebook in the [CryoCloud](https://book.cryointhecloud.com/intro.html) JupyterHub. For more information, see the CryoCloud [Getting Started](https://book.cryointhecloud.com/content/Getting_Started.html) documentation.\n", + "**It is advised that you use at least a 16GB instance for this notebook.** \n", + "2. An Earthdata Login is required for data access. If you don't have one, you can register for one [here](https://urs.earthdata.nasa.gov/).\n", + "3. It is recommended that you create a .netrc file that contains your Earthdata Login credentials, stored in your home directory. If you do not have a .netrc file, `earthaccess` will prompt you to enter your Earthdata Login username and password.\n", + "\n", + "### **Example of end product** \n", + "At the end of this tutorial, the following figure will be generated, demonstrating a year's worth of ATL10 Sea Ice Freeboard height data gridded over the Ross Sea, Antarctica:\n", + "
\n", + "\n", + "
\n", + "\n", + "### **Time requirement**\n", + "\n", + "Allow approximately 40 minutes to complete this tutorial." + ] + }, + { + "cell_type": "markdown", + "id": "53b77eb5-d5ed-4ddd-8fb1-6c69618d7852", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## **2. Tutorial steps**\n", + "\n", + "### Installing the latest version of earthaccess\n", + "\n", + "The CryoCloud environment currently does not have the latest `earthaccess` version installed, along with new features in `h5coro` that are not yet released, so we will first manually install those below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9700d441-441a-41fb-9ad8-7ea5eabec52b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%capture\n", + "# suppress install outputs\n", + "\n", + "!pip uninstall -y earthaccess h5coro\n", + "!pip install earthaccess==0.6.1\n", + "\n", + "# h5coro has new features that we need that are not released\n", + "!pip install git+https://github.com/ICESat2-SlideRule/h5coro.git@main" + ] + }, + { + "cell_type": "markdown", + "id": "e7bdaa85-ac4e-4172-9154-1d0992414cc1", + "metadata": { + "user_expressions": [] + }, + "source": [ + "**NOTE**: Restart the kernel and clean output after running the cell above." + ] + }, + { + "cell_type": "markdown", + "id": "7820a737-33f0-4470-b9a4-03c5c4f0354c", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### **Import Packages**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "59e79729-1b02-4ef5-aee1-8923690243da", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# To force use of shapely\n", + "import os\n", + "os.environ['USE_PYGEOS'] = '0'\n", + "\n", + "# For searching NASA data\n", + "import earthaccess\n", + "\n", + "# For reading data, analysis and plotting\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# For resampling\n", + "from affine import Affine\n", + "\n", + "# For plotting\n", + "import matplotlib.pyplot as plt\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "\n", + "from h5cloud.read_atl10 import read_atl10\n", + "\n", + "print(f\"earthaccess: {earthaccess.__version__}\")" + ] + }, + { + "cell_type": "markdown", + "id": "1966ffa6-a5f2-4520-a8dc-f37678a2cf7a", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Authenticate\n", + "\n", + "We need to authenticate and get AWS token" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d47aa955-3d91-4418-85f9-5772f400f712", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "auth = earthaccess.login()" + ] + }, + { + "cell_type": "markdown", + "id": "da19f604-0288-4358-ab88-d18c986f7cc8", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### **Search for ICESat-2 ATL10 data**\n", + "\n", + "We use `earthaccess` to search CMR for granules in the region of interest for the time period of interest. \n", + "\n", + "The region is set by name below. Currently, we have two options: the Ross Sea, and the Southern Ocean and adjoining seas.\n", + "\n", + "The range of dates is set by assigning a start year and end year to `year_begin` and `year_end`. Setting `year_begin` and `year_end` to the same year retreives data for one year." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d2069528-d382-45ab-a865-a41593bc47a8", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# To avoid copying and pasting region tuples\n", + "region = \"Ross Sea\" # Set region to \"Ross Sea\" for just Ross Sea or \"Antarctica\" for southern ocean \n", + "ross_sea = (-180, -78, -160, -74)\n", + "antarctic = (-180, -90, 180, -60)\n", + "this_region = antarctic if region == \"Antarctica\" else ross_sea\n", + "\n", + "year_begin = 2019\n", + "year_end = 2019" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61875e91-c8b4-4beb-9535-c3391d1fcc06", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "atl10 = {}\n", + "total_results = 0\n", + "approx_size = 0\n", + "\n", + "for year in range(year_begin, year_end+1):\n", + " \n", + " print(f\"Searching year {year} ...\")\n", + " granules = earthaccess.search_data(\n", + " short_name = 'ATL10',\n", + " version = '006',\n", + " cloud_hosted = True,\n", + " bounding_box = this_region,\n", + " temporal = (f'{year}-09-01',f'{year}-09-30'),\n", + " )\n", + " total_results += len(granules)\n", + " approx_size += sum([g.size() for g in granules])\n", + " atl10[str(year)] = granules\n", + "print(f\"Total retrieved: {total_results}, approx size: {round(approx_size, 2)} MB\")" + ] + }, + { + "cell_type": "markdown", + "id": "b6887297-2b02-4e76-9bc5-5e804c54c5d7", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Access the Granules\n", + "\n", + "Because the CryoCloud is hub is running on servers in AWS region `us-west-2`, which is the same region as the NASA Earthdata Cloud, granules can be accessed directly without having to download the files first. This is analogous to how you would work with files on your local filesystem. However, _under the hood_ there are differences.\n", + "\n", + "Initially, we load data for each year into a `geopandas.DataFrame`. `geopandas` is an extension of the `pandas` package. `pandas` is designed to work with `tabular` data - _think data you might put into a spreadsheet_. `geopandas`, extends `pandas` to work with geospatial data by adding geometries (points, lines and polygons) and a coordinate reference system (CRS), so that data in each row is associated with a geospatial feature located on Earth. ICESat-2 track data is well suited to the DataFrame data model because data are related to points or segments. Once data is in a `geopandas.DataFrame`, the data can be reprojected and queried using methods you may be used to using in a GIS." + ] + }, + { + "cell_type": "markdown", + "id": "80340da9-1b3b-458d-9d94-9492657f94bf", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "#### Read data into `geopandas.DataFrame`\n", + "\n", + "The first step is to read the data and put it into a Dataframe. We use `h5coro`, which is a package developed by the SlideRule project to efficiently read HDF5 files in the cloud. Recall from the Cloud Optimized Format presentation, the HDF5 format and the HDF5 library for reading and writing those files are not well suited to accessing data in the cloud. `h5coro` was developed to solve some of the problems related to HDF5 format and tools. Using `h5coro` with `dask`, a python package for parallel processing on multicore local machines and distributed cluster in the cloud, reading data from ATL10 files is 5x faster than using the `h5py` package, an HDF5 reader that uses the HDF5 library.\n", + "\n", + "The code to read the data is long, so we have created the `read_atl10` function and put it in a module. The function is imported into this notebook. If your are interested, take a look at `read_atl10` in [`read_atl10.py`](./h5cloud/read_atl10.py). The main features of the function are briefly described here.\n", + "\n", + "We follow the processing steps for ATL20 to generate our freeboard grids. For each grid cell that contain one or more freeboard segments, a grid cell mean freeboard is calculated as a mean of `gtx/freeboard_segment/beam_fb_height` from ATL10, weighted by segment length `gtx/freeboard_segment/heights/height_segment_length_seg`. To resample segments to grid cells, we also need the geodetic coordinates for each segment in `gtx/freeboard_segment/latitude` and `gtx/freeboard_segment/longitude`. As an additional locator, we also read `gtx/freeboard_segment/delta_time`. `gtx` is the beam number.\n", + "\n", + "In addition to the segment data, we also need some ancillary data from each file. In ATL20 gridded freeboards are calculated using only the _strong beams_ of each beam pair. Which of the six beams are strong and which are weak depends on the orientation of the ICESat-2 satellite. Satellite orientation is given in the `orbit_info/sc_orient` dataset. We also need to read the Atlas Standard Data Product Epoch that is stored in `ancillary_data/atlas_sdp_gps_epoch` to convert `delta_time` from seconds since launch to date and time.\n", + "\n", + "```{note}\n", + "There are three beam pairs numbered 1, 2 and 3. Each of these beam pairs has a left and right beam. Beams are numbered `gt1l` and `gt1r`, `gt2l` and `gt2r`, and `gt3l` and `gt3r`. Depending on the orientation of the ICESat-2 satellite, left beams or right beams are the _strong beams_. The orientation can be _forward_ or _backward_, or _transition_. We only use data in forward or backward orientations.\n", + "```\n", + "\n", + "The datasets containing segment data are stored in the `DATASETS` constant, which is a python `list`, in `reader.py`. If you want additional or different datasets, you can modify this list. See [NSIDC DAAC's ATL10 User Guide](https://nsidc.org/sites/default/files/documents/user-guide/atl10-v006-userguide.pdf) and [ATL10 Data Dictionary](https://nsidc.org/sites/default/files/documents/technical-reference/icesat2_atl10_data_dict_v006.pdf) for detailed descriptions. \n", + "\n", + "A ATL10 file is read using the function `read_atl10`. This function encapsulates opening an HDF5 file and reading the datasets using `h5coro`, and then creating a `geopandas.DataFrame` containing the data. We parallelize the reading of all files in a year using `pqdm`, so files are read using different processors. File for a given year are then concatenated into a single dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5fc14401-66a6-44ba-b8f2-421f45e50c29", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%time\n", + "\n", + "env = \"cloud\" # or local\n", + "\n", + "if env == \"local\":\n", + " files = [g.data_links(access=\"out_of_region\")[0] for g in atl10[\"2019\"]]\n", + " cred = auth.token['access_token']\n", + "else:\n", + " files = [g.data_links(access=\"direct\")[0].replace(\"s3://\", \"\") for g in granules]\n", + " aws_credentials = earthaccess.get_s3_credentials(\"NSIDC\")\n", + " cred = {\n", + " \"aws_access_key_id\": aws_credentials[\"accessKeyId\"],\n", + " \"aws_secret_access_key\": aws_credentials[\"secretAccessKey\"],\n", + " \"aws_session_token\": aws_credentials[\"sessionToken\"]\n", + " }\n", + "tracks = read_atl10(files, executors=4, environment=env, credentials=cred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4f577fc-7c75-456e-b7bb-2a4f45ab77c5", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "tracks" + ] + }, + { + "cell_type": "markdown", + "id": "e63674b7-c92a-4bc1-818c-9dae0cf9cc69", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Grid the track data\n", + "\n", + "The resampling and calculation of statistics follows the processing steps described in the ATL20 - Gridded Sea Ice Freeboard - ATBD but gridding to a EASE-Grid v2 6.25 km grid. Any projected coordinate system or grid could be chosen. The procedure could be modified with extra QC steps or modifications. **The world is your oyster - or [Aplacophoran](https://antarcticsun.usap.gov/science/4447/)**.\n", + "\n", + "The processing steps are:\n", + "\n", + "- remove non-ice and low quality segments \n", + "- resample freeboard segments to a grid\n", + "- calculate aggregate statistics\n", + " + mean segment length\n", + " + segment count\n", + " + length weighted mean freeboard\n", + " + length weighted standard deviation of freeboard\n", + " \n", + "### Resample Freeboard Segments to a Grid\n", + "\n", + "Following the ATL20 ATBD, we will use a _drop-in-the-bucket_ resampling scheme. This is simple and relatively easy to implement. More complex resampling schemes could be substituted.\n", + "\n", + "To demonstrate resampling we will resample freeboard segments to WGS84 / NSIDC EASE-Grid v2.0 South with a grid resolution of 6.25 km. The EPSG code for the WGS84 / NSIDC EASE-Grid South coordinate reference system is [6932](https://epsg.org/crs_6932/WGS-84-NSIDC-EASE-Grid-2-0-South.html).\n", + "\n", + "We will use the standard 6.25 km grid. To define the grid, we need the grid dimensions (nrows and ncols), the x and y projected coordinates of the upper-left corner of the upper-left grid cell, and the height and width of the grid cells in the same units as the projected coordinates. In this case, the units are meters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "427548f4-9adb-4cee-adc1-b721bddcb7a7", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "easegrid2_epsg = 6932\n", + "\n", + "# nrow = 2880\n", + "# ncol = 2880\n", + "# upper_left_x = -9000000.0\n", + "# upper_left_y = 9000000.0\n", + "# width = 6250.0\n", + "# height = -6250.0\n", + "\n", + "nrow = 151\n", + "ncol = 147\n", + "width = 10000.0\n", + "height = -10000.0\n", + "upper_left_x = -1040000.0\n", + "upper_left_y = -560000.0\n", + "\n", + "map_extent = [upper_left_x, (upper_left_x + (ncol*width)), (upper_left_y + (nrow*height)), upper_left_y]" + ] + }, + { + "cell_type": "markdown", + "id": "0ed0d70b-253b-4ced-a354-6c7a20637640", + "metadata": { + "user_expressions": [] + }, + "source": [ + "The first step is to reproject the points from geodetic coordinates (latitude and longitude) to projected coordinates (x, y). Because the data are in a `geopandas.DataFrame` we can use the `to_crs` method. This takes an EPSG code either as a numeric value (`6932`) or as a string (`\"EPSG:6932\"`).\n", + "\n", + "You can see that the `POINT` objects in the `geometry` have changed from having latitudes and longitudes as coordinates to x and y in meters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "78293c52-ad08-45a1-bd66-99b2eaade3e7", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%time\n", + "tracks = tracks.to_crs(easegrid2_epsg)\n", + "tracks.head()" + ] + }, + { + "cell_type": "markdown", + "id": "76ea27df-9bea-409f-a754-d945fb7ae01a", + "metadata": { + "user_expressions": [] + }, + "source": [ + "A _Drop-in-the-Bucket_ resampling scheme collects points into the grid cells that they intersect with, and then calculates aggregate statistics for each grid cell using attributes associated with those points.\n", + "\n", + "We'll find the grid cell that contains each segment by calculating the row and column coordinates for each segment from the projected coordinates. This is done by creating an _Affine_ transformation matrix for the grid. The Affine matrix is just a matrix representation of the algebraic expressions to convert row and column indices of the grid to projected coordinates. The equations below give the forward transformation from `(row, col)` to `(x, y)`. \n", + "\n", + "$$\n", + "x = width * col + upper\\_left\\_x \\\\\n", + "y = height * row + upper\\_left\\_y\n", + "$$\n", + "\n", + "These are expressed in matrix form:\n", + "\n", + "$$\n", + "\\begin{bmatrix}\n", + "x \\\\\n", + "y \\\\\n", + "0\n", + "\\end{bmatrix} = \n", + "\\begin{bmatrix}\n", + "a & 0 & c \\\\\n", + "0 & d & e \\\\\n", + "0 & 0 & 1\n", + "\\end{bmatrix}\n", + "\\begin{bmatrix}\n", + "col \\\\\n", + "row \\\\\n", + "1\n", + "\\end{bmatrix}\n", + "$$\n", + "\n", + "where $a$ is $\\mathsf{width}$, $c$ is $\\mathsf{upper\\_left\\_x}$, $d$ is $height$, and $e$ is $upper\\_left\\_y$.\n", + "\n", + "```{note}\n", + "The projected coordinate system we are using is a cartesian plane with the origin at the South Pole. The `x` coordinates increase to the right, and `y` coordinates increase up. For raster data, which includes grids and images, have the origin at the upper-left corner of the grid. Column indices increase from right to left, and row indices increase from top to bottom.\n", + "```\n", + "\n", + "We use the `affine` package to create a forward transformation matrix (`fwd`) using the grid parameters above. To transform `(x, y)` projected coordinates to `(row, col)`, we can calculate the reverse transformation matrix using `~fwd`.\n", + "\n", + "`(row, col)` coordinates are still rational numbers. We want an integer row and column indices for grid cells. We can use the `floor` function to get integers. `row` and `column` indices are zero based.\n", + "\n", + "We want to be able to leverage the `geopandas.Dataframe.groupby` functionality to collect points into grid cells, so we need a unique identifier to group the data. We can calculate a unique cell index from `row` and `column` indices as follows:\n", + "\n", + "$$\n", + "cell\\_index = row * ncol + col\n", + "$$\n", + "\n", + "This is encapsulated in the function `get_grid_index`. This function is then applied to the `geometry` of tracks." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00314673-7229-4be9-8674-0f39c9f29baf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_grid_index(xy):\n", + " geotransform = (upper_left_x, width, 0., upper_left_y, 0., height)\n", + " fwd = Affine.from_gdal(*geotransform)\n", + " col, row = ~fwd * xy\n", + " return (np.floor(row) * ncol) + np.floor(col)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bde50514-c70a-499c-ae77-ffadf367c6df", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%time\n", + "tracks[\"grid_index\"] = [get_grid_index((x, y)) for x, y in zip(tracks.geometry.x, tracks.geometry.y)]\n", + "tracks.head()" + ] + }, + { + "cell_type": "markdown", + "id": "5e8ef611-f970-4615-9e18-df848a103dd6", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Calculate grid cell mean statistics\n", + "\n", + "We calculate four statistics for grid cells that contain segments.\n", + "\n", + "#### Grid Cell Mean Segment Length $\\bar{L}$\n", + "\n", + "$$\n", + "\\bar{L}(x, y, D) = \\frac{\\sum L_i}{N}\n", + "$$\n", + "\n", + "where $L_i$ is `/gtx/freeboard_beam_segment/height_segments/height_segment_length_seg`, $x$ and $y$ are projected coordinates for grid centers, and $D$ is day. \n", + "\n", + "#### Grid Cell Mean Freeboard $\\bar{h}$\n", + "\n", + "$$\n", + "\\bar{h}(x, y, D) = \\frac{\\sum L_i h_i}{\\sum L_i}\n", + "$$\n", + "\n", + "where $h_i$ is `gtx/freeboard_beam_segment/beam_freeboard/beam_fb_height`.\n", + "\n", + "#### Grid Cell Standard Deviation of Freeboard $\\sigma^2 (x, y, D)$\n", + "\n", + "$$\n", + "\\sigma^2 (x, y, D) = \\frac{\\sum L_i (h_i)^2}{\\sum L_i} - \\bar{h}^2 (x, y, D)\n", + "$$\n", + "\n", + "The functions to calculate these statistics are given below. These functions are applied to the grouped data. The `geopandas.apply` method only accepts a single method when operating on multiple columns in a dataframe. We could just have multiple calls for each aggregating function. However, we can collect the individual aggregating functions into a single function and pass that to the `apply` method. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36b0e9c9-b81e-4e71-b29a-7b04b6c42b15", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def mean_segment_length(df):\n", + " \"\"\"Returns mean segment length\"\"\"\n", + " return df[\"height_segment_length_seg\"].mean()\n", + "\n", + "\n", + "def mean_freeboard(df):\n", + " \"\"\"Returns length weighted mean freeboard\"\"\"\n", + " return (df.beam_fb_height * df.height_segment_length_seg).sum() / df.height_segment_length_seg.sum()\n", + "\n", + "\n", + "def stdev_freeboard(df):\n", + " \"\"\"Returns weighted standard deviation of freeboard\"\"\"\n", + " hmean = mean_freeboard(df)\n", + " stdev = (df.beam_fb_height**2 * df.height_segment_length_seg).sum() / df.height_segment_length_seg.sum()\n", + " return stdev - hmean**2\n", + "\n", + "\n", + "def count_segments(df):\n", + " \"\"\"Number of segments in grid cell\"\"\"\n", + " return df.beam_fb_height.count()\n", + "\n", + "\n", + "def all_funcs(x):\n", + " \"\"\"Wrapper that allows all the aggregation functions to be applied at once\"\"\"\n", + " funcs = {\n", + " mean_segment_length.__name__: mean_segment_length(x), #__name__ gets the name of a function\n", + " mean_freeboard.__name__: mean_freeboard(x),\n", + " stdev_freeboard.__name__: stdev_freeboard(x),\n", + " count_segments.__name__: count_segments(x),\n", + " }\n", + " # `apply` is expected to return a series or a scaler so we collect the results\n", + " # into a series indexed by aggregating function name\n", + " return pd.Series(funcs, index=funcs.keys())" + ] + }, + { + "cell_type": "markdown", + "id": "25f5be24-a611-4f05-ad99-10d07d1fa7ef", + "metadata": { + "user_expressions": [] + }, + "source": [ + "#### Testing the functions\n", + "\n", + "It is always a good idea to test your code. Below are some test data and expected results. The functions are tested on `test_df`. We then use `pandas.testing.assert_frame_equal` to check that the result and expected dataframes are the same. In this case we are only interested getting the same values, so we do not check the names or datatypes. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4888fdcb-f08a-4164-b740-f25d25a92aba", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "test_df = pd.DataFrame(\n", + " {\n", + " 'grid_index': [1, 1, 1, 2, 2, 2, 2],\n", + " \"height_segment_length_seg\": [1.2, 1.1, 0.7, 2.3, 1.5, .9, 1.],\n", + " \"beam_fb_height\": [0., 0.2, 0.5, 1.1, 2., .9, 1.5], \n", + " }\n", + ")\n", + "expected = pd.DataFrame(\n", + " {\n", + " \"mean_segment_length\": [1.0, 1.425],\n", + " \"mean_freeboard\": [0.19000000000000003, 1.375438596491228],\n", + " \"stdev_freeboard\": [0.03689999999999998, 0.17167743921206569],\n", + " \"count_segments\": [3, 4],\n", + " },\n", + " index = [1, 2]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6f9696fc-7d63-4d5b-9d41-a95e5c408875", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "result = test_df.groupby(\"grid_index\").apply(all_funcs)\n", + "result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b7fe215-e265-4c6b-ae21-f2ca1dfbdee0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "pd.testing.assert_frame_equal(expected, result, check_names=False, check_dtype=False)" + ] + }, + { + "cell_type": "markdown", + "id": "fa6e82a2-569d-46c8-b7ba-53bd42774ac7", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Now that we have functions that work we can apply them to the real data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4430c3cf-a667-43df-8313-701fdfc1abf9", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%time\n", + "aggregated_data = tracks.groupby(\"grid_index\").apply(all_funcs)\n", + "aggregated_data" + ] + }, + { + "cell_type": "markdown", + "id": "3d50d44e-3cb1-4d82-9711-619258d4308b", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Assign aggregated data to grid cells\n", + "\n", + "We now have a dataframe that contains grid cell statistics indexed by a unique array index. We can now create a grid for each of these statistics.\n", + "\n", + "The procedure is relatively straight forward.\n", + "\n", + " - Create an 1D array with the same number of elements as cells in our grid.\n", + " - Use the `grid_index` of the dataframe as an array index to assign values to grid cells, where we have data.\n", + " - Reshape the grid to the dimension of the grid.\n", + " \n", + "We can encapsulate this in a `series_to_grid` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22f1a761-2fa1-4700-8dc2-481b419ee2a1", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def series_to_grid(series, nrow, ncol):\n", + " \"\"\"Converts a geopandas.Series to a grid using the index\"\"\"\n", + " these_points = (series.index >= 0) & (series.index < (nrow*ncol - 1))\n", + " \n", + " array_index = series[these_points].index.values.astype(int) # the array index must be an integer\n", + " \n", + " vector = np.full(nrow*ncol, np.nan)\n", + " vector[array_index] = series[these_points]\n", + " return vector.reshape(nrow, ncol)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3acf83d5-b888-427d-b4f0-e98beae7845f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%time\n", + "grids = {name: series_to_grid(values, nrow, ncol) for name, values in aggregated_data.items()}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6994fca1-53aa-4b76-95d9-c24981bb4100", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%matplotlib widget\n", + "plt.imshow(grids['count_segments'], interpolation='none')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1c1b73ba-e759-43cb-ad11-4b24c79eb75b", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## Plot data on a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8454d0e8-fd29-45f6-b5aa-f15947ea95de", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "#proj = EASEGrid2South()\n", + "plt.close(\"all\")\n", + "proj = ccrs.LambertAzimuthalEqualArea(central_latitude=-90)\n", + "\n", + "test_extent = [-3000000.0, 3000000.0, -3000000.0, 3000000.0]\n", + "#np.array(map_extent)+np.array([-1e6,-1e6,1e6,1e6])\n", + "\n", + "fig = plt.figure(figsize=(10,10))\n", + "ax = fig.add_subplot(111, projection=proj)\n", + "ax.set_extent(map_extent, proj)\n", + "ax.add_feature(cfeature.LAND)\n", + "ax.coastlines()\n", + "\n", + "plt.imshow(grids['count_segments'], interpolation='none', extent=map_extent)\n", + "#ax.set_extent(" + ] + }, + { + "cell_type": "markdown", + "id": "5b30ee90-e32c-4abe-9dc4-729fb4ab8b30", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Appendix\n", + "\n", + "### Get grid parameters for Ross Sea region" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "42dc7abd-05bc-4c2b-ba17-e5f375707bfb", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Import GeoJSON of Ross Sea - this is very approximate\n", + "import geopandas as gpd\n", + "\n", + "ross_sea_gdf = gpd.read_file(\"ross_sea.json\")\n", + "bounds = ross_sea_gdf.to_crs(easegrid2_epsg).bounds.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7238b9cb-d2d8-4157-90b0-7c8a429dfdbb", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Calculate parameters for a grid with resolution that covers region\n", + "resolution = 10000.\n", + "minx, miny, maxx, maxy = [func(bound/resolution) * resolution for bound, func in zip(list(bounds), [np.floor, np.floor, np.ceil, np.ceil])][0]\n", + "\n", + "grid_extent_x = maxx - minx\n", + "grid_extent_y = maxy - miny\n", + "\n", + "width = height = resolution\n", + "\n", + "ncol = grid_extent_x / width\n", + "nrow = grid_extent_y / height\n", + "\n", + "upper_left_x = minx\n", + "upper_left_y = maxy\n", + "\n", + "print(f\"nrow = {int(nrow)}\")\n", + "print(f\"ncol = {int(ncol)}\")\n", + "print(f\"width = {width}\")\n", + "print(f\"height = -{height}\")\n", + "print(f\"upper_left_x = {upper_left_x}\")\n", + "print(f\"upper_left_y = {upper_left_y}\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b640585b-9853-40dc-8aeb-e190bb4a24b3", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# from cartopy.crs import AzimuthalEquidistant\n", + "\n", + "# class EASEGrid2South(AzimuthalEquidistant):\n", + " \n", + "# def __init__(self):\n", + "# super(EASEGrid2South, self).__init__(central_longitude=0.0, central_latitude=-90.0,\n", + "# false_easting=0.0, false_northing=0.0,\n", + "# globe=None)\n", + " \n", + "# self._bounds = [-9000000.0, -9000000.0, 9000000.0, 9000000.0]\n", + "# self._x_limits = self._bounds[0], self._bounds[2]\n", + "# self._y_limits = self._bounds[1], self._bounds[3]\n", + " \n", + "\n", + "# @property\n", + "# def bounds(self):\n", + "# return self._bounds\n", + " \n", + "# @property\n", + "# def threshold(self):\n", + "# return 1e5\n", + "\n", + "# @property\n", + "# def x_limits(self):\n", + "# return self._x_limits\n", + "\n", + "# @property\n", + "# def y_limits(self):\n", + "# return self._y_limits\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/ICESat-2_Cloud_Access/ATL10-h5coro_rendered.ipynb b/notebooks/ICESat-2_Cloud_Access/ATL10-h5coro_rendered.ipynb new file mode 100644 index 0000000..3df12f3 --- /dev/null +++ b/notebooks/ICESat-2_Cloud_Access/ATL10-h5coro_rendered.ipynb @@ -0,0 +1,1733 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e86eaecf-a612-4dbb-8bdc-5b5dfddf65b9", + "metadata": { + "user_expressions": [] + }, + "source": [ + "
\n", + "\n", + "\n", + "# **Processing Large-scale Time Series of ICESat-2 Sea Ice Height in the Cloud**\n", + "\n", + "
\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "bc15319c-5110-4aaa-8932-db8b4055a167", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## **1. Tutorial Overview**\n", + "\n", + "This tutorial is designed for the \"DAAC data access in the cloud hands-on experience\" session at the 2023 NSIDC DAAC [User Working Group (UWG)](https://nsidc.org/data/data-programs/nsidc-daac/about-daac#anchor-2) Meeting. \n", + "\n", + "The NSIDC DAAC archives and distributes Daily and Monthly Gridded [Sea Ice Freeboard (ATL20)](https://nsidc.org/data/atl20) and [Polar Sea Surface Height Anomaly (ATL21)](https://nsidc.org/data/atl21) data sets from the ICESat-2 Mission, derived from the lower level [ATL10](https://nsidc.org/data/atl10) data set. However, we may want these lower level point data to be gridded and averaged at a weekly cadence, or using a different projection or other gridding parameters. \n", + "\n", + "This tutorial session is in two parts: \n", + "* We will first guide you through this Jupyter Notebook running in the AWS `us-west-2` region, where data are hosted in the NASA Earthdata Cloud. The notebook utilizes several libraries to performantly search, access, read, and grid the data including `earthaccess`, `h5coro`, and `geopandas`.\n", + "\n", + "* This notebook will focus on the Ross Sea, Antarctica. But let’s say we want to scale this analysis to the entire continent. In the second portion, we will present how to scale and run this same workflow from a script (see [workflow.py](./h5cloud/workflow.py) in the `h5cloud` folder within this notebook's directory) that can be run from your laptop, using [Coiled](https://www.coiled.io/). \n", + "\n", + "### **Credits**\n", + "\n", + "The notebook was created by Andy Barrett and Luis Lopez of NSIDC.\n", + "\n", + "For questions regarding the notebook, or to report problems, please create a new issue in the [NSIDC-Data-Tutorials repo](https://github.com/nsidc/NSIDC-Data-Tutorials/issues).\n", + "\n", + "### **Learning Objectives**\n", + "\n", + "By the end of this demonstration you will be able to: \n", + "1. Use `earthaccess` to authenticate with Earthdata Login, search for ICESat-2 data using spatial and temporal filters, and directly access files in the cloud.\n", + "2. Open data granules using `h5coro` to efficiently read HDF5 data from the NSIDC DAAC S3 bucket.\n", + "3. Load data into a geopandas.DataFrame containing geodetic coordinates, ancillary variables, and date/time converted from ATLAS Epoch.\n", + "4. Grid track data to EASE-Grid v2 6.25 km projected grid using drop-in-the-bucket resampling. \n", + "5. Calculate mean statistics and assign aggregated data to grid cells. \n", + "5. Visualize aggregated sea ice height data on a map.\n", + "\n", + "### **Prerequisites**\n", + "\n", + "1. We are running this notebook in the [CryoCloud](https://book.cryointhecloud.com/intro.html) JupyterHub. For more information, see the CryoCloud [Getting Started](https://book.cryointhecloud.com/content/Getting_Started.html) documentation.\n", + "**It is advised that you use at least a 16GB instance for this notebook.** \n", + "2. An Earthdata Login is required for data access. If you don't have one, you can register for one [here](https://urs.earthdata.nasa.gov/).\n", + "3. It is recommended that you create a .netrc file that contains your Earthdata Login credentials, stored in your home directory. If you do not have a .netrc file, `earthaccess` will prompt you to enter your Earthdata Login username and password.\n", + "\n", + "### **Example of end product** \n", + "At the end of this tutorial, the following figure will be generated, demonstrating a year's worth of ATL10 Sea Ice Freeboard height data gridded over the Ross Sea, Antarctica:\n", + "
\n", + "\n", + "
\n", + "\n", + "### **Time requirement**\n", + "\n", + "Allow approximately 40 minutes to complete this tutorial." + ] + }, + { + "cell_type": "markdown", + "id": "53b77eb5-d5ed-4ddd-8fb1-6c69618d7852", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## **2. Tutorial steps**\n", + "\n", + "### Installing the latest version of earthaccess\n", + "\n", + "The CryoCloud environment currently does not have the latest `earthaccess` version installed, along with new features in `h5coro` that are not yet released, so we will first manually install those below:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9700d441-441a-41fb-9ad8-7ea5eabec52b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%capture\n", + "# suppress install outputs\n", + "\n", + "!pip uninstall -y earthaccess h5coro\n", + "!pip install earthaccess==0.6.1\n", + "\n", + "# h5coro has new features that we need that are not released\n", + "!pip install git+https://github.com/ICESat2-SlideRule/h5coro.git@main" + ] + }, + { + "cell_type": "markdown", + "id": "e7bdaa85-ac4e-4172-9154-1d0992414cc1", + "metadata": { + "user_expressions": [] + }, + "source": [ + "**NOTE**: Restart the kernel and clean output after running the cell above." + ] + }, + { + "cell_type": "markdown", + "id": "7820a737-33f0-4470-b9a4-03c5c4f0354c", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### **Import Packages**" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "59e79729-1b02-4ef5-aee1-8923690243da", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "earthaccess: 0.6.1\n" + ] + } + ], + "source": [ + "# To force use of shapely\n", + "import os\n", + "os.environ['USE_PYGEOS'] = '0'\n", + "\n", + "# For searching NASA data\n", + "import earthaccess\n", + "\n", + "# For reading data, analysis and plotting\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# For resampling\n", + "from affine import Affine\n", + "\n", + "# For plotting\n", + "import matplotlib.pyplot as plt\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "\n", + "from h5cloud.read_atl10 import read_atl10\n", + "\n", + "print(f\"earthaccess: {earthaccess.__version__}\")" + ] + }, + { + "cell_type": "markdown", + "id": "1966ffa6-a5f2-4520-a8dc-f37678a2cf7a", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Authenticate\n", + "\n", + "We need to authenticate and get AWS token" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d47aa955-3d91-4418-85f9-5772f400f712", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "EARTHDATA_USERNAME and EARTHDATA_PASSWORD are not set in the current environment, try setting them or use a different strategy (netrc, interactive)\n", + "No .netrc found in /home/jovyan\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter your Earthdata Login username: amy.steiker\n", + "Enter your Earthdata password: ········\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You're now authenticated with NASA Earthdata Login\n", + "Using token with expiration date: 10/06/2023\n", + "Using user provided credentials for EDL\n" + ] + } + ], + "source": [ + "auth = earthaccess.login()" + ] + }, + { + "cell_type": "markdown", + "id": "da19f604-0288-4358-ab88-d18c986f7cc8", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### **Search for ICESat-2 ATL10 data**\n", + "\n", + "We use `earthaccess` to search CMR for granules in the region of interest for the time period of interest. \n", + "\n", + "The region is set by name below. Currently, we have two options: the Ross Sea, and the Southern Ocean and adjoining seas.\n", + "\n", + "The range of dates is set by assigning a start year and end year to `year_begin` and `year_end`. Setting `year_begin` and `year_end` to the same year retreives data for one year." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d2069528-d382-45ab-a865-a41593bc47a8", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# To avoid copying and pasting region tuples\n", + "region = \"Ross Sea\" # Set region to \"Ross Sea\" for just Ross Sea or \"Antarctica\" for southern ocean \n", + "ross_sea = (-180, -78, -160, -74)\n", + "antarctic = (-180, -90, 180, -60)\n", + "this_region = antarctic if region == \"Antarctica\" else ross_sea\n", + "\n", + "year_begin = 2019\n", + "year_end = 2019" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "61875e91-c8b4-4beb-9535-c3391d1fcc06", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching year 2019 ...\n", + "Granules found: 59\n", + "Total retrieved: 59, approx size: 4711.89 MB\n" + ] + } + ], + "source": [ + "atl10 = {}\n", + "total_results = 0\n", + "approx_size = 0\n", + "\n", + "for year in range(year_begin, year_end+1):\n", + " \n", + " print(f\"Searching year {year} ...\")\n", + " granules = earthaccess.search_data(\n", + " short_name = 'ATL10',\n", + " version = '006',\n", + " cloud_hosted = True,\n", + " bounding_box = this_region,\n", + " temporal = (f'{year}-09-01',f'{year}-09-30'),\n", + " )\n", + " total_results += len(granules)\n", + " approx_size += sum([g.size() for g in granules])\n", + " atl10[str(year)] = granules\n", + "print(f\"Total retrieved: {total_results}, approx size: {round(approx_size, 2)} MB\")" + ] + }, + { + "cell_type": "markdown", + "id": "b6887297-2b02-4e76-9bc5-5e804c54c5d7", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Access the Granules\n", + "\n", + "Because the CryoCloud is hub is running on servers in AWS region `us-west-2`, which is the same region as the NASA Earthdata Cloud, granules can be accessed directly without having to download the files first. This is analogous to how you would work with files on your local filesystem. However, _under the hood_ there are differences.\n", + "\n", + "Initially, we load data for each year into a `geopandas.DataFrame`. `geopandas` is an extension of the `pandas` package. `pandas` is designed to work with `tabular` data - _think data you might put into a spreadsheet_. `geopandas`, extends `pandas` to work with geospatial data by adding geometries (points, lines and polygons) and a coordinate reference system (CRS), so that data in each row is associated with a geospatial feature located on Earth. ICESat-2 track data is well suited to the DataFrame data model because data are related to points or segments. Once data is in a `geopandas.DataFrame`, the data can be reprojected and queried using methods you may be used to using in a GIS." + ] + }, + { + "cell_type": "markdown", + "id": "80340da9-1b3b-458d-9d94-9492657f94bf", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "#### Read data into `geopandas.DataFrame`\n", + "\n", + "The first step is to read the data and put it into a Dataframe. We use `h5coro`, which is a package developed by the SlideRule project to efficiently read HDF5 files in the cloud. Recall from the Cloud Optimized Format presentation, the HDF5 format and the HDF5 library for reading and writing those files are not well suited to accessing data in the cloud. `h5coro` was developed to solve some of the problems related to HDF5 format and tools. Using `h5coro` with `dask`, a python package for parallel processing on multicore local machines and distributed cluster in the cloud, reading data from ATL10 files is 5x faster than using the `h5py` package, an HDF5 reader that uses the HDF5 library.\n", + "\n", + "The code to read the data is long, so we have created the `read_atl10` function and put it in a module. The function is imported into this notebook. If your are interested, take a look at `read_atl10` in [`read_atl10.py`](./h5cloud/read_atl10.py). The main features of the function are briefly described here.\n", + "\n", + "We follow the processing steps for ATL20 to generate our freeboard grids. For each grid cell that contain one or more freeboard segments, a grid cell mean freeboard is calculated as a mean of `gtx/freeboard_segment/beam_fb_height` from ATL10, weighted by segment length `gtx/freeboard_segment/heights/height_segment_length_seg`. To resample segments to grid cells, we also need the geodetic coordinates for each segment in `gtx/freeboard_segment/latitude` and `gtx/freeboard_segment/longitude`. As an additional locator, we also read `gtx/freeboard_segment/delta_time`. `gtx` is the beam number.\n", + "\n", + "In addition to the segment data, we also need some ancillary data from each file. In ATL20 gridded freeboards are calculated using only the _strong beams_ of each beam pair. Which of the six beams are strong and which are weak depends on the orientation of the ICESat-2 satellite. Satellite orientation is given in the `orbit_info/sc_orient` dataset. We also need to read the Atlas Standard Data Product Epoch that is stored in `ancillary_data/atlas_sdp_gps_epoch` to convert `delta_time` from seconds since launch to date and time.\n", + "\n", + "```{note}\n", + "There are three beam pairs numbered 1, 2 and 3. Each of these beam pairs has a left and right beam. Beams are numbered `gt1l` and `gt1r`, `gt2l` and `gt2r`, and `gt3l` and `gt3r`. Depending on the orientation of the ICESat-2 satellite, left beams or right beams are the _strong beams_. The orientation can be _forward_ or _backward_, or _transition_. We only use data in forward or backward orientations.\n", + "```\n", + "\n", + "The datasets containing segment data are stored in the `DATASETS` constant, which is a python `list`, in `reader.py`. If you want additional or different datasets, you can modify this list. See [NSIDC DAAC's ATL10 User Guide](https://nsidc.org/sites/default/files/documents/user-guide/atl10-v006-userguide.pdf) and [ATL10 Data Dictionary](https://nsidc.org/sites/default/files/documents/technical-reference/icesat2_atl10_data_dict_v006.pdf) for detailed descriptions. \n", + "\n", + "A ATL10 file is read using the function `read_atl10`. This function encapsulates opening an HDF5 file and reading the datasets using `h5coro`, and then creating a `geopandas.DataFrame` containing the data. We parallelize the reading of all files in a year using `pqdm`, so files are read using different processors. File for a given year are then concatenated into a single dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5fc14401-66a6-44ba-b8f2-421f45e50c29", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4d15028bb2d548d68bc96e58c1620673", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "QUEUEING TASKS | : 0%| | 0/59 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
delta_timeseg_dist_xheight_segment_length_segbeam_fb_heightheight_segment_typebeamgeometry
18312019-09-01 11:10:212.720752e+0720.2903310.2535101gt1lPOINT (11.39429 -64.01932)
18322019-09-01 11:10:212.720753e+0719.5699310.2659721gt1lPOINT (11.39427 -64.01942)
18332019-09-01 11:10:212.720754e+0716.0698150.2763161gt1lPOINT (11.39426 -64.01948)
18342019-09-01 11:10:212.720755e+0714.6708190.3030781gt1lPOINT (11.39424 -64.01954)
18352019-09-01 11:10:212.720755e+0714.6712240.3242901gt1lPOINT (11.39423 -64.01960)
........................
878222019-09-29 21:27:033.353085e+0733.3092840.0787561gt3rPOINT (24.31374 -59.33261)
878232019-09-29 21:27:033.353087e+0741.7011260.1422419gt3rPOINT (24.31370 -59.33242)
878242019-09-29 21:27:033.353090e+0762.7436100.1164709gt3rPOINT (24.31366 -59.33221)
878252019-09-29 21:27:033.353096e+07144.1396480.1880111gt3rPOINT (24.31354 -59.33160)
878262019-09-29 21:27:033.353119e+07120.4031910.2149331gt3rPOINT (24.31312 -59.32955)
\n", + "

15917557 rows × 7 columns

\n", + "" + ], + "text/plain": [ + " delta_time seg_dist_x height_segment_length_seg \\\n", + "1831 2019-09-01 11:10:21 2.720752e+07 20.290331 \n", + "1832 2019-09-01 11:10:21 2.720753e+07 19.569931 \n", + "1833 2019-09-01 11:10:21 2.720754e+07 16.069815 \n", + "1834 2019-09-01 11:10:21 2.720755e+07 14.670819 \n", + "1835 2019-09-01 11:10:21 2.720755e+07 14.671224 \n", + "... ... ... ... \n", + "87822 2019-09-29 21:27:03 3.353085e+07 33.309284 \n", + "87823 2019-09-29 21:27:03 3.353087e+07 41.701126 \n", + "87824 2019-09-29 21:27:03 3.353090e+07 62.743610 \n", + "87825 2019-09-29 21:27:03 3.353096e+07 144.139648 \n", + "87826 2019-09-29 21:27:03 3.353119e+07 120.403191 \n", + "\n", + " beam_fb_height height_segment_type beam geometry \n", + "1831 0.253510 1 gt1l POINT (11.39429 -64.01932) \n", + "1832 0.265972 1 gt1l POINT (11.39427 -64.01942) \n", + "1833 0.276316 1 gt1l POINT (11.39426 -64.01948) \n", + "1834 0.303078 1 gt1l POINT (11.39424 -64.01954) \n", + "1835 0.324290 1 gt1l POINT (11.39423 -64.01960) \n", + "... ... ... ... ... \n", + "87822 0.078756 1 gt3r POINT (24.31374 -59.33261) \n", + "87823 0.142241 9 gt3r POINT (24.31370 -59.33242) \n", + "87824 0.116470 9 gt3r POINT (24.31366 -59.33221) \n", + "87825 0.188011 1 gt3r POINT (24.31354 -59.33160) \n", + "87826 0.214933 1 gt3r POINT (24.31312 -59.32955) \n", + "\n", + "[15917557 rows x 7 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tracks" + ] + }, + { + "cell_type": "markdown", + "id": "e63674b7-c92a-4bc1-818c-9dae0cf9cc69", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Grid the track data\n", + "\n", + "The resampling and calculation of statistics follows the processing steps described in the ATL20 - Gridded Sea Ice Freeboard - ATBD but gridding to a EASE-Grid v2 6.25 km grid. Any projected coordinate system or grid could be chosen. The procedure could be modified with extra QC steps or modifications. **The world is your oyster - or [Aplacophoran](https://antarcticsun.usap.gov/science/4447/)**.\n", + "\n", + "The processing steps are:\n", + "\n", + "- remove non-ice and low quality segments \n", + "- resample freeboard segments to a grid\n", + "- calculate aggregate statistics\n", + " + mean segment length\n", + " + segment count\n", + " + length weighted mean freeboard\n", + " + length weighted standard deviation of freeboard\n", + " \n", + "### Resample Freeboard Segments to a Grid\n", + "\n", + "Following the ATL20 ATBD, we will use a _drop-in-the-bucket_ resampling scheme. This is simple and relatively easy to implement. More complex resampling schemes could be substituted.\n", + "\n", + "To demonstrate resampling we will resample freeboard segments to WGS84 / NSIDC EASE-Grid v2.0 South with a grid resolution of 6.25 km. The EPSG code for the WGS84 / NSIDC EASE-Grid South coordinate reference system is [6932](https://epsg.org/crs_6932/WGS-84-NSIDC-EASE-Grid-2-0-South.html).\n", + "\n", + "We will use the standard 6.25 km grid. To define the grid, we need the grid dimensions (nrows and ncols), the x and y projected coordinates of the upper-left corner of the upper-left grid cell, and the height and width of the grid cells in the same units as the projected coordinates. In this case, the units are meters." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "427548f4-9adb-4cee-adc1-b721bddcb7a7", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "easegrid2_epsg = 6932\n", + "\n", + "# nrow = 2880\n", + "# ncol = 2880\n", + "# upper_left_x = -9000000.0\n", + "# upper_left_y = 9000000.0\n", + "# width = 6250.0\n", + "# height = -6250.0\n", + "\n", + "nrow = 151\n", + "ncol = 147\n", + "width = 10000.0\n", + "height = -10000.0\n", + "upper_left_x = -1040000.0\n", + "upper_left_y = -560000.0\n", + "\n", + "map_extent = [upper_left_x, (upper_left_x + (ncol*width)), (upper_left_y + (nrow*height)), upper_left_y]" + ] + }, + { + "cell_type": "markdown", + "id": "0ed0d70b-253b-4ced-a354-6c7a20637640", + "metadata": { + "user_expressions": [] + }, + "source": [ + "The first step is to reproject the points from geodetic coordinates (latitude and longitude) to projected coordinates (x, y). Because the data are in a `geopandas.DataFrame` we can use the `to_crs` method. This takes an EPSG code either as a numeric value (`6932`) or as a string (`\"EPSG:6932\"`).\n", + "\n", + "You can see that the `POINT` objects in the `geometry` have changed from having latitudes and longitudes as coordinates to x and y in meters." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "78293c52-ad08-45a1-bd66-99b2eaade3e7", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 14.3 s, sys: 1.51 s, total: 15.8 s\n", + "Wall time: 15.8 s\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
delta_timeseg_dist_xheight_segment_length_segbeam_fb_heightheight_segment_typebeamgeometry
18312019-09-01 11:10:212.720752e+0720.2903310.2535101gt1lPOINT (568023.081 2818528.976)
18322019-09-01 11:10:212.720753e+0719.5699310.2659721gt1lPOINT (568019.787 2818518.673)
18332019-09-01 11:10:212.720754e+0716.0698150.2763161gt1lPOINT (568017.576 2818511.765)
18342019-09-01 11:10:212.720755e+0714.6708190.3030781gt1lPOINT (568015.636 2818505.708)
18352019-09-01 11:10:212.720755e+0714.6712240.3242901gt1lPOINT (568013.520 2818499.103)
\n", + "
" + ], + "text/plain": [ + " delta_time seg_dist_x height_segment_length_seg \\\n", + "1831 2019-09-01 11:10:21 2.720752e+07 20.290331 \n", + "1832 2019-09-01 11:10:21 2.720753e+07 19.569931 \n", + "1833 2019-09-01 11:10:21 2.720754e+07 16.069815 \n", + "1834 2019-09-01 11:10:21 2.720755e+07 14.670819 \n", + "1835 2019-09-01 11:10:21 2.720755e+07 14.671224 \n", + "\n", + " beam_fb_height height_segment_type beam \\\n", + "1831 0.253510 1 gt1l \n", + "1832 0.265972 1 gt1l \n", + "1833 0.276316 1 gt1l \n", + "1834 0.303078 1 gt1l \n", + "1835 0.324290 1 gt1l \n", + "\n", + " geometry \n", + "1831 POINT (568023.081 2818528.976) \n", + "1832 POINT (568019.787 2818518.673) \n", + "1833 POINT (568017.576 2818511.765) \n", + "1834 POINT (568015.636 2818505.708) \n", + "1835 POINT (568013.520 2818499.103) " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "tracks = tracks.to_crs(easegrid2_epsg)\n", + "tracks.head()" + ] + }, + { + "cell_type": "markdown", + "id": "76ea27df-9bea-409f-a754-d945fb7ae01a", + "metadata": { + "user_expressions": [] + }, + "source": [ + "A _Drop-in-the-Bucket_ resampling scheme collects points into the grid cells that they intersect with, and then calculates aggregate statistics for each grid cell using attributes associated with those points.\n", + "\n", + "We'll find the grid cell that contains each segment by calculating the row and column coordinates for each segment from the projected coordinates. This is done by creating an _Affine_ transformation matrix for the grid. The Affine matrix is just a matrix representation of the algebraic expressions to convert row and column indices of the grid to projected coordinates. The equations below give the forward transformation from `(row, col)` to `(x, y)`. \n", + "\n", + "$$\n", + "x = width * col + upper\\_left\\_x \\\\\n", + "y = height * row + upper\\_left\\_y\n", + "$$\n", + "\n", + "These are expressed in matrix form:\n", + "\n", + "$$\n", + "\\begin{bmatrix}\n", + "x \\\\\n", + "y \\\\\n", + "0\n", + "\\end{bmatrix} = \n", + "\\begin{bmatrix}\n", + "a & 0 & c \\\\\n", + "0 & d & e \\\\\n", + "0 & 0 & 1\n", + "\\end{bmatrix}\n", + "\\begin{bmatrix}\n", + "col \\\\\n", + "row \\\\\n", + "1\n", + "\\end{bmatrix}\n", + "$$\n", + "\n", + "where $a$ is $\\mathsf{width}$, $c$ is $\\mathsf{upper\\_left\\_x}$, $d$ is $height$, and $e$ is $upper\\_left\\_y$.\n", + "\n", + "```{note}\n", + "The projected coordinate system we are using is a cartesian plane with the origin at the South Pole. The `x` coordinates increase to the right, and `y` coordinates increase up. For raster data, which includes grids and images, have the origin at the upper-left corner of the grid. Column indices increase from right to left, and row indices increase from top to bottom.\n", + "```\n", + "\n", + "We use the `affine` package to create a forward transformation matrix (`fwd`) using the grid parameters above. To transform `(x, y)` projected coordinates to `(row, col)`, we can calculate the reverse transformation matrix using `~fwd`.\n", + "\n", + "`(row, col)` coordinates are still rational numbers. We want an integer row and column indices for grid cells. We can use the `floor` function to get integers. `row` and `column` indices are zero based.\n", + "\n", + "We want to be able to leverage the `geopandas.Dataframe.groupby` functionality to collect points into grid cells, so we need a unique identifier to group the data. We can calculate a unique cell index from `row` and `column` indices as follows:\n", + "\n", + "$$\n", + "cell\\_index = row * ncol + col\n", + "$$\n", + "\n", + "This is encapsulated in the function `get_grid_index`. This function is then applied to the `geometry` of tracks." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "00314673-7229-4be9-8674-0f39c9f29baf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_grid_index(xy):\n", + " geotransform = (upper_left_x, width, 0., upper_left_y, 0., height)\n", + " fwd = Affine.from_gdal(*geotransform)\n", + " col, row = ~fwd * xy\n", + " return (np.floor(row) * ncol) + np.floor(col)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "bde50514-c70a-499c-ae77-ffadf367c6df", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1min 41s, sys: 468 ms, total: 1min 42s\n", + "Wall time: 1min 42s\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
delta_timeseg_dist_xheight_segment_length_segbeam_fb_heightheight_segment_typebeamgeometrygrid_index
18312019-09-01 11:10:212.720752e+0720.2903310.2535101gt1lPOINT (568023.081 2818528.976)-49526.0
18322019-09-01 11:10:212.720753e+0719.5699310.2659721gt1lPOINT (568019.787 2818518.673)-49526.0
18332019-09-01 11:10:212.720754e+0716.0698150.2763161gt1lPOINT (568017.576 2818511.765)-49526.0
18342019-09-01 11:10:212.720755e+0714.6708190.3030781gt1lPOINT (568015.636 2818505.708)-49526.0
18352019-09-01 11:10:212.720755e+0714.6712240.3242901gt1lPOINT (568013.520 2818499.103)-49526.0
\n", + "
" + ], + "text/plain": [ + " delta_time seg_dist_x height_segment_length_seg \\\n", + "1831 2019-09-01 11:10:21 2.720752e+07 20.290331 \n", + "1832 2019-09-01 11:10:21 2.720753e+07 19.569931 \n", + "1833 2019-09-01 11:10:21 2.720754e+07 16.069815 \n", + "1834 2019-09-01 11:10:21 2.720755e+07 14.670819 \n", + "1835 2019-09-01 11:10:21 2.720755e+07 14.671224 \n", + "\n", + " beam_fb_height height_segment_type beam \\\n", + "1831 0.253510 1 gt1l \n", + "1832 0.265972 1 gt1l \n", + "1833 0.276316 1 gt1l \n", + "1834 0.303078 1 gt1l \n", + "1835 0.324290 1 gt1l \n", + "\n", + " geometry grid_index \n", + "1831 POINT (568023.081 2818528.976) -49526.0 \n", + "1832 POINT (568019.787 2818518.673) -49526.0 \n", + "1833 POINT (568017.576 2818511.765) -49526.0 \n", + "1834 POINT (568015.636 2818505.708) -49526.0 \n", + "1835 POINT (568013.520 2818499.103) -49526.0 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "tracks[\"grid_index\"] = [get_grid_index((x, y)) for x, y in zip(tracks.geometry.x, tracks.geometry.y)]\n", + "tracks.head()" + ] + }, + { + "cell_type": "markdown", + "id": "5e8ef611-f970-4615-9e18-df848a103dd6", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Calculate grid cell mean statistics\n", + "\n", + "We calculate four statistics for grid cells that contain segments.\n", + "\n", + "#### Grid Cell Mean Segment Length $\\bar{L}$\n", + "\n", + "$$\n", + "\\bar{L}(x, y, D) = \\frac{\\sum L_i}{N}\n", + "$$\n", + "\n", + "where $L_i$ is `/gtx/freeboard_beam_segment/height_segments/height_segment_length_seg`, $x$ and $y$ are projected coordinates for grid centers, and $D$ is day. \n", + "\n", + "#### Grid Cell Mean Freeboard $\\bar{h}$\n", + "\n", + "$$\n", + "\\bar{h}(x, y, D) = \\frac{\\sum L_i h_i}{\\sum L_i}\n", + "$$\n", + "\n", + "where $h_i$ is `gtx/freeboard_beam_segment/beam_freeboard/beam_fb_height`.\n", + "\n", + "#### Grid Cell Standard Deviation of Freeboard $\\sigma^2 (x, y, D)$\n", + "\n", + "$$\n", + "\\sigma^2 (x, y, D) = \\frac{\\sum L_i (h_i)^2}{\\sum L_i} - \\bar{h}^2 (x, y, D)\n", + "$$\n", + "\n", + "The functions to calculate these statistics are given below. These functions are applied to the grouped data. The `geopandas.apply` method only accepts a single method when operating on multiple columns in a dataframe. We could just have multiple calls for each aggregating function. However, we can collect the individual aggregating functions into a single function and pass that to the `apply` method. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "36b0e9c9-b81e-4e71-b29a-7b04b6c42b15", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def mean_segment_length(df):\n", + " \"\"\"Returns mean segment length\"\"\"\n", + " return df[\"height_segment_length_seg\"].mean()\n", + "\n", + "\n", + "def mean_freeboard(df):\n", + " \"\"\"Returns length weighted mean freeboard\"\"\"\n", + " return (df.beam_fb_height * df.height_segment_length_seg).sum() / df.height_segment_length_seg.sum()\n", + "\n", + "\n", + "def stdev_freeboard(df):\n", + " \"\"\"Returns weighted standard deviation of freeboard\"\"\"\n", + " hmean = mean_freeboard(df)\n", + " stdev = (df.beam_fb_height**2 * df.height_segment_length_seg).sum() / df.height_segment_length_seg.sum()\n", + " return stdev - hmean**2\n", + "\n", + "\n", + "def count_segments(df):\n", + " \"\"\"Number of segments in grid cell\"\"\"\n", + " return df.beam_fb_height.count()\n", + "\n", + "\n", + "def all_funcs(x):\n", + " \"\"\"Wrapper that allows all the aggregation functions to be applied at once\"\"\"\n", + " funcs = {\n", + " mean_segment_length.__name__: mean_segment_length(x), #__name__ gets the name of a function\n", + " mean_freeboard.__name__: mean_freeboard(x),\n", + " stdev_freeboard.__name__: stdev_freeboard(x),\n", + " count_segments.__name__: count_segments(x),\n", + " }\n", + " # `apply` is expected to return a series or a scaler so we collect the results\n", + " # into a series indexed by aggregating function name\n", + " return pd.Series(funcs, index=funcs.keys())" + ] + }, + { + "cell_type": "markdown", + "id": "25f5be24-a611-4f05-ad99-10d07d1fa7ef", + "metadata": { + "user_expressions": [] + }, + "source": [ + "#### Testing the functions\n", + "\n", + "It is always a good idea to test your code. Below are some test data and expected results. The functions are tested on `test_df`. We then use `pandas.testing.assert_frame_equal` to check that the result and expected dataframes are the same. In this case we are only interested getting the same values, so we do not check the names or datatypes. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "4888fdcb-f08a-4164-b740-f25d25a92aba", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "test_df = pd.DataFrame(\n", + " {\n", + " 'grid_index': [1, 1, 1, 2, 2, 2, 2],\n", + " \"height_segment_length_seg\": [1.2, 1.1, 0.7, 2.3, 1.5, .9, 1.],\n", + " \"beam_fb_height\": [0., 0.2, 0.5, 1.1, 2., .9, 1.5], \n", + " }\n", + ")\n", + "expected = pd.DataFrame(\n", + " {\n", + " \"mean_segment_length\": [1.0, 1.425],\n", + " \"mean_freeboard\": [0.19000000000000003, 1.375438596491228],\n", + " \"stdev_freeboard\": [0.03689999999999998, 0.17167743921206569],\n", + " \"count_segments\": [3, 4],\n", + " },\n", + " index = [1, 2]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "6f9696fc-7d63-4d5b-9d41-a95e5c408875", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mean_segment_lengthmean_freeboardstdev_freeboardcount_segments
grid_index
11.0000.1900000.0369003.0
21.4251.3754390.1716774.0
\n", + "
" + ], + "text/plain": [ + " mean_segment_length mean_freeboard stdev_freeboard \\\n", + "grid_index \n", + "1 1.000 0.190000 0.036900 \n", + "2 1.425 1.375439 0.171677 \n", + "\n", + " count_segments \n", + "grid_index \n", + "1 3.0 \n", + "2 4.0 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result = test_df.groupby(\"grid_index\").apply(all_funcs)\n", + "result" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5b7fe215-e265-4c6b-ae21-f2ca1dfbdee0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "pd.testing.assert_frame_equal(expected, result, check_names=False, check_dtype=False)" + ] + }, + { + "cell_type": "markdown", + "id": "fa6e82a2-569d-46c8-b7ba-53bd42774ac7", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Now that we have functions that work we can apply them to the real data." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "4430c3cf-a667-43df-8313-701fdfc1abf9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 22.7 s, sys: 368 ms, total: 23.1 s\n", + "Wall time: 23.1 s\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mean_segment_lengthmean_freeboardstdev_freeboardcount_segments
grid_index
-63836.035.5449300.4618770.048001394.0
-63689.020.8596820.5295770.0480611364.0
-63688.017.0132830.5809570.046754203.0
-63542.016.1946330.5066540.0491443649.0
-63396.013.7223070.5638010.022238299.0
...............
34094.013.6124640.0963490.0015442060.0
34212.066.5431440.3627120.03180318.0
34240.012.7739070.1177690.0013881698.0
34241.014.2397220.1130660.0015612717.0
34387.013.0657820.1217040.0000729.0
\n", + "

8927 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " mean_segment_length mean_freeboard stdev_freeboard \\\n", + "grid_index \n", + "-63836.0 35.544930 0.461877 0.048001 \n", + "-63689.0 20.859682 0.529577 0.048061 \n", + "-63688.0 17.013283 0.580957 0.046754 \n", + "-63542.0 16.194633 0.506654 0.049144 \n", + "-63396.0 13.722307 0.563801 0.022238 \n", + "... ... ... ... \n", + " 34094.0 13.612464 0.096349 0.001544 \n", + " 34212.0 66.543144 0.362712 0.031803 \n", + " 34240.0 12.773907 0.117769 0.001388 \n", + " 34241.0 14.239722 0.113066 0.001561 \n", + " 34387.0 13.065782 0.121704 0.000072 \n", + "\n", + " count_segments \n", + "grid_index \n", + "-63836.0 394.0 \n", + "-63689.0 1364.0 \n", + "-63688.0 203.0 \n", + "-63542.0 3649.0 \n", + "-63396.0 299.0 \n", + "... ... \n", + " 34094.0 2060.0 \n", + " 34212.0 18.0 \n", + " 34240.0 1698.0 \n", + " 34241.0 2717.0 \n", + " 34387.0 9.0 \n", + "\n", + "[8927 rows x 4 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "aggregated_data = tracks.groupby(\"grid_index\").apply(all_funcs)\n", + "aggregated_data" + ] + }, + { + "cell_type": "markdown", + "id": "3d50d44e-3cb1-4d82-9711-619258d4308b", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Assign aggregated data to grid cells\n", + "\n", + "We now have a dataframe that contains grid cell statistics indexed by a unique array index. We can now create a grid for each of these statistics.\n", + "\n", + "The procedure is relatively straight forward.\n", + "\n", + " - Create an 1D array with the same number of elements as cells in our grid.\n", + " - Use the `grid_index` of the dataframe as an array index to assign values to grid cells, where we have data.\n", + " - Reshape the grid to the dimension of the grid.\n", + " \n", + "We can encapsulate this in a `series_to_grid` function." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "22f1a761-2fa1-4700-8dc2-481b419ee2a1", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def series_to_grid(series, nrow, ncol):\n", + " \"\"\"Converts a geopandas.Series to a grid using the index\"\"\"\n", + " these_points = (series.index >= 0) & (series.index < (nrow*ncol - 1))\n", + " \n", + " array_index = series[these_points].index.values.astype(int) # the array index must be an integer\n", + " \n", + " vector = np.full(nrow*ncol, np.nan)\n", + " vector[array_index] = series[these_points]\n", + " return vector.reshape(nrow, ncol)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3acf83d5-b888-427d-b4f0-e98beae7845f", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 2.67 ms, sys: 0 ns, total: 2.67 ms\n", + "Wall time: 2.3 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "grids = {name: series_to_grid(values, nrow, ncol) for name, values in aggregated_data.items()}" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6994fca1-53aa-4b76-95d9-c24981bb4100", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "39120a56766b4768bcd71cf39a49dff1", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjWklEQVR4nO3deXyU5b3///fMZA9JSAIkhDUIiAIiolJxQ4GQ1KX92tZjXWvtqR6XSrUu1Nqip0Klp2iLVWtrq6fU2v561NZzSiC2lmqpFUFcUMEFISwhLCEJWSbJzP3745q57xnumZBAIIH79Xw8eHDnurfrnoRwzeea6/PxWZZlCQAAAJ7h7+0OAAAA4MhiAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABAAAMBjGAACAAB4DANAAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABAAAMBjGAACAAB4DANAAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgIjz6KOPqrS0VBkZGZoyZYpeeeWV3u4SAADoYQwAYfvd736nOXPm6J577tGbb76ps88+WxUVFdq8eXNvdw0AAPQgn2VZVm93An3D1KlTdcopp+ixxx6z20444QR9/vOf14IFC3qxZwAAoCel9HYH0De0tbVp9erVuvvuu+Pay8rKtHLlyi5dIxwOa9u2bcrJyZHP5zsc3QQAHATLstTY2KiSkhL5/Uz+gQEgInbt2qVQKKSioqK49qKiItXU1CQ8JxgMKhgM2l9v3bpVJ5544mHtJwDg4FVXV2vo0KG93Q30AQwAEWf/yJ1lWUmjeQsWLNB9993naq+urlZubu5h6R8AoPsaGho0bNgw5eTk9HZX0EcwAIQkacCAAQoEAq5oX21trSsqGDV37lzddttt9tfRXzC5ubkMAAGgD+LjOYjigwCQJKWlpWnKlCmqqqqKa6+qqtK0adMSnpOenm4P9hj0AQBw9CACCNttt92mq666SqeeeqrOOOMMPfHEE9q8ebNuuOGG3u4aAADoQQwAYfu3f/s37d69W/fff7+2b9+uCRMm6M9//rNGjBjR210DAAA9iDyA6DENDQ3Ky8tTfX0908EA0Ifw+xn74zOAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABAAAMBjGAACAAB4DANAAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgGgRyxYsECnnXaacnJyNGjQIH3+85/X+vXr446xLEvz5s1TSUmJMjMzNX36dK1bt66XegwAAA4XBoAesWLFCt1000167bXXVFVVpY6ODpWVlampqck+ZuHChVq0aJEeeeQRrVq1SsXFxZo1a5YaGxt7secAAKCn+SzLsnq7Ezjydu7cqUGDBmnFihU655xzZFmWSkpKNGfOHN11112SpGAwqKKiIj344IO6/vrrD3jNhoYG5eXlqb6+Xrm5uYf7EQAAXcTvZ+yPCKBH1dfXS5IKCgokSRs3blRNTY3KysrsY9LT03Xuuedq5cqVvdJHAABweKT0dgdw5FmWpdtuu01nnXWWJkyYIEmqqamRJBUVFcUdW1RUpE2bNiW8TjAYVDAYtL9uaGg4TD0GAAA9iQigB9188816++239dvf/ta1z+fzxX1tWZarLWrBggXKy8uz/wwbNuyw9BcAAPQsBoAec8stt+hPf/qTXn75ZQ0dOtRuLy4uluREAqNqa2tdUcGouXPnqr6+3v5TXV19+DoOAAB6DANAj7AsSzfffLOee+45/fWvf1VpaWnc/tLSUhUXF6uqqspua2tr04oVKzRt2rSE10xPT1dubm7cHwAA0PfxGUCPuOmmm/TMM8/oj3/8o3JycuxIX15enjIzM+Xz+TRnzhzNnz9fY8aM0ZgxYzR//nxlZWXp8ssv7+XeAwCAnsQA0CMee+wxSdL06dPj2n/1q1/pK1/5iiTpzjvvVEtLi2688UbV1dVp6tSpWr58uXJyco5wbwEAwOFEHkD0GPJMAUDfxO9n7I/PAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABAAAMBjGAACAAB4DANAAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgB60YMEC+Xw+zZkzx26zLEvz5s1TSUmJMjMzNX36dK1bt673OgkAAA4bBoAes2rVKj3xxBM66aST4toXLlyoRYsW6ZFHHtGqVatUXFysWbNmqbGxsZd6CgAADhcGgB6yb98+XXHFFfr5z3+u/Px8u92yLD388MO65557dMkll2jChAl6+umn1dzcrGeeeaYXewwAAA4HBoAectNNN+mCCy7QzJkz49o3btyompoalZWV2W3p6ek699xztXLlyiPdTQAAcJil9HYHcGQ8++yzWrNmjVatWuXaV1NTI0kqKiqKay8qKtKmTZuSXjMYDCoYDNpfNzQ09FBvAQDA4UQE0AOqq6t16623asmSJcrIyEh6nM/ni/vasixXW6wFCxYoLy/P/jNs2LAe6zMAADh8GAB6wOrVq1VbW6spU6YoJSVFKSkpWrFihX7yk58oJSXFjvxFI4FRtbW1rqhgrLlz56q+vt7+U11dfVifAwAA9AymgD1gxowZeuedd+Larr32Wo0bN0533XWXRo0apeLiYlVVVWny5MmSpLa2Nq1YsUIPPvhg0uump6crPT39sPYdAAD0PAaAHpCTk6MJEybEtWVnZ6uwsNBunzNnjubPn68xY8ZozJgxmj9/vrKysnT55Zf3RpcBAMBhxAAQkqQ777xTLS0tuvHGG1VXV6epU6dq+fLlysnJ6e2uAQCAHuazLMvq7U7g2NDQ0KC8vDzV19crNze3t7sDAIjg9zP2xyIQAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABAAAMBjGAACAAB4DANAAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwDQQ7Zu3aorr7xShYWFysrK0sknn6zVq1fb+y3L0rx581RSUqLMzExNnz5d69at68UeAwCAw4EBoEfU1dXpzDPPVGpqqpYuXar33ntPP/rRj9S/f3/7mIULF2rRokV65JFHtGrVKhUXF2vWrFlqbGzsvY4DAIAe57Msy+rtTuDwu/vuu/WPf/xDr7zySsL9lmWppKREc+bM0V133SVJCgaDKioq0oMPPqjrr7/+gPdoaGhQXl6e6uvrlZub26P9BwAcPH4/Y39EAD3iT3/6k0499VR96Utf0qBBgzR58mT9/Oc/t/dv3LhRNTU1Kisrs9vS09N17rnnauXKlb3RZQAAcJgwAPSITz75RI899pjGjBmjZcuW6YYbbtA3vvEN/fd//7ckqaamRpJUVFQUd15RUZG9b3/BYFANDQ1xfwAAQN+X0tsdwJERDod16qmnav78+ZKkyZMna926dXrsscd09dVX28f5fL648yzLcrVFLViwQPfdd9/h6zQAADgsiAB6xODBg3XiiSfGtZ1wwgnavHmzJKm4uFiSXNG+2tpaV1Qwau7cuaqvr7f/VFdXH4aeAwCAnsYA0CPOPPNMrV+/Pq5tw4YNGjFihCSptLRUxcXFqqqqsve3tbVpxYoVmjZtWsJrpqenKzc3N+4PAADo+5gC9ohvfvObmjZtmubPn69LL71Ur7/+up544gk98cQTkszU75w5czR//nyNGTNGY8aM0fz585WVlaXLL7+8l3sPAAB6EgNAjzjttNP0/PPPa+7cubr//vtVWlqqhx9+WFdccYV9zJ133qmWlhbdeOONqqur09SpU7V8+XLl5OT0Ys8BAEBPIw8gegx5pgCgb+L3M/bHZwABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABAAAMBjGAACAAB4DANAAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPCaltzsAAH1Z+aAb7O1wfaMkaXnwN73VHQDoEUQAAQAAPIYIIADPKx97p9nYtcduq9zzC0mSVTzQblte+/gR7RcAHC5EAAEAADyGCCCAPmNWymXOF+GQJKkq/P8dlnvNzrrK3t77/06WJOUvr3cdt29M3iHfqyz9Cnubzw8C6AuIAAIAAHgMA0AAAACPYQoYQJ9hfWaCvZ1S2yBJmuX/kt3W3eng8vHftrcr182P29c2bby9nbWj3Ryz82eua7TmH/r7ZH+/bHt7ds5XJEnLGp/q0rnlhV93vrDC5q/2jm5dAwD2RwQQAADAY4gAAjgiKkbdLkla+smP3PtGfFOSFJxUEtOaK0l6aUP3F4FE07r4mlpc91i66SFJ0t7Rafa+gb9aLUmaFbjUbqsK/d5cI9Tt27v48mMWkjQ0duvc0PHD7O2O7FTTls57dwCHht8iAAAAHsMAEAAAwGOYAgZwROybUJx0X7ggR5K082TnV9LIR9YnPT42h58vz0wVV27/qd1mZaVHdvqctpqdkqTzZyyQJOUFnH3R3HyxdX+jsnZ1uNq6uzDFip32bWs/4PGxwqkBezuUEXnPbnXrEirLvNLpS1ubJGeKG4A3EQEEAADwGCKAAI6IYP/k7zdbhvaTJBW/FrTborV4E17rHCddTMaqj90HRCJ/LaMK7KYV6x+UJJ10q1kEUrJ0u/u8QYWuptb8gKvNl5rmautMaM9eeztlWEnyAxPYOzrD3k5vMGlgMne1dencaGUVf0a63eYvyO/W/QEcm4gAAgAAeAwDQAAAAI9hChjAYVM++CZ7O3VaadLj9owz+e1KfvJGp9ebnfdVSZJ15ji7rXL3E67jwpnmev4OZ7VExeg7JEnpZw42521Y6L6B5V5d0ZHhc7X5MzNcbZ0JjBoec8HuJRZsGeTcP22f+bs9u4u/uiOVQ8KtztR6ID092dEAPIQIIAAAgMcQAQRw2DSc5UT9sra1uvaXpV8hSfLfcKokJx1LMsGpYyVJmas/7fS47WeaRSXv/vCbdlv5CXMlSYVLNyQ9z0pzfiVWlNwsSWr+2nHuA9NSO71/VLSySNvsU+22FX++s0vnRrX3c6KSKa1mu25s1+7vj0T7ljX/2m4rL/hat+4P4NhEBBAAAMBjGAB6REdHh77zne+otLRUmZmZGjVqlO6//36Fw2H7GMuyNG/ePJWUlCgzM1PTp0/XunXrerHXAADgcGAK2CMefPBBPf7443r66ac1fvx4vfHGG7r22muVl5enW2+9VZK0cOFCLVq0SE899ZTGjh2r73//+5o1a5bWr1+vnJycXn4C9CXRqVup82nbPeOcHHp5b+xx7Q+ffqIkqXBd0LUvkbS/vSVJqmz7rWtfbHWOwI3TXPvrpgyQJP1ryYKk128ck2tvZ+aY6dPsrQnKbvic987R+yaqCOI7xTxfR2b332tHp499933GbsveYF7DnZMGxd072f3lN/eNrZyigDuv4eycr0iSljU+1e1+Ajg6EQH0iH/+85/63Oc+pwsuuEAjR47UF7/4RZWVlemNN8yqS8uy9PDDD+uee+7RJZdcogkTJujpp59Wc3OznnnmmV7uPQAA6ElEAD3irLPO0uOPP64NGzZo7Nixeuutt/Tqq6/q4YcfliRt3LhRNTU1Kisrs89JT0/Xueeeq5UrV+r666/vpZ6jt5QPdL7nlTt/Frdv+42n7n94Qq1FTsqTpRsXSZLOm/kDuy29rlmSlLJ9Z9JrRNO3SNLyBJG/qNqYqF9qs4naRSthSFLrf0w9YH994ZjtBIG/aFSu8VLnWq/99tGk16uenSdJGvGHHXZbxZBbJElLty7uvDORlDRFr8ekjYl8ZKNolakE4p90guu02Lq/y1uWSIpPxxNbM9m+bFOTpM6jmbFiX9con9+dLscKmb5TdxjoexgAesRdd92l+vp6jRs3ToFAQKFQSA888IC+/OUvS5JqamokSUVFRXHnFRUVadOmTQmvGQwGFQw6U3cNDQ2HqfcAAKAnMQD0iN/97ndasmSJnnnmGY0fP15r167VnDlzVFJSomuuucY+zueLfxdvWZarLWrBggW67777Dmu/0XvqZo91tUVTqaR/ZmCn584++V5J0tBS5zN1s+d+RZLUcOlJdtugD00EMLSvKem1giMKku6TpLLTzc9g62ede2V8ZKJn/pOOt9vacpVU9DNyOceNsNva8zPNRsyPf8f5p0iSdk1O/G9Ccp5dknRBpO8B59M2HcM6f+2iolG4sqn3222+SBLp1IZ28/Wmba7zrKD785TJ/g3vf6+uCvTLliSFY+7lSzP1kX2DBzl92by1W9cFcOTwGUCPuOOOO3T33Xfrsssu08SJE3XVVVfpm9/8phYsMB+ILy4uluREAqNqa2tdUcGouXPnqr6+3v5TXV19eB8CAAD0CAaAHtHc3Cy/P/7bHQgE7DQwpaWlKi4uVlVVlb2/ra1NK1as0LRp7hWVkvmMYG5ubtwfAADQ9zEF7BEXXXSRHnjgAQ0fPlzjx4/Xm2++qUWLFumrXzW1VX0+n+bMmaP58+drzJgxGjNmjObPn6+srCxdfvnlvdx7HEmz+5mPBASvnuTaF8rP6tI1Qv1MCpWsrc12W/1FEyVJg152pgXD+aZih29vfdJrBVo6Or1X81DTp5F/2mu37TnJLL7wtTnnBgvDSiZaKSNu+jbCipk93XZW9LmS92fnafn2dsEHZsq2abTTltrY+fPsz9/Q4nwRmQL2R56rcs8vXMcnnM5NkPrlUIQaG829EizuiF0g4ktN/l9M9LjYxSOdLfIB0LMYAHrE4sWLde+99+rGG29UbW2tSkpKdP311+u73/2ufcydd96plpYW3Xjjjaqrq9PUqVO1fPlycgACAHCMYQDoETk5OXr44YfttC+J+Hw+zZs3T/PmzTti/ULf4xtiPg9auM5du3fvGPPh//4fNrv2xbIiix5ai9LstrrjTVvuH5yFCx1nmwUhgbcbk18rQXqRihFOjd+2c4dKkl5d4yxIGvt9k3Km/5KPY87qfDGJ674ppr9h5xEUHGgicMOXOVG5/VOn7JnkRBrH3fehJOmTb4yz20r/6/1u9cMXbHO+SDGRPH9Le5fOLS+6UZLUNmFYt+55IJ2ldanqeNbejiaYTihsXsvlHd1bgAKgZ/AZQAAAAI9hAAgAAOAxTAEDiNM6wixYyNi+z7WvLc9Mx6bUdT4FHK1i4YspYjHqSZNQfGnMB/3Pm2WqgnSWh85Kdb9PDe/cZW/nbDJ59coLv263pV5nKmQEThhtt2VXH/j9rhWzWCKUYbatmBx6ee+ZtubBmXZbbrFJkzRr2n9KkkqGOvvCo4aYe29zyoosq//lAfsR16f0mDnoyHS4r9G8/rE1fsOtZso+9rUMDzc5+VL3xCwkOcxip32jFUYS6W7uQQA9iwggAACAxxABBBAnuvjB1+CO3jSVmEhW5br5dlu0Pm7swoDdE0wUrPh5ZxFGx45a1/UCzSadSac1aEPuoryt506wt1csvUuSNP7Oh+y2wf8wfbereUhKa0xQ3LcTKfvMQotAm/NrMu8TsyCjeqYTlctZZ1LZ7JoUXSDjLNqoH23a8jc4FTPK0kz5xa6mPPG1O2ljQgXmXoHI98YXs0I/kJam/e0+yeTmXP3kbV26V2dio42+bJN6Z/8a0ZJktTkLVIjyAX0XEUAAAACPYQAIAADgMUwBA4iT2mim8JZucqZUywfdIEka/JnjJMV/0N86w+TyK0u/wm5rfGCKJKk45KwCSTQduG+4maLt/35e0v58epEzjRudPvVNd6qUlA+83mxc5+Ta87eaadNQP2da1HKnE7RVDLvVbBTnJz9I0r6hkeuNipker2swf51oFqMM+Plae1fTN6dKkvo//57d5utuYvWwk1fQXx9ZfBN9XcPO62tFFt7ETtWmXHJy9+7VWTeCzjS22pLnIbTanSnwTqf2AfQqIoAAAAAeQwQQQJzUbXWuttCu3ZKkzGWRih0njLL3dWSZXyP1106x2yZP2yBJ+kPt465rVZTcbG/v/Ka5Tv6r2Un7E051Fm8EZ5wsyVn4IUnnfnahJKlwXUxUKuAO9+VsSR61ahttUrl0ZDq/EqOLQKyYt8m7ykyqldQNTn93V5hUMwXvRm49ari9L3ubid5Faw1L0uyTTL3haHRM6nqEzMo0EUhfi4nG+WJS1IT3mahkw+cn222pzcnrHycSrc8bW83D7mMn1T/ixPTJ369ft+4P4MghAggAAOAxDAABAAA8hilgAHHTkYH+yRdkLA/+RpI0vfxBuy3jNTPdWzvFyc234ffHm41p7mt0RKpTSFI43UzvLq3+seu4itF3SJLSLy+x23yRnICz875qt4VmmKofKTHTnf4mM0UaynB+xUUXtyQSzE81/Ulxpi+biszik9gcfmf8u1nMseZFZ5p190nmnNLnzfR468gCe1/uRnfFlJ1TzUKTNW93bdo3tGWbvb3v82aaPWfZVkmSL8V5vuUtSyRJk25xFu8U/6OhS/eISikp7tbxifgznUU7VoupQMJiEKDvIQIIAADgMUQAARwwMrP//oy3Ntvb1nAToWs6zomwjflVm5IJxyy0yNqS/D1oxwCTLqV1sJPqJPUvayRJoUjqGUnK+ZfpS81FpXbb3ypNpZKZZz/gXLCTQiBNRabGb8E6p2ZuVticUDcuy27b0txfkuSPqU7iC5kI4PLXvydJOv/8Bc6FX3tbklQ+/tt2U+MVA1z37yxCFlsxZNLNJrq3MlJPuHzwTa5rNP7wDLvtrcX3ua7XKat71VISilkEYkXS1QRycw/9ugB6FBFAAAAAj2EACAAA4DFMAQPovo4Oe3PH2WZRw/AXnanaQHPyKeCdk5xFAkNerk963LZzzRRw6f/EVKDwmfeslt+ZZly6dbEkafJ/LOq0y76uTG/GTF82jMqQJO2Z4Jy366NhkqTUU5z3zgPejr9uyj/X2dvLI1O651y40G7zt5t7xC68iV3M0Zlw+n5f73Vev/BZJ0uS8j7q0qUSCtXukhS/yGZZZLr5QKKVYKwO56MA0dyBsc8KoG8gAggAAOAxRAABdFvbSSPt7ZxqE/lL3+1E6pa9eb/rnGiN2tQvOylUYiNu+2sZZCJrGe9tsdvap5pUM6k17sihleDtbMo7n9jboRNHug+InhvphhVTQaQ131yw+MQau63p/0yaFGuGUy0l/+fxqV6i6Vhi1Zem2ttpCYKesQs9OhNo3S+KGXa+7uhn7pG9I6SDFU3z09Pnkv4F6HuIAAIAAHgMEUAA3bZnnPNhtOLfr5ckheu7lnQ4WOBE2XzvfRK3r3zsnfZ26pWDzUbM5+Pa80wt3Jf+sVD783e4mtRyxlh7O63efC4xWos4Wt9YkkI3nW6eIc15T9wwxUQ0m94qstus4ZGIW1OG3bb0Y3e0036eid+RJGVMyrfbGocd/Pvuftv3i+7FfBYy0Gr2ZWxvUU+KRm5j6xl3VcWQWyQ5n9ME0HcQAQQAAPAYBoAAAAAewxQwgC6LVrTILe1vt1Xu/FnS42cFLnW+iKRwCcRkdVm272lJzlThrjKnmkf+B6a2b9txTu3gzE17u9Xf2lPS7O1hVa2m7bOjJEmF/+1MATdNNQs5Bq12zj2pdLskadvfRtltqZftkCTV/aNrNXP3TjRTv9nbnbQ4qU0H/2s3+yMzzV4+8HpJki8QsPfVHW+m5d98bG63r9tZJRJfRrqrraus7MwDHwSgVxABBAAA8BgigAASik3eG40M7T7N1LEtXNp5tuFZKZdJkgKDBjqN/U092MJ3W13H75ppIn+Ze5xFDtvONNEtf4cTxfvLy/OT3jNzd9jV1tHPSZOyZ4JJLJ293awWCZ050d4XCJj7Ng116v7m+U1b/w+dRRWXj3xVkvT0w59L2o9YuyeYRRr9/1LtNE4wyaQ7S4GTjK81GHduNIIqSSff1Hki7O4oL/z6QZ8b+3PTMWNKT3QHwGFABBAAAMBjGAACAAB4DFPAABKLmaKc3e8aSVJhqZm+tBobOz21Y/rJkqSU9dvttnCGqVThb3OmecuLbjT7LhotSXrlj3fY+6b8+R5JUvZzXVuEEAi6p4Dbc522+tHm/W7hs+9IkjbfdopzXK3pU8MI5z3xjk/Ns2ZPdRYyPF19hiQptdGpd7u/stPm2dsZZ+dJkip3PGq3nXXJDyVJOcOHdvY4CYX7Z0uSAu1mGvu8WT+w9+WmHfz7edfij+IBzra/e9f1Z2fb2225/BcD9FVEAAEAADyGt2cAErOcBRS+nH6mafM2SYmrQsw88/v2dtNxJmr28ks/tttmnPOAJKk916mLu2/GcZKkQcs2SZJmT/6uvW/YYlNv94XXnOhZIrNzviJJyopJiRJ1yskf29vVT4wxzxKJYoYyYurqRoKdwXynLfef5hnqxzsRy30fmPQvoxWTy2Y/dSfm2tsF75v0L3ELI/7tM5Ik6yDSq7T1N+dkNJq/a053rjHiudpuXy+ZPacU2tsFa+s6OdIRfcbAaCeVT/re5JFSAL2LCCAAAIDHMAAEAADwGKaAASQUKCxwvgiaKU+rrS3J0dK2c50P/w//407X/n3DMyRJWTXOtGDbEPMraGm1mSoef9dD9r6mN80CCp3VeT99qZFfY2Fn+rai5GZJ0mf/ut5u+7/XzNRsOM/k+hvwlrNAZMA3PpUkbXz+OLutI5IScFCpUzGk/QWT19DqJIVfc7Gzs3D5ZklSKGZ/R6bZ31GQre4KFpjp85QWMyXfMsS5cviTzd2+3v7sadxLP2O3tQ1K3s/YqW1bupO3MXV38yH3CcDhQQQQAADAY4gAAogTrd/rS3MiOctblkiSytKvcB1/3kyTiiRvgLO4o3Kdu2JHNGpWO8VZuDD899VxxwQLYxZhfNS196dWyJ3+pebzpn7v0lrnGpXrH5QkTfmaqZgx8PkP7H03PLhSkrTodafGb8EPTd8+fvJ4516drNuoGHarJClz1gjnntt/KsmpjCJJHdGsMv7uVwLJ2G2ip9WzTHgyc6uzz98/r9vX258vxfyXkNLsvKZteV38b8IfWYSztca5XtHAJAcD6G1EAAEAADyGAeAx4O9//7suuugilZSUyOfz6YUXXojbb1mW5s2bp5KSEmVmZmr69Olat25d3DHBYFC33HKLBgwYoOzsbF188cXasmXLEXwKAABwpDAFfAxoamrSpEmTdO211+oLX/iCa//ChQu1aNEiPfXUUxo7dqy+//3va9asWVq/fr1ycnIkSXPmzNGLL76oZ599VoWFhbr99tt14YUXavXq1QokyK+GY1fKyOGSpNAWp4qHPS2ckhr3tSTtvsVUxxjyfOeLENpyzZRnWr0zzbt0o5mOrRh1uyQpfNMQe1/+huQLTuKEQu6mDHOv9990pmNnf9ZUMwldPck0pDlT1uVZZpHLZ1/9jt32t09N3sAFrw+y23aekZ+0G1bjPknSgKVO7sHolHmgn7OQwh9dAxOTZzGqYvgce3vp5odd+wOt5ll9ExrMI/zNyTnYMXaI6/juWt72W0nStC/9V5eOj60gEs3HaLU5i3z8QfM9nJ33VUnSsvpfHnIfAfQMBoDHgIqKClVUVCTcZ1mWHn74Yd1zzz265JJLJElPP/20ioqK9Mwzz+j6669XfX29nnzySf3617/WzJkzJUlLlizRsGHD9NJLL2n27NlH7FkAAMDhxwDwGLdx40bV1NSorKzMbktPT9e5556rlStX6vrrr9fq1avV3t4ed0xJSYkmTJiglStXMgD0gGj0RpJ8I02N2uXB3zj7s66SZN5QSFLLxafZ+3K2mKjU0k1OCpdE9pkCHBr9S2eRQHnB1yRJdRUnSJLyPnKOT2l1R/YSitYsjokEtkYWk+SvcxZatJ59oiRp0BumjnHDWU7Fim/vOEmStHbGt+22e/7PLIRY9vZ/2m2Tb1iUvB+ZJs1NaIdTkSOluEiStHTbI3bb6Vf9yGy4A4CyMtLcjXEHmJNOHWKirZ/UnGDvainqfmWR/UVrM+daziKQT284PtnhccJNTZLio4LR6jCBflmH3DcAPYsB4DGupsb8Z1tUVBTXXlRUpE2bNtnHpKWlKT8/33VM9PxEgsGggkGnJFZDQ0NPdRsAABxGDAA9wueLTzlhWZarbX8HOmbBggW67777eqR/OHJik/cGIoP+HVefZLcVPf2W+6RU83k5a5/5nFvdWOdXx/BnPk16r7Ip85xLVJg0JZUbFtpt08tNapaMOhO9y6p1Ik9WJz970UiVJFmRNyG+dCcCNuwvpq1+lNO2Z5yJrr3z0F2SpOPvdyKWf/hgsiSp4JRMu+2n22dIks4e6dzXF47+7Q7fWc0tkuIjYGWnzXMdF2gz5/piPgNYXvh113GJtA4yz/PhXpNepeBfTh6Y6kuHd+kanamfbtLn5L3tJL+2uvi/ROxz76+jf8Yh9QtAz2MV8DGuuNjkNds/kldbW2tHBYuLi9XW1qa6urqkxyQyd+5c1dfX23+qq6uTHgsAAPoOBoDHuNLSUhUXF6uqqspua2tr04oVKzRt2jRJ0pQpU5Samhp3zPbt2/Xuu+/axySSnp6u3NzcuD8AAKDvYwr4GLBv3z599JHz6fmNGzdq7dq1Kigo0PDhwzVnzhzNnz9fY8aM0ZgxYzR//nxlZWXp8ssvlyTl5eXpuuuu0+23367CwkIVFBToW9/6liZOnGivCsbRLzZ1S5Svvxm0F7+0w26r3Pe0pPiqH4EBpi6wP/L3wLecFC3ROr6J7DjDqU6RucNMec7ud43d1nCFScky6A+mKseGb4+z94194D3X9crH3S1Jaj5tpN2WtdL0JVTvfAY1bYdZ6GGNdqaA+3/cYe4/+buSpPAX+9v7fB+ZRQq7Jzn32vl6ZPHDGU5beoN5hkCzk+okYT3cKL95jx1NcyNJ1tQS12Hh0WbhTWBnffJrSWoYbn5lN71tUtP8a9Nt9r5Ri37U6bldsa/EpHzK/bOTAij3YzPdPPuke+222IUxUfbrEDN1nzLGTCnvO6HwkPsGoGcxADwGvPHGGzrvvPPsr2+7zfyncM011+ipp57SnXfeqZaWFt14442qq6vT1KlTtXz5cjsHoCQ99NBDSklJ0aWXXqqWlhbNmDFDTz31FDkAAQA4BjEAPAZMnz7dTs+RiM/n07x58zRv3rykx2RkZGjx4sVavHjxYeghektFyc32tr9fP0lSuLHRbrP2mqhZaL/Pf0qSP895gxBNmhwaYCKGqQ2dJ2kuS/uyJGnffCddzJifmyhjx+Sxdlt2jVn8Ubn7CUlS6cNOFKtyzy9c191xnol8Fb3iLFLw5Zk+VcUcH118UjfB+Xcx6H8+lCTtvtBEGVP3OZGqlmKzuiNrm/OpmOYS97+pnE/MIhhfs7P6vbPFD+FUc72A37luWmMkmXPQSVvTVGq+N//413eTXkty6ggHWt0LZMKprqYui6b50Q2nSJKWNT5l75t6ReR7ktL5J4Z8qWaRjRWbmLvO/HxZ/gEH3zkAhwWfAQQAAPAYBoAAAAAewxQwcAyK5pXbfZGzqGLVU+azoeX9r3MODJj3gAmnMWM/VhCZwgzU7jVfd3RepcM/xlTZyNrqTFWGPtooSao76zN226BK02YvUFk01f0sx99lb2dOMgsSKt99wG6rGH2H65xNF5vFJ+G0DudxIvkCd59snmv4Mmchx5bzzPzpgLedqe0dCapy+BtMrr/KD35gt0UXPyR6DUMZ5ldsSrozP5vaYO5rpTrvv0NpnefkjIpO83b0C7t3+pJ/DOSAjjffr5K/7XXtSms09woOyHTtixOpHhJb97hyx6OSEudDBNC7iAACAAB4DBFA4BhSPvB6SdKuz5nI38CXt7iOCe1rsrerOp5Nei1fRkz1hkhqj9BWkx5kedtvXcfPSrnM3t575emSnDrBktQ2+1RJUkrQiVQt3WoWHc04b74kqeAddyQsGjmUpJzqbe6OJlgANX7mBknSp0+Psdt2XGNyvGTUmnv425woWijdXCOt6k27LVjuLGCJah3eX1J86pdo5C9RJDCYb37FptY70cRAZPFH/RgnUpazqdX9XBEVQ26xt7MuMJG6UKb7dcraalbsx0ZMK9c/mPS6sVqLTV+y3nW/vul7TOR03/DOI4DRn4nYutJRga27TN8G3eD0rfbxLvUNwOFBBBAAAMBjGAACAAB4DFPAwDFk5+dM9YpAm5nSXLpxkb3PXmjRSc7IWKGSmOoNb75vTu3oSHK01HHeyfZ2do1Z6BBKd95j7pxkVjCM+P1W17kpdWZxRXq9e+FFVej3nfbTyjJT1eUT7rHbcn9upncHrtprt224wxw3cKmpDuJvd6aAC941U6qxU+KTbn7Ida+WgeYZ0rOzXfsCRSZHYcXwOXZb6Jxhpo8B53XwB81r2DDCacv7n/cTP5yktuOKnX6+1yxJqjvRPR2bFam00jGo+yUZWwvMfwUrElR1ib5O0Z+pA/FlZdnb0WnxlOJITfG29kSnAOgFRAABAAA8hgggcJSL1seVpPprTRTquPvWSpJmPeMszAgMMNUYoqk5JCcqGBtli6aJCU06zm77S+QD/onq3kbb0k5yUs74Wk2kZ/MlRXZbtBbw0o//y3UNf52psJG3cm+CJ3SLVhqRJJ1s7rtnvFO5ZEiKiTI2NrbYbVnZJsqX/65ZcNGe70TRQu7Ao3I3u6OdBf80iySsmChXVHiYee196zd12vd9o0yELnu7E1Fb3rIk6fENpU4/859dbTa+eIrrOF80oNnFCG8sf0fyc6xV70iS6mZM6/Qa0Z+DwMCBdlsg1zxruMlELv25Oe4TAfQKIoAAAAAewwAQAADAY5gCBo5ym/+fM8069GVTyWJZ868lSeUFX7P3hevqXOdGp4Vj7f7ceElS0xB3rjl/bG7A6HXPnSxJast0fp1kfmTyvgXznanF4c/vTPoMNRVmscSAtfuSHhPLN26080WrmardPcm510vvnCBJGnGC8wzhVWYBh69jt/t6kVPthTKSMnzu98ehrTWSJKvDWcwQXfTRNs4s1vhb/S/tfadf9aO460tO1Q9f58VUbFbA2V4e/I0k6ZSvm8U9M8/6vr0vZYj53vg6ElQJSSA2b2P6zMlx+8rSr7C3o3kNj5/nXhQTy576HdDf6Xuq6bx/d4P5Ote9eAZA7yACCAAA4DFEAIGj1PnnL5Akhc92onJ/q7wr7pjKPb/o9BrhBhOZqRh2q922c24kGrcqwfvD0SNdTXVjzf0Hrai12xonmgURqY1OBK7y/QVJ+5G100Stwpnd/5W067R801+niIcaSs2qjl0TnbZBq0101Fdvooy+AmchR3QBxYFSzvhz+0mSKnf+zG4rH/9tSVL6rhb3CZHHD6c4r2XzILOdaJFJrOj3pO2Ske5+RE71tzlhxNRm8xBtBe4obSKB40fZ2ykbauP2+fvnuY7PrHXCmHbKnVonmmq1mMU1/hZn0UpHvvneLFtr0suc8W/uBUAAegcRQAAAAI9hAAgAAOAxTAEDR5HY/HebHjhNkjTm6V3OAfd173rR/HNxU3ORacu8T1rdJwTMzrM/90O7qaPU/Bqp/OAHdttxPzSLFEb+r3taNPYZ/P3MooDWS06UJGVXd61SxLK3/9PePuEeszhhWGW93ZZ+pck71/FLZ4FMW57pZ/rA/pKkfcPS7X3ZNclXZJQXft3e7jhxhGv/9vPM4oeSP37q2pfaZKZNW4qdadlQZDNrc1PSe0pS+/DIogr3WhyFI7+5w6nOCpGMHea1rjuha7n2OgqcBRnh1P3O8btvmt7gTAGHs81r13bySLvtb8tNPsrZWVfZbYF+8fkSU/c5C1Rm53xFkrSs8aku9RdAzyICCAAA4DFEAIGjSP2XTrW38zaYvyvffeCgr1cx4puSpNZIGhZJyvnIRH9SdzkpWewqDyeOlSTtnOT86hj5nIlAlp8w125LucwsAvnLim+77ukbP8bernzzfknSpFtMFG/569/rUr9nn3yvvd3xJbPQILDLiQDWt5iIVsn6Brut9nSzsCGv2qRyaTvdqZnbb3Nb0nuFjndem9TN5lkrhtxit6XNLJUkLU1QRzcavWsqct5rp+4zkTQrtfP33235ZiFL3kb3YpHoohVfKCblS6h7FUCaBzsR0H4b49Pv+PxO36IR28DnpthtwQJzrpUgUhhNQSTFRwMlKbXRifBawWC3+gugZxEBBAAA8BgigMBRJHdjs73te+M9s/Hzg7/evkklkqSif+yx29Z/zUTUKtfNt9vKJ35HktQ2yHxuLDUmYBSNQJ5+9Y/stkGrO09xsr9g/24drl1T8u3t4n+Zz++1D3eSWre8b1KRLFtzm90W/dxiZe3jkqQp1y2y9wWCyT8DGNjVaG+H95hk2i3TT7Tb0huTn5u5w0S5dp7spEbJ/SRyrbRAolNsjcPMr+fiP1e7+xS0XNdIbTJRzIy6rmWYbhjunJv78va4feGiAnvbHzZRxuytzuc5G0rNZ/sy9hzg++yPjzGkbXI+rxpKkGgbwJHDv0AAAACPYQAIAADgMUwBA0eRqpX3HvigA6gYfYe93TbV1K/NtpwFBJk7ErwvjEwDVs80H/4/bolT17d87J2SpGDZYLut8NVtrkucN9OkiUnzOQsHootQwv8+zHV8ItHUIXvvPcluG/D7dZKk1rNOsNvSd7sXJ+weH//rLpzmbIfSk0/Hhj7Z7GprKnKuNfDvNUnPTak1i1DaS53+DPidmcYPFvdzHR+7uCTnFPOatI0c6Dqu/3ozB79nvJO+Jf/X70iSUgdOStofyVnU0XH36XZbbGUTSfLvcD4SEBpmFvRYMd+31nzzMxJKS+30Xlbbfotr2p1FIIHCfAHoPUQAAQAAPIYIIOAxu88otrcL1pharh35TsLeftVh1zk7zzALLDJ2mihQ7AKRM79gkkgPfMtZoBL98H/58U5t4u2Xmft+cN/ddlv5uLsj9+xa35vPHy9JyvvQaYsmEo5dhJJV606Jkr4nvi0lJkd1dBFIef/rXOdVdTxrb8882yx4CfaPqXG8YWHS/n56qXlma4/zmlqByI0TZW1JcX4lp+010bJwgnQx0QTQgXbnItF+lk29P2l/JEmTjpck5WxKnjZm6dbF9nY05Y7vjXfttqZvmCjjoD90Xnd4edtv474O1e21t/0juxb1BXB4EAEEAADwGAaAAAAAHsMUMOAR5eNNVQ7fyYV2W3Qqd9ZnnGnDwn+6FzXsOtVMkY571CxqqBh2q72v6SJTHzfnFWce14osKtnxhePttgHvJKho0WLy5Pm7VgJYuyaYX1nDX9zj2pfa7ExpBnPci0D2v0c45rdfNJ9eINdZVBEqdi9S+OjfzXFD/ti1XHvt4820ePabzhS7r8UsjPCHMl3Ht41yFnykbTLT8+1DClzHpXxkFtnkb3D3w//Rlk77FBxo+pLW5J7qT+hj832tCv9/dtPo35tazNF8hF0VrT0tOQuAAPQOIoAAAAAeQwQQ8Ii6SOSv4LXtrn2hLCedR0rIRJVmnOPUGE6riFTWeNtEfs65yFn4MOiNSKWMQEwqlf6mzu7ecU6EaOCv1rru23J8kSQpa0fyihKxdX+tzxXE9UNy6hRnnD3ZbstZ51TviErZL1oVaHO+9gfN/cMD8uy2YKF7gcOsE031lS33DUra31injdgkSdr8P2Nd+1K3O3WKo88QPt+pt7v0E7Oo5fzzF7jOrdzxaNx5sUJ793bap6Zi82s/76OWTo9zLuiOMna0mp+X9n4HH0MI1dQe9LkADh0RQAAAAI9hAAgAAOAxTAEDfcyslMskxeefO1jlE79jb6eNMtObSz/+L9dxW85Pt7dHPmCm5qq/6uRpG7Q6kidv8E2RazlVP5a//j1JUkXpbXZbzXSzmGHQG8406/Lgb1z3DRaYqcScjU1Jn2Hnac5ijIFvuqeKo4sTYp9VkUUosyd/127yj82NOy+c4iwUCaebX4UpTU4/0urNYo2KkpvttqF/Mn8neg2jYl+HzCVmWjxzV0xFjEjffG0xVTH6m+9Nyoc7XNfztzuLNfb/2YhdmLH/9ZNpGWiee8D/be30OOdy7utZbSZ2ED6E/0ES/TwAOHKIAAIAAHgMEUCgDyhLv8Le9gWS16XtqujigMbLPmO35a/41HVctLau7nJq63acYapttOc5kad//OFbkqTzZ5gFCan/fM91rdAAJ8K293gTNTp+wced9rM900SjEtXiLS/4miSp7rtOjd8BS95KfrGwO62JlZL8PW79aGd74EuR2sYx0S7/FpMOp+mccXbb1ubOU6xIUvMJTqWV9dUmyje62YlcWtsjix9SY379RiqAWM0x1VSiu/bEREePG3HA+yeKCs7OusreDvz7KZKchSQHYrUnSN+TbiLCmbu6dAkAfRARQAAAAI9hAHgM+Pvf/66LLrpIJSUl8vl8euGFF+x97e3tuuuuuzRx4kRlZ2erpKREV199tbZt2xZ3jWAwqFtuuUUDBgxQdna2Lr74Ym3ZcuBoBwAAOPowBXwMaGpq0qRJk3TttdfqC1/4Qty+5uZmrVmzRvfee68mTZqkuro6zZkzRxdffLHeeOMN+7g5c+boxRdf1LPPPqvCwkLdfvvtuvDCC7V69WoFemBKEp2zYnKt9cTij8DxZn4z96N9dtvSrYtdx4UmmeP6bXLaaj5j8t8NfCNm8UFkSjm92OTtW9r8a9e1tp/j5NDLf89MpR5omnHfsMiChH+68/Y1zDBTrwXvOIs1YitJ7M+317mG1W6mXn2ZTr6+lJb4xQztOc7XSzc/7LrerMClkqQ9xzs5EjetH2o2zknaDdWXOr9W/Zsi22+vsdvCwUj1k+xs57gM85qHdu12XS/uuVq6mLtvP9YEZ7578MvuKiqdif48Rl8PSUp5wHy0oD27i9VEAPQ5DACPARUVFaqoqEi4Ly8vT1VVVXFtixcv1umnn67Nmzdr+PDhqq+v15NPPqlf//rXmjlzpiRpyZIlGjZsmF566SXNnj37sD8DAAA4chgAelB9fb18Pp/69+8vSVq9erXa29tVVlZmH1NSUqIJEyZo5cqVDACPgJ6I+klOlMY6wyzqSHl3Y6fHt+emSZLqnZK9ykhQoCFQZCJpVnPyCFTL6c5ihaHf3tuV7qqlxCwwqPzgB659O082n1A5bsnOLl0rthJJZSTaGVvjOJgX/4mXRPWHYytrBAaYyilNw50oV8a2VNc5UbP7XSNJavzeJLutaJU5t6XMaXvlj3dIksoLv263Wf1Mfd7l2x5xXTdR5DZRfxOmhInwNztpaCz/gT/5E003Izk/m4ETnWomhe+Y6GnO+voDXgtA38QA0GNaW1t199136/LLL1durlm1WVNTo7S0NOXn58cdW1RUpJqamqTXCgaDCkamsySpoaEh6bEAAKDvYADoIe3t7brssssUDof16KMHTgFhWZZ8Pl/S/QsWLNB9993Xk13EIUoZOkSSZO00nxur3Ptkp8fXj4wkQC51Pis4+I8mkrb1nCy7raCjI+n1ppc/KEnquCDTblv68Xdcx3VF2VQnYhcoyzH3fN9dCzehgDuyFZsGxvL79tvX+eWaTx8lSer/nnPevhHJkyxbJ5RKkgrfdo7J2m7eIO2ekOk63pfvfGbSqt/n2t8VgYEDu3Zgh/MZ09DArE4ONPyZ7jrIVsB5HXI2t3btvgD6LFYBe0R7e7suvfRSbdy4UVVVVXb0T5KKi4vV1tamurq6uHNqa2tVVFSU9Jpz585VfX29/ae6uvqw9R8AAPQcBoAeEB38ffjhh3rppZdUWFgYt3/KlClKTU2NWyyyfft2vfvuu5o2bVrS66anpys3NzfuDwAA6PuYAj4G7Nu3Tx999JH99caNG7V27VoVFBSopKREX/ziF7VmzRr97//+r0KhkP25voKCAqWlpSkvL0/XXXedbr/9dhUWFqqgoEDf+ta3NHHiRHtVMPqu2CoPHaea1CmBVe936dy6KZEqDzudKUorxayOSOniLN+OU81CkpJXnGlG3ZL8+Iohzs6cL4+K21c7pZ+9XbQ6wSqNTljZ7mlWf9CpYuEP7Td9m2A2N3YhxUlzHpIkDXzLWfjSNMR9j6iG0WbKOu9jp5pHuJNKJC2jB9jbaX/tXs7NaAUXf47zekUrp1Tu+YXr+MYJzr1yXt5wwOuHE1QkaRmSY29nfbpXkuRrZioYOFoxADwGvPHGGzrvvPPsr2+7zRSjv+aaazRv3jz96U+mgv3JJ58cd97LL7+s6dOnS5IeeughpaSk6NJLL1VLS4tmzJihp556ihyAAAAcgxgAHgOmT58uy+rkw+md7IvKyMjQ4sWLtXhx8pQT6Jt8I4ba26k1Ji1HZScJk2M9P9OkHbn7S9fZbe156eZajc7PTeXOn8WdVzHqdnu749/NwpPc9+I/Q5pMaIgTjcrfYCJ05YNvkiTV3+1EBAf+7A11Rzg73dW2b6QTIcvYE4rbZ6W4/12UpX3Z3m54aIok6e2Hv223jbv3oaT3b8sxiyQC733q3GOCWRjiC7mPD8csqohNBL6/2ATM/iyzgMNXEvlsbkwEzgolT8oczHUikf/Y/UTS46KqQr93N8YEM61U88bQ2ukkro6+dsvbfnvA6wPofXwGEAAAwGMYAAIAAHgMU8DAUSq6EKD9dKeMR8orbx/wvNOv+pG9/f/uniBJWv769+y2STebac4B7ySv+lF9iTPtnPtxZCq1vSPJ0fuJWYwRzcXXcHYkh95aZ1o04TRkZ8LuKdDWfOc9bm7VfgtjEnwywt/Pqc9b+nxkevoeZ3o844rxrnOiU5+F0VyJMQtJyk43eTIDTr50e0o3u2Sw3ba0k2eNfR0+c7n53qU1minjrE+d5Ou+tuSLZgJtB/4YyIE0DHf+u8j8m0n55Etx2nxZyRfIHIpotZPOKp0A6D4igAAAAB5DBBA4SvmGl0iS0rY5UaDKLnwAv/7zTs3eJ6pmSJLmxga2Im8LfWF31Kh8vFkQ0XqVs5Bj8MrI9Ro6r2ZRPuEeSdK+E52Sg9HFEbWnmpuOeXzrAfufzI6pea42f0xQcv8qJv52d5Wb7Zc7L0Th+5EFFsOcSF3up+4opy/NpMGxOtz7opVIMne594V2JCi6fADNg8z1MnZFon0xC7ysVndKlvKiGyVJKWePcu3rrtiFLMsan5IUn4LIX9D/kO+R8L6RKGOi+sQADh4RQAAAAI9hAAgAAOAxTAEDR5Gy9Cvsbf9IsxAj9NHGLp07a9p/SpIm/ciZZq351XFmY45zXP1YM9f31k/ucV1j+3kDJUlFq5z5QH+LmY6MXRAQFTtF2HL+RElS1nZnRcTeMWbhQPpuMx279JMfqbvKB90gSep/aoJpzgRrH8rH3S1JyvycU+c6ujAj64un221//ctcc/wJc52TE7xl9g8y0+HW1pqkfdw3JGYBRT+Tm9Bqa0t6fDIhM9us1H2RKWCfM43tS09zHd/0GbO4JmNn9++1v+xad67C6PS3JFkth6cqSPQegUEDDnAkgO4gAggAAOAxRACBo0hgQIG9be0ylTe6mi5l82wTefroX2PtttJmExmKppSRJN/3J7rOrRjxTUlSw+0m6lj0xGpn54mjJUmh4nzXeRo70ulvpPJF6hanesS+84dJkob8LXnKmQOprH1cknTOhQtd+wpXu6uTtA8yNW2LX4u551TzzOEU98IQX9CJnqXvNFGuipKb7bZds0zkcdXTyaOXKa0xizVGDzd/v/VB0uOT8UeCcFUr75UU/31Tgoo/u8ebX/HDH1/f7XvtL7MmQYQvM8PZzsl27+8B/gLzc7X3tMEHOBJAdxABBAAA8BgGgAAAAB7DFDBwFIgupvAPKLTbKnc/ccDzogs/JEllZgo4rd5535e6+kNJUvtpTjWRvPXuadDaWWaqduAqM824PCbf4NkX/1CSlPHn1a7zdkxzpoWL/7BBktRySqnd1jrQzGn+ZcW3D/gsB5L9vjuvnvXBR662lDWmH1ZM5ZJd10yRJPX/KOg6Xv6Y98l+89q0H+dMR6YEk1fZCOwxORIDbVnOJZrNPSq7mMuufOJ3nOudUxC3L9zk5HSMVsooH3i93Ra6ZZy5155fONcbfJNp2/5T172ii2ESfawgZUe9qy32Gudc4J6C7wlLNz8sSZpx7vzDcn3Aq4gAAgAAeAwRQOAo4O9vqlyE6/Z267xtZ/Wzt4dXNkqSWoucmq3L6n8pSTpv1g+ce0UCY+UFX7Pbdv+niSSNm2cihtH6t5IUOP9kSfHVGaLRmtApzr2iizVOuOchu63on5H6vc6aioNm7Wt2tS1PUBll2b6nJcVXltgzyfRjwNPvJrhwzAKOSATQ3+akRAmlJu9TtD5v7oaYmr3N3UuXEq0mIkmD3ui82ooktU8YYW9nb00QnYws1ohWCZEkX5ZZzBHIyXEdbv8cDCnu9L5Ngw9vxY7APmcxTjTKWbnzZz12fcBriAACAAB4DANAAAAAj2EKGOijYnO8+XPMVO6yxqe6dO6sz9wvSQrPcKb0fG+aXHBZ40e7jq8b61R0KHzXTFHuufAEu63gLTP1GZ1ym33Svfa+zI92ua6343Qz9Tv4H+4py7aJzlRtwX+7F24cLF9aJ3OxCVhnOPkOB6w274WXB3/jPrAjtuqJmR/fdn6e3TbkL3uT3yMytbpzinP8wN9+2q1+7prS394ueK8pbl/KqJH2dnTqNXjRFLstc1fYdb3WkWYhyd+WO4s2KkpvM/0dWeI6PniK+XlJX1fdaT8z95jXKXB8goosPSCc5Xx/OyaOPCz3ALyECCAAAIDHEAEE+ihfiVOrNrR5aydHum09z0T+hi13Unf4IpG/lpIDVGyIvC3cMc2JHp24ML7ObUd/pwJE6tYdkpwau5IUvHqQJKdihSSdW/GgJCltipMSZWn1jzvvSxdUHPctSVL7yEHdOq8tz4ko5W1MvjDD6ucsZNl+jonkDVrjHO9rd9fItfc1mWojLUVOap3oIpTY16vygx8omVC6sx34YFPcvvA25/sSyDd92zc4YLcVvu9+rvRd7qorVrZ5Rn9tgsopOeZ6LydKG+P/kr2dPSkSMfYfnriCP+ik7WkdkNXJkQC6ggggAACAxxABBPqYaN3d8ADnc2PLW5Z06dyy0++TJFmzcs15q+bZ+ybdbNKvJIoK1U10oljZO8znAfPfdt4fLv3E1LmNRvFSQzHpRULm3L2TB9pNxa+5o2I7TjfXLXq9zbXvUNSfYtKTZG3vXnqVzK0xn09cvzH5gTGfAQxHonGpdc69YtO07C800HwP+1UnSMeS2vmv3+hn+oqPc9K6xCZ0lqRlzb+2t8vSr5AkNYxx7jXoV++5L/zhJldTNFIZbkyQZsadF9yJ/PmcndZ7H5uNjHT3CT0gUONEJ+um5x6WewBeQgQQAADAYxgAAgAAeAxTwEAfEPth+pQRpu6u/+PO024ksnm2mRobVmWqfugB9zEpjc4UbFnmlZIk38LJdtuOU8203uind7rOjU7jjnzkY7vNilTKaC1wpgPzXjQVNcrH3mm3tf97ZKr23W1dfJqu6cgw941W6TiQaBUTf0zVi8qYqdTOtOWaZ/Vtd1Lf+HzJ79s60CyuyP3UPT1tBQ7QX8sswgl9+EmX+ubPM8+T+6Fz3UQfHUiUSiiaria2tnBUR3qCOEHkmQMDBthNlTse7VI/D1a0JrAkHbdwkSSndrGUuH4xgOSIAAIAAHgMEUCgDwicONbeDqeatBvLNi7q0rnRpM+SZJWbKFDVa991HxgJDC1//Xt20/nnLzC7YvIF999g/q58f4HdNr3cLP7IHWh+ZYT3OZEi/8ihkqTivzhJnSsjqU5O+4rzDDnRdRY9nCYk/12T6sbX0r3FJeFmd+3gRHwtQXt7wNsmAlgZkxIlGlGcnXWVpPiFGQ0jzetV/Jc97vu/+2Gn941GtGKjw52JLuAoXuFOzJ1IbM3elBITna0K/3+SpJlnfd85cFim9pcyxCSM7tjSvfREPaVolfmB9U0Z3yv3B44FRAABAAA8hgEgAACAxzAFDPSi6IfYfadOsNsCW9yLLzqzucJZzDB8WSSP2zz3ccWvuqs8+DrMVNrwCdvttsyfut8X1kw1iz9GvLhXkmRZzpxx4wST/y9npZNLL5qTbud/nWK3DXrd/G2ld69m74Ese9NMgUfzJx6Iv7/JzRfa7Z6WTcRqb7e3cz5sdO0PDDXToVZkWry8/3X2vqa7zBRlokofvlNOcLXFik79RqdlD2TfhSebPn7s7mMigdx+9nbsM0pSW55TGzqU5l6sEhps6glXxSzMOJLS95qqIB05aQc4EkAyRAABAAA8hggg0IuiH6a36p0FCUu3Lu7Sufbij886EcDY2rv7axnaz9VWXWY+4N+23qne8OkGU1u3bMo858ALTNQs/PZ6SVIgpjpF9hbT99iFEedcuFCSVPC2Ez1qi3Szo8ipcNIT7ChqmhMNikbhKvc+abdVlNxsjsuNLJSpfbxL1/fFVLbwhU3kM5o+R5L2fNlEOd/45W2SpJlnOgso+m3u7MKdp4HpLPIXXcBR1fGs3RZNh9NVvoJ8e3v/FDpp9c6Cmh2nuyO2bfmHp9pHV0VTGTWOOkBdawBJEQEEAADwGAaAAAAAHsMUMHCERfPFSZJv+BBJUuijT7t9nerZZipz+J9jPvS/X/q/GefNt7fD+QkWX4yL5I57LmYq7Ubz144znana4tfNlFt04YCVFTMt+p67UkXtKeZeI150Fp5s/qyZckyp61r+vS7zRd7HhkJOW5r7WYPjzGudtqNriySi2ocUOLeKLJpJGVxkt6W0WnHH75mQZW/nbwgqqY5w8n0HEBh3nKstlG6mcZetua9L12iPmYpP3R6/QKi5JMPeLv5X/AIRSbK6N9vc4wKfmGoyTWce37sdAY5iRAABAAA8hggg0Jt2m8hL7If5OxNb9UNlnVT9iF7+BCeSU/i+qUdbPugGu23mUhMB/Oh/nChWxajbJUlNXx9it731k7vMuUUmPGhFqpVI0vJIbdnZpzgVRqzP9ZfkpGiRpBG/MAtDKt9NUKD4EPizTcQtdJITFfPv2uc6bsfp5rUY+ljnFThc1293InX+JhPR23vaYLut/5r4tD0No5ztoj/XJL2utfa9bvUj7tw096/uQcs7W3Hi1jzE+dnI2xIfjcza7kQuA/Xm5ya6iEaSUo8brN5UGVnAc/y8h+y22f2ukSQti1ShAdA5IoAAAAAewwDwGPD3v/9dF110kUpKSuTz+fTCCy8kPfb666+Xz+fTww8/HNceDAZ1yy23aMCAAcrOztbFF1+sLVu2HN6OAwCAXsEU8DGgqalJkyZN0rXXXqsvfOELSY974YUX9K9//UslJSWufXPmzNGLL76oZ599VoWFhbr99tt14YUXavXq1QoEAgmudvSJ5k6Tuj7lejiEgzELA1pbu3Xu1vNjqn5UNpiN+5McLKl5sPNp/cH/Z6YqLcuZ7q1cMVmS9EnwdrvttK8skiSV/KPDdT1fivlZSFStpOas/vb2oDXucxU6PCsH/IVmcUlDibMw5Z+v3CNJKjttnt2WenquJGlZ/S+7d4OY18vXYKp9pLT2t9vCn2wy94pUP/F9d4q9b2n1jyU5VT0kJ79fVej3dlt3q374mt2LSzq2bO3SuVGt/Z33/ys3PRS3z9/qLPwIv/uB+Ttm/0vbHunWvXpCon+//aqd703o5DFHvE/A0YwB4DGgoqJCFRUVnR6zdetW3XzzzVq2bJkuuOCCuH319fV68skn9etf/1ozZ86UJC1ZskTDhg3TSy+9pNmzZx+2vgMAgCOPAaAHhMNhXXXVVbrjjjs0fvx41/7Vq1ervb1dZWVldltJSYkmTJiglStXJh0ABoNBBWOiWQ0NDT3f+R4Qja74MzIOcOQREhNR6mrEp2yqCfP5znUigMtf/16yw23tOTFxmw4Tlfvgu2PtphFLTeqU8u9/zW6ru/tESVLh/PXuC6ZHqm0EnUoR0UUljXc7EZiin78lSaoovc059bqhB+zvwdheYRar5FSHXPsaRjuvV97GBFHJTpQXfl2S5E+J+TXZzyw4yX7VWUhS2fZbSU6Eqmi1ux+Jvs+x0cnYWtBdsmev6WOB8307UGWRqGjN5PQz3N+P2TlfMRvjRtptXf0ZPdz8Ge7qIxn1zs93Wz51gYHu4DOAHvDggw8qJSVF3/jGNxLur6mpUVpamvLz8+Pai4qKVFOTfBXjggULlJeXZ/8ZNmxYj/YbAAAcHkQAj3GrV6/Wj3/8Y61Zs0a+LkYIoizL6vScuXPn6rbbnAhPQ0NDnxwE+iIRnHA3P293uBxMRCWUZZ5h+B9iFuYsTH58NLqUM81J9rtrZqkkKWub8z21/CZa1TBznN1W8K6JUMbW0Y3W2w2cGIke7q2399XPMucWvONcd3nLEknS+TMW2G1Z25P391A0HGf6W/yX3a59e0c773FHLu5e2pVwo0kY7c/LtdusDBNlCtXVuY73RT4rm7PKvXgq0WcA485td0cNO2O1mJ9lX6rzKzz2M4WdCeebZN6BoDsRtT+/vznmg0+71Z8jwZfi/u8qs8b5N103Lsu1H0ByRACPca+88opqa2s1fPhwpaSkKCUlRZs2bdLtt9+ukSNHSpKKi4vV1tamuv3+U6utrVVRUVGCqxrp6enKzc2N+wMAAPo+BoDHuKuuukpvv/221q5da/8pKSnRHXfcoWXLlkmSpkyZotTUVFVVVdnnbd++Xe+++66mTZvWW10HAACHCVPAx4B9+/bpo48+sr/euHGj1q5dq4KCAg0fPlyFhYVxx6empqq4uFjHH2/qaObl5em6667T7bffrsLCQhUUFOhb3/qWJk6caK8KPtrETrnJb6bm+sqH2bsq9hlS+5up3KV7ftGlc0NZZqrSFzOz2G5m/lSw3lkMkbXJLNz58Bqn3u3Yn7qnMKPTmwqbacPKmH6M/oFJGzP6Vzvc58VW0XCXlO0RoTzzkJUf/MBuiy50yJ7pfCQhOqVdMeQWSdLSrYs7vW5gaCRdUofzIoayzUKERD9Ly4O/SXqthD97fuf9d0tJ96Yv/blmcYvV0tKt8ySpbYCp+5xWn2BRTCTNz7JIdZdDVZb2ZUnS8shCmUMRlz4pIvCOU4e6sbybC2kAj2MAeAx44403dN5559lfRz+Xd8011+ipp57q0jUeeughpaSk6NJLL1VLS4tmzJihp5566pjJAQgAABwMAI8B06dPj0vueyCffvqpqy0jI0OLFy/W4sWdR0WORr2Z9PlQxEaN4iKaXVB/nEl5k7PNifLkvGUidE0nDLLbdpxpIn95MeVxl25c5LqeFYpEwdrN9WZN+097X/o5JrRYuf5B13ntuan2dkpr139GDyQuwfMX3J89rZtmUpzkfeqOGoUbGpNeNzatSjiy0MIf89nW9lx3KpLuJnG2r59y8J/AsaJRSV/3r9GeY97UZX/qfh1CW7YddJ8S8Wf13MKM6MKiWLFJvcd91ySzjqYlitYLBpAYnwEEAADwGAaAAAAAHsMUMI4p5WPvlNSzU08HY3beV+3tbteeTaDb04uRmdfURmcBw9KP/0uSdOpXnSnefcPN38f9dk+n17Nfz71m0ciOzw629w16wz3NGhXs73yGNKc6+XHdtfU8J79hprsssfaONe9t+7/0qWtfdGo3oYHOgqnlkSntcyucqe1gf/evTF/qQVagiEmx2VrYvc/a+iIVSay6vd2+bUdm5H3/+o2ufT2xWCNOunvK/HCJ1gXuGHN4Ks4AxxoigAAAAB5DBBBHvWgNVknyTzD1aBNVDTgSoh9A9/fL7pX7R+0dZ6IhA3+9zrVvz0RnMcaQv0XSurzz/U6vZ7VFcriUmrQq+4Y76V3efvjupOcVrHQWFYT79ztArw+sYvgcSVLoKyPstswt5nnKB15vt2VcalIcVe78mfsi4eRVN0IfuaNibXnOz1Jqk7t6htXe5mrrkpg1MaG07lXpCW83C3qsiWMOcKQRreQiSVnTJ0uSljX/ulv3PBhWU5MkqSz9Ckmdp8o5VNk15me0uaSP1PwG+jgigAAAAB7DABAAAMBjmALGUc83eZy97a8x9YyXRqo+HGnNp4+SJGX+9Z1euX90qi3l3imS4qf5Ko77liQpPM9Z6JDxf2916bpWh5leqz0rX5I0aFXXcvrF5pWzPk1QeaKb6s4yU9D9tjj3z95u+ubLcKb+ilbuTXqNzhbUVIV+72rLW/6+vR0uTbDAwJd8+jb6/YidJrbv73fOCwS7lyMx+n0tn3BP106IyReY9s6mbt3rUCzb97QkqSzzyh697uycr5jrx1QsSd1nfr6ailMTnAFgf0QAAQAAPIYIII5a0QUB4eED7DZru7se7ZHqhyRlp5now9Ij8AH7hE4yiwL6r3dHlJrHDpQkBbY7EZKuVknxR9J57J1gFkGc8P1Pu3Se1eFE/XqiFvPOU0zUbPA/nIUcma9/bDayndQ/y968/5DvFRVb97i88Ouu/f7MzLivo1E/SfJlmNfNXzpM+/O3Oc8QTuneIpDycWbhTah/F9MdxSx8Ce3a3a179QQrQR3fQxGeeJyk+O+Hr85E/3d/6TM9ei/gWEUEEAAAwGMYAAIAAHgMU8A4atV/xnwgP/ftXXZbZRenNHvCLP+XJMVXHQm3tBzctWJyGXZ1WjYRK9VUlEhtcU8BbznPTP1m1rqnG2PzxNn9iFkQ0VR+kiQp7wNz/aXbHulSf3pi2rfs9Pvs7bRZuZIkX0w6vsrdT0iSyid+55DvdSChvXtdbb79ql34s50p4ej08cRvPuS+2Nr19mb9xVO61Y+OQpNT0d/W/YU13f2ezM66StIh5g3sZKHMwejINj/L/iFFdltV5OfgxG+b17pi1O32vqWf/KhH7w8cC4gAAgAAeAwRQBxVzrlwob0dyjPRqMoPftA7nTl9oiSptcBJP7Liz3ce1KUOJeoXq2mIiT71+2SfpPjqGPn/bdK/FN7lrjubKP1JrJ0nmV8Vwysbe6Sf3bHr5Bx7u2C9WczQElM7NxrpsXYe/sUNiV6nUGTxQVSiWsP9P0kQqYtJA9P/w+71w99hQqC+DndlkkQOJRIbu5DnYAXycg/5GrFS95rXuH2gexFM5g4T/W4vye/RewLHGiKAAAAAHsMAEAAAwGOYAsZRoWLYrZKkXVeOtNtGPFt9xPtRPugGe3vj7WMlSaMf/th1XEXJzfZ2R61ZpJJomje6kKQnFktIzuIIf5OZImuaNtret/tD835vQE3X5hvLx3/b3g5faXItVr323Z7oZrfsmeRMc57wwKeSpF2zRtltViT3YmxViLK0L0uSlrf99rD3b//vXaKcdxkvvu5q86Wl2duhdNfuTlkBM33ss7pXQUSSZp/yPUnSsjX3HeBIo0dew4D7YweHwtduPgrQ3s/9X1j/D81CrMaRma59ABwMANFjrMh/Rg0NDT1+7Y6w+U81FGx1tR2O+yXvh1PSK9za6mqL9iW2rcNqj9sXd71O9h1U/9ojfQoF4742/fUn7W/Ca4WcgUz0WY/ka23fuyX2e276HmqLaQu5fw56+nXtjui9Y++fuM35PkSfp6v97egwx/tD7use8NwEr9fhFv2+9djPeYKfb/t1jbw2MS9Nr/wc9DXR18A6iDcNODb5LH4a0EO2bNmiYcPcFQ8AAH1DdXW1hg5NUNMansMAED0mHA5r/fr1OvHEE1VdXa3c3J5d+XekNDQ0aNiwYTxDL+MZ+gaeoW841GewLEuNjY0qKSmR38/H/8EUMHqQ3+/XkCFDJEm5ublH7S/aKJ6hb+AZ+gaeoW84lGfIy8vr4d7gaMbbAAAAAI9hAAgAAOAxDADRo9LT0/W9731P6endzGvRh/AMfQPP0DfwDH3DsfAM6FtYBAIAAOAxRAABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABA96tFHH1VpaakyMjI0ZcoUvfLKK73dpYQWLFig0047TTk5ORo0aJA+//nPa/369XHHWJalefPmqaSkRJmZmZo+fbrWrVvXSz0+sAULFsjn82nOnDl229HwDFu3btWVV16pwsJCZWVl6eSTT9bq1avt/X39GTo6OvSd73xHpaWlyszM1KhRo3T//fcrHA7bx/S1Z/j73/+uiy66SCUlJfL5fHrhhRfi9nelv8FgULfccosGDBig7OxsXXzxxdqyZUufeIb29nbdddddmjhxorKzs1VSUqKrr75a27ZtO2qeYX/XX3+9fD6fHn744bj23n4GHL0YAKLH/O53v9OcOXN0zz336M0339TZZ5+tiooKbd68ube75rJixQrddNNNeu2111RVVaWOjg6VlZWpqanJPmbhwoVatGiRHnnkEa1atUrFxcWaNWuWGhsbe7Hnia1atUpPPPGETjrppLj2vv4MdXV1OvPMM5WamqqlS5fqvffe049+9CP179/fPqavP8ODDz6oxx9/XI888ojef/99LVy4UD/84Q+1ePFi+5i+9gxNTU2aNGmSHnnkkYT7u9LfOXPm6Pnnn9ezzz6rV199Vfv27dOFF16oUCjU68/Q3NysNWvW6N5779WaNWv03HPPacOGDbr44ovjjuvLzxDrhRde0L/+9S+VlJS49vX2M+AoZgE95PTTT7duuOGGuLZx48ZZd999dy/1qOtqa2stSdaKFSssy7KscDhsFRcXWz/4wQ/sY1pbW628vDzr8ccf761uJtTY2GiNGTPGqqqqss4991zr1ltvtSzr6HiGu+66yzrrrLOS7j8anuGCCy6wvvrVr8a1XXLJJdaVV15pWVbffwZJ1vPPP29/3ZX+7t2710pNTbWeffZZ+5itW7dafr/fqqysPGJ9j9r/GRJ5/fXXLUnWpk2bLMs6ep5hy5Yt1pAhQ6x3333XGjFihPXQQw/Z+/raM+DoQgQQPaKtrU2rV69WWVlZXHtZWZlWrlzZS73quvr6eklSQUGBJGnjxo2qqamJe5709HSde+65fe55brrpJl1wwQWaOXNmXPvR8Ax/+tOfdOqpp+pLX/qSBg0apMmTJ+vnP/+5vf9oeIazzjpLf/nLX7RhwwZJ0ltvvaVXX31Vn/3sZyUdHc8Qqyv9Xb16tdrb2+OOKSkp0YQJE/rkM0nm37jP57Ojy0fDM4TDYV111VW64447NH78eNf+o+EZ0Hel9HYHcGzYtWuXQqGQioqK4tqLiopUU1PTS73qGsuydNttt+mss87ShAkTJMnuc6Ln2bRp0xHvYzLPPvus1qxZo1WrVrn2HQ3P8Mknn+ixxx7Tbbfdpm9/+9t6/fXX9Y1vfEPp6em6+uqrj4pnuOuuu1RfX69x48YpEAgoFArpgQce0Je//GVJR8f3IVZX+ltTU6O0tDTl5+e7jumL/95bW1t199136/LLL1dubq6ko+MZHnzwQaWkpOgb3/hGwv1HwzOg72IAiB7l8/nivrYsy9XW19x88816++239eqrr7r29eXnqa6u1q233qrly5crIyMj6XF9+RnC4bBOPfVUzZ8/X5I0efJkrVu3To899piuvvpq+7i+/Ay/+93vtGTJEj3zzDMaP3681q5dqzlz5qikpETXXHONfVxffoZEDqa/ffGZ2tvbddlllykcDuvRRx894PF95RlWr16tH//4x1qzZk23+9NXngF9G1PA6BEDBgxQIBBwveusra11RRL6kltuuUV/+tOf9PLLL2vo0KF2e3FxsST16edZvXq1amtrNWXKFKWkpCglJUUrVqzQT37yE6WkpNj97MvPMHjwYJ144olxbSeccIK9cOho+D7ccccduvvuu3XZZZdp4sSJuuqqq/TNb35TCxYskHR0PEOsrvS3uLhYbW1tqqurS3pMX9De3q5LL71UGzduVFVVlR39k/r+M7zyyiuqra3V8OHD7X/fmzZt0u23366RI0dK6vvPgL6NASB6RFpamqZMmaKqqqq49qqqKk2bNq2XepWcZVm6+eab9dxzz+mvf/2rSktL4/aXlpaquLg47nna2tq0YsWKPvM8M2bM0DvvvKO1a9faf0499VRdccUVWrt2rUaNGtXnn+HMM890pd/ZsGGDRowYIeno+D40NzfL74//VRoIBOw0MEfDM8TqSn+nTJmi1NTUuGO2b9+ud999t888U3Tw9+GHH+qll15SYWFh3P6+/gxXXXWV3n777bh/3yUlJbrjjju0bNkySX3/GdDH9dLiExyDnn32WSs1NdV68sknrffee8+aM2eOlZ2dbX366ae93TWX//iP/7Dy8vKsv/3tb9b27dvtP83NzfYxP/jBD6y8vDzrueees9555x3ry1/+sjV48GCroaGhF3veudhVwJbV95/h9ddft1JSUqwHHnjA+vDDD63f/OY3VlZWlrVkyRL7mL7+DNdcc401ZMgQ63//93+tjRs3Ws8995w1YMAA684777SP6WvP0NjYaL355pvWm2++aUmyFi1aZL355pv2Ctmu9PeGG26whg4dar300kvWmjVrrPPPP9+aNGmS1dHR0evP0N7ebl188cXW0KFDrbVr18b9Gw8Gg0fFMySy/ypgy+r9Z8DRiwEgetRPf/pTa8SIEVZaWpp1yimn2GlV+hpJCf/86le/so8Jh8PW9773Pau4uNhKT0+3zjnnHOudd97pvU53wf4DwKPhGV588UVrwoQJVnp6ujVu3DjriSeeiNvf15+hoaHBuvXWW63hw4dbGRkZ1qhRo6x77rknbqDR157h5ZdfTvjzf80113S5vy0tLdbNN99sFRQUWJmZmdaFF15obd68uU88w8aNG5P+G3/55ZePimdIJNEAsLefAUcvn2VZ1pGINAIAAKBv4DOAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMcwAAQAAPAYBoAAAAAewwAQAADAYxgAAgAAeAwDQAAAAI9hAAgAAOAxDAABAAA8hgEgAACAxzAABAAA8BgGgAAAAB7DABAAAMBjGAACAAB4DANAAAAAj2EACAAA4DEMAAEAADyGASAAAIDHMAAEAADwGAaAAAAAHsMAEAAAwGMYAAIAAHgMA0AAAACPYQAIAADgMQwAAQAAPIYBIAAAgMf8//JMQ9kgNhilAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib widget\n", + "plt.imshow(grids['count_segments'], interpolation='none')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1c1b73ba-e759-43cb-ad11-4b24c79eb75b", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## Plot data on a map" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "8454d0e8-fd29-45f6-b5aa-f15947ea95de", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a165f294de3b477dbd5d83449f38fe9d", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAPoCAYAAABNo9TkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXRUV8D14T3xEJIAwZ3iLsXdrbiTQHF3KQ4FimuhQHF3d4q7a/HiBA2eBIhnvj94y/vyQZGQ5E6S37NWFnTmzj172i6YPefcc01ms9ksAAAAAABgKCujAwAAAAAAAAo6AAAAAAAWgYIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFoCCDgAAAACABaCgAwAAAABgASjoAAAAAABYAAo6AAAAAAAWgIIOAAAAAIAFoKADAAAAAGABKOgAAAAAAFgACjoAAAAAABaAgg4AAAAAgAWgoAMAAAAAYAEo6AAAAAAAWAAKOgAAAAAAFsDG6ACIGvz9/RUYGGh0DAAAAAD/wc7OTg4ODkbHwHegoOOL/P39lTp1Snl5PTU6CgAAAID/kDhxYt2+fZuSHoVR0PFFgYGB8vJ6qosXD8jZObbRcQAA+Kxly9aqT59h6tChg4YPHy6TyRRpY7948UKjR4/WrFmzZDabFRoaKklycXHWiRPb5ejIh2YAEcPX97WyZSuuwMBACnoURkHHV3N2ji0XF2ejYwAA8Flt2jSRyWSl3r2HKk6cOBo2bFikje3i4qI///xT3bp1086dO+Xo6KjXr1+rS5cuunbtpooVKxhpWQAAUQ8FHQAARDutWzdWQECABg0aLgcHBw0YMCBSx8+QIYMyZMggSQoNDdXgwYN15MhJCjoA4LMo6AAAIFrq1KmlAgICNHDgQDk6OqpHjx6G5LCyslLRokV19OgpQ8YHAEQdFHQAABBt9ezZQf7+AerZs6ccHBzUoUMHQ3IUL15cgwYNVGBgoOzs7AzJAACwfBR0AAAQrfXv300BAYHq2LGj7O3t1bJly0jPUKxYMfn5+evvvy8pX77ckT4+ACBqoKADAIBozWQyaejQ3vL3D1Dr1q1lb2+vxo0bR2qGPHnyKFasWNq//ygFHQDwnyjoAAAg2jOZTBo9eqACAgLUtGlT2dvbq169epE2vq2trRo0aKAJE/5UmTLFlDt39kgbGwAQdVgZHQAAACAyWFlZaeLE31SnTlV5eHhow4YNkTr+lClTlCNHDrm7t9WDB48idWwAQNRAQQcAADGGtbW1pk4dpSpVyqlu3bratm1bpI3t6Oio9es3yM7OQQ0bttWrV96RNjYAIGqgoAMAgBjFxsZGM2eOV7lyJVSrVi3t3r070sZOnDixNm/erPv3H6lYsWrceg0A8AEKOgAAiHFsbW01d+7vKlIkv6pVq6YjR45E2tjZs2fXuXPnlDr1D6pSxUNjx05RSEhIpI0PALBcFHQAABAj2dvba9GiqcqYMa369u0bqWOnTJlSe/fuVf/+/TVq1B+qUaOJHj58HKkZAACWh4IOAABiLEdHB9WvX12HDx+W2WyO1LFtbGw0dOhQ7dmzR7dv31fRolW1dWvkLbcHAFgeCjoAAIjREiSIr5CQED1//tyQ8UuUKKG///5bxYoVl4dHW/XuPVT+/gGGZAEAGIuCDgAAYrT8+fNIkvbs2WNYBjc3N61fv15//PGHFixYqXLl6uratZuG5QEAGIOCDgAAYrTkyZMob95cmjFjhqE5TCaTOnbsqOPHjys42KxSpWpq8eJVkb70HgBgHAo6AACI8Tp0aK49e/aoVq1aOn36tKFZcubMqVOnTqlBg4bq1KmfWrbsJm9vX0MzAQAiBwUdAADEeNWrV9TUqaP0999nlTdvXlWsWEGHDh0yLI+Tk5PmzJmj5cuXa9eugypRorpOn/7bsDwAgMhBQQcAADGeyWSSu3ttnTjxl2bPnqh79+6qWLFi2rx5s6G56tevr7Nnzypx4iSqWLGBJk2aqdDQUEMzAQAijsnMhU34Ah8fH7m6uuru3TNycXE2Og4AABEuNDRUtWs314MHXrpy5aqsra0NzRMUFKQBAwZozJgxKlgwrzp1aqHy5UvKxsbG0FwALIePj69Spcojb29vubi4GB0HYcQMOgAAiLEuX76mrVt36/Tpv+Xp+eD97c2srKzUrl1TXb9+Q/fv3zc4pWRra6vRo0dr165dMput5OHRTrlzl9G4cdP05Mkzo+MBAMIJM+j4ImbQAQDR0dGjp1SzZlMFBHx4z3EXF2clSBBfN2/eliSdOXNGuXPnNiLifzp9+rSmTZumZcuWKTg4WFWrlleLFh4qVCivTCaT0fEAGIAZ9OiBgo4voqADAKIbPz9/Zc9eQtmz59CiRYv0/PlzeXl5ycvLS48fP5aXl5cOHDggBwd77dy5S/b29kZH/qSXL19qwYIFmjZtqq5fv6EsWTKoeXN31atXXc7OsY2OByASUdCjBwo6voiCDgCIbnbtOqC6dVvo0qVLypIlyyeP+fcjUlSYkQ4NDdWePXs0bdo0bdiwQbFiOap+/Rpq3txdWbJk+OLrHz3y0oYN29S4cT05OcWKhMQAwhsFPXrgGnQAABDjODo6SNJnry83mUxRopxL766ZL1u2rNauXau7d++qe/ce2rJlt4oU+UmVK7trzZrNCgwM/Oh13t6+GjZsgn78saz69h2uiROnG5AeAPAvZtDxRcygAwCim5CQENWo0UR37jzQjRs3LHYJ+/cICgrS+vXrNW3aNO3bt08JEsRXo0Z1lD59Gvn6vtHBg0e1f/9RBQeHqEuXLnrz5o1mz56l06d3KUmSREbHB/CNmEGPHijo+CIKOgAgOvr770sqWbKG9uzZo1KlShkdJ0JdvnxZ06ZN06JFi+Tj4yMrKysVKlRQFStWUrNmzZQsWTJ5e3srSZIk6tevizp2bGF0ZADfiIIePVDQ8UUUdABAdBQaGqqMGQurZctWGjlypNFxIkVoaKhCQkJkMpk+eQ/10qVLy9HRWkuW/GlAOgDfg4IePXANOgAAiJGsrKxUqlQR7dix3egokcbKykq2trafLOeSVKxYMR09ekqhoaGRnAwAIFHQAQBADFa6dFGdOXNWT58+NTqKRShbtqxevnylwoV/0pgxf+jGjdtGRwKAGIUl7vgilrgDAKKrx4+fKHPmIlqyZInc3d2NjmMRtm/frsWLF2v9+vV6/fq10qf/QSlTJlPixAmVOHFCZc6cQbVq/RRldrgHYgqWuEcPn17fBAAAEAMkTpxQadOm0cmTJyno/6NChQqqUKGC/Pz8tHXrVu3du1cPHz7UjRv3dODAcd27d1/e3j5q3px/XwAQ3ijoAAAgRkubNpWuX79udAyL4+joqNq1a6t27dofPN6uXTv17z9ChQvnU6ZM6Q1KBwDREwUdAADEaCaTSa9evTQ6RpQxfvx4HThwQPXrt9bgwb+odOlievXqlV68+PfnpV6+/N9/fvnylQYP/kXJkiUxOjoAWDwKOgAAiLE8Pe9r5879mjp1qtFRooxYsWJpw4YN6tSpo5o37/LJY+zt7eXmFk9ubm66cOGi1q7dops3TyhOHNdITgsAUQsFHQAAxFizZi2Wi4uLGjdubHSUKCVdunTatu0vnThxQrdv35abm9sHP7FixXq/iZyXl5dSpUqluXOXqXv3tgYnBwDLRkEHAAAx0pUr1zV37lJ16tRZTk5ORseJkvLnz6/8+fN/9phEiRKpcePGmjFjodq3byYHB/tISgcAUQ/3QQcAADHG48dP1KpVdxUpUkUlS9ZQ2rRpNXDgQKNjRXs9e/bU06fPtHLlBqOjAIBFo6ADAIAYwWw2q0uX/tq376hKliyjcePGaefOXcyeR4KMGTOqevXqmjZtnsxms9FxAMBiscQdAADECBs3/qUdO/Zpw4YNqlatmtFxYpx27dqpQoUKOnv2gvLkyWF0HACwSMygAwCAGGHXrgPKlSsn5dwgpUuXVuLEiVnmDgCfQUEHAAAxwpUr15UzZy6jY8RYNjY2cnd315o1W+Tt7Wt0HACwSBR0AAAQ7YWGhurq1evKli2b0VFitJYtW+rtWz/lylVKEyZM1+vXb4yOBAAWhYIOAACivfv3H+nNm7fKkiWL0VFitMyZM+v69evy8Gik0aP/UNGiVXXnjqfRsQDAYlDQAQBAtOfmFlcODva6cuWK0VFivKRJk2rKlCm6cuWK7OzsVbmyu65du2l0LACwCBR0AAAQ7Tk5xVKZMsW1evUqo6Pgf/zwww86cOCg3Nzi66efPHTgwFFdv36L27ABiNEo6AAAIEaoWrWCjh07rvv37xsdBf8jceLE2rdvv9KnT6/q1X9W/vwV1LFjH/n5+RsdDQAMQUEHAAAxQsWKpWVra6u1a9caHQX/h5ubmw4ePKQdO3Zo6tSpWrt2qypVaiBPT75IARDzUNABAECM4OrqrJIlC2vNmjVGR8H/x9raWuXKlVP79u115MgReXu/UcmSNbV790GjowFApKKgAwCAGKNatQo6ePCgvLy8jI6C/5A7d26dOnVK+fPnV506zVWvXiudO3fR6FgAECko6AAAIMaoXLmsrKystG7dOqOj4DPc3Ny0des2LV26VHfvPlSpUjXl4dFOFy6wCz+A6I2CDgAAYox48eKqWLGCWrNmtdFR8AVWVlZq2LChLl26pAULFujq1VsqXryamjbtpCtXrhsdDwAiBAUdAADEKFWrltfevfv04MEDo6PgK9jY2Ojnn3/W1atXNXv2bJ07d0VFivykVq2668aN20bHA4BwRUEHAAAxSs2alZUwYXy5u7srODjY6Dj4Sra2tmrRooWuXbumadOm6ejRMypQoKLat++l27fvGh0PAMIFBR0AAMQocePG0Zw5v+vw4cPq16/f+8fPnj2rrVu36tmzZwamw5fY2dmpbdu2unHjhn7//Xft3XtUefKUVapUeVS+fD1duvSP0REBIMxMZrPZbHQIWDYfHx+5urrq7t0zcnFxNjoOACAKCQgIkJWVlWxtbY2O8pEpU+Zo4MBRGjp0qPbs2aN9+/a9fy59+nQqWLCQfvzxR7m6usrR0fGDn8yZM8vNzc248HjPz89PGzdulKenpxYvXqQbN25o2rTRql69ktHRgEjl4+OrVKnyyNvbWy4uLkbHQRhR0PFFFHQAwLfw9vbRX3/t1ebN27V790EVL15Iy5fPNDrWR8xms5o06ahNm3Yob95c6tSphbJnz6xTp/7WqVPndPLkOV28eFVBQUEfvTZRokQ6fvy4UqVKZUBy/Je3b9/Kw8NDe/fu0bVrR2VnZ2d0JCDSUNCjBwo6voiCDgD4ksePn2jr1l3asmWnDhw4puDgYBUokF/ZsmXXnDlztGnTYhUtWsDomB/x9w/QjRu3lTVrRplMpk8eExQUJD8/f/n7B8jf31+vXnnr5587KXZsF507d042NjaRnBqfc/78eeXMmVOrV89VmTLFjI4DRBoKevRAQccXUdABAJ9y546nNm/eqU2bdujkybOysrJSiRIlVKtWLdWoUUPJkiWT2WxW/vz5ZTKFaPv2Ff9ZgqOagwePqVq1xjpx4oTy5ctndBz8H2azWenTp1fRonn1++/DjI4DRBoKevTAJnEAAOCrmM1mXbr0j0aP/kPFilVT7txlNGzYRCVOnFxz586Vl5eXdu/erQ4dOihZsmSSJJPJpJEjR+rkybNavHi1osu8QIECeRQrluMH163DMphMJtWqVUubN+/U69dvjI4DAN+Egg4AAD7r1StvjR07RT/+WE5Fi1bRtGnzlSNHbq1atUrPnj3Thg0b1LRp0//cNK1s2bKqXbuWOnfupyJFqmjhwpXy8/OP5HcRvuzs7FSw4I/au3eP0VHwCe3bt9ebN281duxUo6MAwDdhiTu+iCXuABAzBQcHa9SoyZoxY6GCg0PUsGFD1atXT6VKlZK9vf03nctsNmv//v36/ffftXHjRsWNG0fly5dUpkzplDFjOmXOnF4pUiSTlVXUmTsYO3aKZsxYzG3ZLNSwYcM0ZMgQFSiQRylTJlPKlMk/+DVp0sTsH4BohSXu0QN/KgEAgI8EBQWpdese2rx5p3r06KFu3bopUaJEYT6fyWRSyZIlVbJkSd28eVNTp07V4cOH/mcZ8mtJUqxYjsqQIa0yZUqvjBnf/ZopUzqlTJncIot7ihTJ9fz5c719+1axYsUyOg7+P7/88ousrKx08eJF3blzW/v2HdWjR4/fP29tba0ePdqpb98uBqYEgA8xg44vYgYdAGKWwMBAtWjRVdu379OqVatUvXr1CBvLbDbr3r17unTpki5fvvw/v17S5ctX5OvrK0nKkSOr9u9fH2EZwurQoeOqWrWRrl69qowZMxodB1/B399fnp6eunPnjlatWqWFCxfqzJldSpYsidHRgO/GDHr0QEHHF1HQASDmCAgIUNOmnbVnzyGtWbNGVapUMSSH2WzW/fv3NWnSJP3+++96+vSKxe0Af/v2XeXJU1a7du1SmTJljI6Db+Tj46NUqVKpXLniqlGjkgoUyCM3t3hGxwLCjIIePVjeejEAAGAIf/8ANW7cUXv3HtaGDRsMK+fSuyXxKVKkUP78+RUSEiJf39eGZfkvSZMmliTdu3fP4CQICxcXF3Xv3l2rVm2Uh0c7VarUUC9fvjI6FoAYjoIOAAAkSc2bd9HBg8e0adMmVaxY0eg4kqR48d7NaL565W1wko/Z29srQYL4FPQorH///rp//77Onj2rFy+81ahRewUEBBgdC0AMRkEHAACSpEePvFS4cGGVK1fO6Cjv/XvrthcvXhkb5D9kypSOe6FHYVZWVkqWLJly5cqlDRs26NSpv9WlywBxBSgAo1DQAQCAJKldu6bas2ePzp8/b3SU9/6dQbfUpcfu7rW1Z88e3blzx+go+E5FihTR/PnztWLFeo0ZM0WvX7/RqVPntGvXAfn7M6sOIHJQ0AEAgCSpZs3KSp48qXr06G4xy3z/t6Bb3hJ3SSpXrrgk6cSJEwYnQXho2LChhg0bplGjJitFilwqV66u6tZtoUyZCqtr1wE6evQUs+sAIhQFHQAASJJsbW01efJwHTp0SK1atTQ6jiQpduzYih07tu7c+brrvK9evS5397bKnbuMgoODIzid5OYWT4kTJ7SoVQf4Pv369dOiRYs0b948nTp1ShcvXlSnTp21d+9RVa7cUE2adIyU/7cAxEwUdAAA8F6pUkVVqVJZXbt2zegokt7t5l6sWFEdPnz8s8c9efJMnTr1VZEiVXT48EndueOphw+9IiVj1qwZKejRiMlkUqNGjdS0aVP9+OOPypo1q3777Tfdvn1by5cv19atu9W9+yBm0gFECAo6AAD4wPnzl5Q/fwGjY7xXunQZHTt2WoGBgZ98/tix0ypRorq2bduriRMn6sCBA5Kke/ceREq+LFky6sIFCnp0Z2Vlpfr162vevHlatGiVfvttgtGRAERDFHQAAPCep+cD3bx5R/ny5TM6ynulSpXS27d+On36wxIcEhKiGTMWqGrVRkqfPqMuXLigzp07K126dJIir6BnzZpJd+7c1YsXLyJlPBircePGGjdunCZOnK6BA0dZzH4NAKIHG6MDAACA8OXt7asbN27p2rWbun79tgICAmRnZyc7O1vZ2trKzu7fHzsFBwfr+fOXevbshZ49e65duw7Izc1NZcqUMfptvJcrVy4lTJhQM2YsUIIEbtq//4j27z+igweP69Urb3Xt2lVjxoyRra2tJMnJyUl2dnby8XkdKfmKFXu32mDr1q1q1KhRpIwJY/Xo0UOS1LdvX+3Zc1AbNixU/PhuBqcCEB1Q0AEAiCYmTZqp6dMX6PHjJ+8fS5EiuWLHjq2AgAAFBgYqMDBIgYGB7//ZyspKCRLEV4IECZQgQQL16NFT3bt3V5w4cYx7I/8fa2trTZkyRfXq1dOGDX/JxsZGBQrkV+fOXVS5cmUVKPDxcvzg4GDZ2FhHSr6kSRMrX77cWrt2LQU9BunRo4fKli2rfPnyad26bWrViv/2AL4fBR0AgGhg9uwlGjx4rFq1aqVSpUopU6ZMypAhg5ycnIyOFi7q1q2rZcuWycXFRcWKFZOzs/N/Hms2mxUaGiobm8j7mFOlSjmNGvWH3r59q1ixYkXauDBWzpw5lT9/Ph06dIyCDiBccA06AABR3IYN29Sr1xB16dJFM2bMUMOGDZU7d+5oU87/1aBBA1WuXPmz5Vx6d226JFlbR97HnCpVysvPz0/bt2+PtDFhGUqVKq1Dh04oNDT0g8cDAwN15gybBwL4NhR0AACisEOHjqt1655q0KCBJkyYIJPJZHQkw/1vQY+8GfQffkilLFky6vfff1dQUFCkjQvjlSpVSi9evNTly/97a8Lg4GA1b95VZcrU1tixUwxMByCqoaADABBFXbhwRR4e7VS8eDHNnz9fVlb8tS69K0dS5M6gS9KoUQN05MgRtWvXjntkxyCFChWSk5OThgwZJz8/f5nNZnXtOkDbt++Vh4eHRoyYpNGj/zA6JoAogmvQAQCIgs6fv6T69VsrXbr0Wrt2nezs7IyOZDH+dwY9cjaJ+1exYgU1adIwdejQRxkyZFCvXr0idXwYw9HRUWvWrFGtWrVUqlRNpU2bWlu37tLixYvl4eGhrFmzql+/fgoNDVWfPp1Z5QLgsyjoAABEEUFBQdqyZZdmzVqkI0dOKlOmTNq6desXr8mOaRwdHeXm5qbNm3eqVq2fInVsd/faun3bU71799YPP/ygOnXqROr4MEaFChV04MABjRkzRjt37tSUKVPk4eEh6d2t2KysrNSnTx89efJMmTNnkNkcqpCQUIWGvvv539+HKDTU/P7xn34qp1y5shn87gBEJpOZNVj4Ah8fH7m6uuru3TNyceFDIABENi+vp1qwYLnmz1+hR4+8VKJECXXs2FHVq1d/f+9vfGjJkiVq1KiRFi+epp9+KhepY5vNZrVu3UObN+/U3r17VbBgwUgdH5ZpwoQJGjhwoEJCQmRlZSVra+sPfv3f35tkbW0tPz9/vX37RkuW/KmSJYsYHR9RgI+Pr1KlyiNvb2+5uLgYHQdhREHHF1HQASDymc1mnThxVrNmLdLGjdtla2urRo0aqWPHjsqePbvR8cKV2WzW5cuX9ezZMxUvXjxclgCbzWZVq1ZVJ0+e0LFj2xQnjms4JP16/v4BqlmzqW7evKvjx48rTZo0kTo+oj4/Pz/VqlVTe/fu04IFf6hChVJGR4KFo6BHD+wmAwCABfHz89fixatUsmRNVaxYX+fOXdHo0aN1//59zZgxI9qV8+HDhythwoTKli2bSpYsqV9++SVcNlgzmUyaPn2G/P0D1a/f8HBI+m0cHOy1ePFUOTs7qXLlynr58mWkZ0DU5ujoqPXrN6hSpUpq2rSTzp+/ZHQkAJGAgg4AgAW4e/eeBg0araxZi6lz5/5KkSKVtm3bpmvXrqlbt26KGzeu0RHD3f79+zVgwABVrlxa69bN1/Dh/TR+/Hh16tTpo3tKh0WyZMk0YcIELVu2Tjt37g+HxN/GzS2eVq6cJS+vx6pdu7YCAwMjPQOiNnt7ey1dulRZs2ZT48Yd9eIFX/QA0R1L3PFFLHEHgIjj6flAgweP0fr12+Tq6qpmzZqpffv2SpcundHRIpSfn59y5Mih+PHjaMuWJe9vETd//nJ17z5ILVq00IwZM7771nFms1kVK1bQvn375eFRW127tlbKlMnD4y18tSNHTqpmzaZyd3fX3Llz2cUb38zT01O5c+dW/frVNGJEf6PjwEKxxD16YBd3AAAM8PatnyZPnqVJk2Yqbtx4+vPPP9WoUSM5OTkZHS1SDB48WJ6enlqyZMoHJbxp0wayt7dTx459FRgYqPnz539XoTWZTFqzZq2mTJmi8ePHa+HClapXr5qqVCmv1KlTKnXqFIoVyzE83tJ/Klw4n/74Y4TatOmpdOnSqX9/Cha+XmhoqF69eqWECRPq779Z5g5Ed8yg44uYQQeA8GM2m7Vx418aOHCUvLyeqVu3burfv3+MuVXatm3bNGbMGB04cEB9+3ZRz57tP3ncsmVr1b59bx06dEhFioTPDtZv3rzRrFmzNHbsWD18+PD944kTJ3xf1tOkSaHUqVMqTZqUSp06pVxcYisoKFj29nbfvWP+mDF/aOTIyVq6dKkaNmz4vW8HMcCNGzf088+NdfTosfePvXx53cBEsGTMoEcPFHR8EQUdAMJHQECA2rb9RevXb1PVqlU0YcLEaL+U/f/Xrl07zZgxQ2PH/qomTerLxubTi/lCQkKUIUMhtW/fQb/99lu4ZjCbzXr06JFu3bqlmzdv6ubNm//z+xu6efOWnj59+tFrUqRIqt69O+n48TPq2rWNfvghVZjGbd++t9au3aLdu3eraNGi4fF2EE09efJE6dOnV7x4cTRq1ABZW1vrzZs3ql69ktHRYKEo6NEDBR1fREEHgO/n6/tajRt30LFjp7V48WLVqVPH6EiGOHbsmAoVKqTVq+eqTJlinz22efOuevz4uY4cORpJ6d7x9fV9X97fvHkjKysr9enTR/fv35e9vb3Kli2uxYunhencgYGBql27ua5cuaFjx47FuC9o8PWWLVsmd3d3XblyWIkTJzQ6DqIACnr0wDXoAABEsOfPX6hevVa6ceOOtm/frhIlShgdyTAFChRQ9uzZtGDB8i8W9GTJEuvChauRlOx/OTs7K2fOnMqZM+f7x8qUKaOAgAAdOHBAP//8szZs2BammUw7OzstXDhFFSrUV7Vq1XTu3DnZ2dmFZ3xEE8+fP5e9vT3lHIhhuM0aAAAR6MGDR/rpJw/du/dIe/fujdHlXHq3aVurVq21bdseeXl9vJT8/3J0dNDbt28jKdnnJU6cWKlSpZK7u7saNGig5s276tCh42E6V9y4cTR//h+6du2apkyZEs5JEV3Y2NgoODjY6BgAIhkFHQCACHLjxm1VqtRAfn6BOnTokPLkyWN0JIvQqFEj2djYaOnStZ89LnPmDHr48JFu3rwZScm+zNraWosXL1aePHk0duzUMJ8nS5YMatKkvoYOHfrJa94BGxsbhYSEiKtRgZiFgg4AQAS4cOGKKlVqKCcnFx0+fFgZMmQwOpLFiBs3rurVq6eFC1cqNDT0P4+rUKGUYsd20uLFiyMx3ZdZW1urV69eOnDgqM6duxjm8/Tt21mSWQMGDAi/cIg2/Pz8uPwBiIEo6AAARICxY6cobtx4OnjwoJInT250HIvTunVr3bnjqQMH/nsDuFixHFW0aAEdPRq5m8R9jVq1ailjxozq02fYZ79k+Jz48d3Uv383zZw5U6tWrQrnhIjqHj9+rESJEshkMhkdBUAkoqADABABnj9/qXz58il+/PhGR7FIhQsXVrJkybR//+fLt79/gEXOIlpbW2vGjBk6fvy05s9fHubztGzpoZo1f1KzZs10+fLlcEyIqO7dTtzcPQeIaSjoAABEAF/fN3J1dTU6hsUymUxKlCih/vnnxn8e8/r1Gx05clKlS5eOxGRfr0SJEmrevLmGDBmnR4+8wnQOk8mkyZOHK2XKZKpZs6Z8fHzCOSWiqjdv3sjJydHoGAAiGQUdAIAI4OPjS0H/gi5dumrbtt1asmT1J58/evSUAgMDVbly5UhO9vXGjRsnR8dY6tixj4KCgsJ0jtixnbRw4RQ9fvxITZs2ZVMwSHpX0GPFivXR42azWePGTdO0afMMSAUgolHQAQCIABT0L/v555/VrFkz/fLLEB0+/PEty27evC17e3ulS5fOgHRfJ27cuFq0aJEOHDimbt0Ghrlcp0uXRn/+OUbr1q3TmDFjwjkloqLYsWPr8uV/9Pjxkw8e79lzsIYPn6j+/Udo7dotBqUDEFEo6AAAhDOz2UxB/0pTpkxRyZKlVKVKI3Xp0l+envffP+fvH6BYsWLJysqyP66UK1dO8+fP15IlazRs2MQwn6dy5bLq3r2d+vXrp927d4djQkRFw4cPl42NnX7+uaMCAgIkSf/8c0Nz5y7V5MmT5eHhoU6d+n7XnQQAWB7L/hsPAIAo6O1bP4WEhMjFxcXoKBYvVqxYWr16tcaNG6dt2/Yqb97y6tZtoO7deygnJyf5+voaHfGreHh4aNy4cZow4U/NnLkozOfp16+LSpYsrAYNGsjT0zMcEyKqSZIkidatW6e//76kXr2Gymw2a9Om7YodO7ZatWqlmTNnKkuWrKpQob42bdpudFwA4cRk5kInfIGPj49cXV119+4ZdhMFgK/w+PETZc5cRJs2bVKVKlWMjhNlvHnzRlOnTtXYsWPl7e39/pruqPRRpXv37vr99981b94kVa9eKUznePHipUqVqqmECZPo4MGDcnBwCOeUiErmz5+vZs2aqV+/LtqwYbuyZcup5cvf3TnAz89PtWvX1uXLF3Xy5HbZ2toanBZG8vHxVapUef7nDgB8QRxVMYMOAEA48/F5N+vLEvdv4+TkpF69eun27dsaOnTo+8fDep9xI4wbN04NGzZU69Y9dejQx9fVf4148eJqwYIpunDhgjp16hTOCRHVNG3aVL/88otGjJikS5euqnbt2u+fc3R01KhRo3T37j1t28ZlEUB0QEEHACCcUdC/T+zYsdWnTx/5+Pjo1KlTFn8N+v9lZWWlefPmqXjxYvLwaKeLF6+G6Ty5cmXTuHG/avbs2ZozZ044p0RUM2bMGN27d0/r1q1TrVq1PnguR44cSpo0qS5cuGJQOgDhKer8jQcAQBRBQQ8fzs7O+vHHH42O8c3s7Oy0du06pUuXXnXrtpCn54MwnadRo7pq0qS+OnTooFOnToVzSkQ1yZMnV40aNWRtbf3Rc5kyZdK1azcNSAUgvFHQAQAIZz4+ryVR0GMyZ2dnbd26VbFixVadOs31/PmLMJ1n9OiBypYtk2rXrq1nz56Fc0pEF5kzZ9b167eNjgEgHFDQAQAIZ//OoDs7s7FmTJYoUSJt375dr175qkGDNnrz5u03n8Pe3l7z5/+hN29eq2HDBgoJCYmApIjqMmfOrBs3bsvX97XRUQB8Jwo6AADhzNf3tWLHjv3JpaiIWdKlS6etW7fqypXrat68S5gKdvLkSTR37u/as2evBgwYEAEpEdVVr15dJpPpu27xB8AyUNABAAhnPj6+cnXlFjd4J2/evFq7dq127TqgUaMmh+kcxYsX0qBBPTRq1CitX78+fAMiykuePLlatmypKVPmvF/BAyBqoqADABDO3hV0rj/H/ypfvryGDRumceOmadeuA2E6R+fOrVStWgX9/PPPunbtWjgnRFTXr18/+fn5a+bMhUZHAfAdKOgAAIQzCjo+pXfv3qpcuZLatOmp+/cfffH4x4+f6ObNO++XxZtMJk2ZMkpJkiRUzZo19fo11xvjfyVLlkytWrXS1Klzde/eQ6PjAAgjCjoAAOHMzy9Ajo6xjI4BC2NlZaWFCxfJySm2mjfvoqCgoA+eDw4O1tmzFxQUFKQVKzYoT54yypu3nDJkKKQzZ85LkpydY2vhwiny9LyrFi1ayGw2G/FWYKEGDRqkOHHiqW7dFnr0yEvBwcFGRwLwjSjoAACEMysrE8UJn+Tm5qaVK1fq7NkLGjp0/PvHb9++q8qV3VW6dC1ly1Zcbdv2VN269bRjxw5lzJhRtWs318WLVyVJGTOm05QpI7Vy5UpNnDjRqLcCC5QgQQJt375dz569VJYsRZUkSXZ17z5Iz549NzoagK9kY3QAAACiGysrK4WGhhodAxaqYMGCGjt2rLp16yYrKyvdu/dQO3bsVaJEibV06VJt3rxZxYsXV+vWrWUymZQvXz6VLl1atWo109atS5UuXRpVr15JrVo11qBBg9S1a1dZWTHngncyZMig06dP6/jx47p27ZrGjRunNWs2a+DAHmrZ0sPoeAC+wGTmK358gY+Pj1xdXXX37hm5uHBPXwD4krZtf9HDh8904MBBo6PAQpnNZtWvX1/r1q1T3rw/qly58urVq5dix479yeOfPn2qEiVKyMfnlbZuXaqUKZNr+/a9atCgte7evauUKVNG8jtAVPHs2TP169dPs2bNUvfu7TRgQDeZTCajYyEC+Pj4KlWqPPL29paLC3cSiaqYQQcAIJxZWzODjs8zmUxavny5goKCZG9v/8XjEyRIoF27dqlYsWKqUaOptmxZonTp0kiSrl+/TkHHf4ofP75mzpypDBky6JdfftGbN280YkR/i1l1YTabdezYaQUEBKhkySJGxwEMR0EHACCcWVlZvd95G/gvVlZWX1XO/5U0aVLt3r1bxYoVU61azbRu3XxJ0p07dyImIKKVnj17ytnZWe3atdPr1280adJwWVtbG5bn/v1HWr58nZYtW6dbt+7I1tZWR49uVdq0qQ3LBFgCy/jqDACAaIRr0BFRUqdOrV27dunFC2/Vr99atra28vX1NToWoog2bdpo4cKFWr58vVq27KbAwMBwH2PixBkqVaqm9u8/8tFzfn7+Wr16k2rXbqYcOUpo4sQZKlq0uHbs2KEkSZLo11/HhHseIKqhoAMAEM5MJhMFHREmY8aM2rlzp+7de6igoCDuh45v0qhRI61evVpbt+5W27a9wnW1z+nTf+u338br5Utf1ajRRM2addb9+490+vTf6t59kDJnLqJWrborMNCs2bNn6/Hjx1qwYIHKlSunUaNGacuWnTp06Hi45QGiIgo6AADhjBl0RLQcOXJo+/btcnZ2ZsMvfLMaNWpo2bJl2rBhm3r1Ghput4W8dOkfmc1mXbt2TYsWLdKxY2eVM2dJlS1bRzt2HFCHDh117do1HTx4SM2bN5ez8/9uPtygQQMVKJBf/fuP5BIhxGhcgw4AQDijoCMy5MuXT9euXVOcOHGMjoIoqFatWpoxY4ZatWolN7e46tev63ef080trqR3dwBq1KiRqlWrpnnz5ilTpkwqW7bsF695z5Ytu+bMmaMHDx4rZcpk350HiIoo6AAAhDMKOiJL4sSJjY6AKKxly5Z6/vy5+vTpo3jx4qht26bfdb64ceNIendrt/jx48vFxUVdunT5qteOHj1ac+bM0ahRAyjniNEo6AAAhDMrK65BBxA19O7dW8+ePVPfvsMVN25c1a9fPUznMZvNWrx4lezt7eXq6vpNr501a5b69u2rXr06qk2bJmEaH4guKOgAAIQza2trCjqAKGPMmDF6/vy5OnTorThxXFShQqlvPsf06fO1bNk6LV68WEmSJPnq161evVpt27ZVy5aN1KdP528eF4hu2CQOAIBwxhJ3AFGJyWTSzJkzVbVqVTVt2klHjpz8ptfv3XtIAwaMUs+ePeXh4fHVr9u5c6fc3d1Vs2ZljR49kA0PAVHQAQAId4GBgRR0AFGKjY2Nli1bpkKFCqthwza6cOHyV73u1q27at68q8qXf3ertK91/Phx1axZUyVKFNaff46RlRW1BJAo6AAAhJvQ0FCNGzdVs2cvUaFChYyOAwDfxMHBQevXr1f69BlUp05L3bp197PH+/j4ysOjnRImTKRly5Z/cZf2f126dEmVKlVStmyZtGDBH7K1tQ2P+EC0QEEHACAcPH/+QvXqtdKIEZPUv39/zZkzN1LGff36tWrUqKGyZcsqMDAwUsYEEH25uLho27ZtihMnrmrWbKpHj7w+edytW3dVqVIDPXr0RBs2bPjq2/3duXNH5cuXV9KkibRixUzFiuUYjumBqI+CDgDAd9q5c79Klqypc+cuadu2bRo6dOhXzyR9D7PZrObNm2vDhg3avXs3y+oBhIsECRJo586dCg2V6tRprpcvX33w/K5dB1SmTC0FBYXqyJEjypQp01ed19/fXzVq1JCdnY3WrJkrV1eXCEgPRG0UdAAAwsjT874aNWqvevVaKkOGTDp79qwqVKgQaeNPnDhRq1atUsKE8ZU1axY5ODhE2tgAoreUKVNqx44d8vJ6rjp1Wuj69Vsym82aOHGG6tVrqSJFiurEiZPKkiXLV5+zZ8+eunr1qhYunKJEiRJEYHog6qKgAwAQBnPnLlXBgpV09uwlLV++XLt27VKKFCkibfz9+/erV69e6ty5ldKkSaWcOXNF2tgAYobMmTPrr7/+0osXPipUqLLKlKmtoUPHqV+/ftq4cdNXL2uXpPXr12vq1Kn67bc+yp49c8SFBqI4CjoAAN/AbDZr2LAJ6tHjVzVp0lRXr15V/fr1I/32QBMmTFD69D9o4MDuCgoKkqMj13ECCH958+bVlStXNGLECL19G6g1a9Zo2LBh37Tr+r1799S8eXP99FM5tWz59bdhA2IiCjoAAN9gwICRGj/+T40dO1Z//vmnnJ2dDcmRJUsWvXz5StbW1oofP56ePn1qSA4A0Z+Dg4N69eqlq1evqlatWt/02uDgYLm7u8vJyVF//DGCe50DX0BBBwDgKy1atErTps3TlClT1LNnT0OzFC9eXF5eT3Xr1l0lSOCmJ08+vdMyABhp6NChOnLkiGbOHK+4ceMYHQeweBR0AAC+wvHjZ9Sjx69q06aNOnToYHQcFS5cWFZWVjpy5KTc3OLpyZMnRkcCgA/s27dPw4YNU58+nVSoUF6j4wBRAgUdAIAvCA0NVYsWXVWgQAFNnjzZ6DiSJFdXV+XKlVNHjpz8nxl0lrgDsBzPnj2Th4eHihTJr+7d2xkdB4gyKOgAAHyFBw8eqUmTJrKzszM6ynvFi5fQsWOnFT++m16/fi0/Pz+jIwGAzGazmjVrKn9/P82YMU7W1tZGRwKiDAo6AABfYGVlJTs7OwUEBBgd5QMODg4KDAxUggRuksRGcQAswvTp07V58xZNmzZaSZMmNjoOEKVQ0AEA+Ar29pZX0F+/fq04cVzl4hJbkuTj42NwIgCQLl68qPjx3VSqVBGjowBRDgUdAICvYIkz6Hfv3lXSpInf3wP9zZs3BicCAKlDhw569uy5Vq7cYHQUIMqhoAMA8BUcHR309u1bo2N8IFGiRHr48LGcnCjoACxHlixZVLNmTU2aNEshISFGxwGiFAo6AABfIXHihLp//77RMT5QqFAhXblyTSEhoZJkcV8gAIi5+vbtqxs3bmvUqMkym81GxwGiDAo6AABfIVWq5Lp9+7bRMT5QsGBBmc1mXb78jySxizsAi5EvXz6NHj1a48ZN0/DhEynpwFeyMToAAABRQapUKXTixCajY3wgU6ZMihMnjk6ePGd0FAD4SK9evWRtba2ePXsqODhEv/7aUyaTyehYgEWjoAMA8BXSpk2l+/cfyMvLS4kSJTI6jqR3t38rUCD/+4LOB18AlqZHjx6ysbFR165dFRISoqFDe/NnFfAZLHEHAOArVKpURg4O9po1a5bRUT5QsGAhnTx5VhIFHYBl6tKli6ZMmaIpU+aoX7/hLHcHPoOCDgDAV4gbN47q1auu6dOnKygoyOg47xUqVEihoe82iUuQIIHBaQDg0zp06KA///xT06cvUK9eQynpwH+goAMA8JVatPDQgwcPtGGD5dzbN3/+/O9/nz59egOTAMDntW3bVrNmzdKcOUvUo8ev779cBPC/uAYdAICvlD17ZhUqlE/jx49TrVq1ZGVl/PfccePG1bhx43T69GklTpzY6DgA8FktW7aUtbW1WrRoodixnTR0aG+jIwEWhYIOAMA36Nu3s6pX/1ljxoxRnz59jI4j6d0mTAAQVTRr1kze3t7q1q2bfvghlZo2bWB0JMBiGP/VPwDAYvn6vtaQIeM0a9ZiPX78xOg4FqFYsYLq2rWNBgwYoKNHjxodBwCipC5duqh9+/bq2XOwzp+/ZHQcwGKYzOzQgC/w8fGRq6ur7t49IxcXZ6PjAIgk3t6+qlu3hS5evKqgoCCFhISoYMG8ql69gqpUKa9kyZIYHdEwQUFB+uknDz158kJnz55V3LhxjY4EAFFOcHCw0qZNq+LF8+uPP0YaHSfK8/HxVapUeeTt7S0XFxej4yCMmEEHAHzE29tHtWs30/Xrt7V//349efJE8+bNk5tbQg0aNEbZshVX+fL1NG3aPN2799DouJHO1tZWs2dPlLf3S7Vs2ZLdiAEgDGxsbNS6dWutWbNZ3t4+RscBLAIFHQDwkX79huvmzbvavXu38uXLp7hx46pJkybatGmznjx5okWLFilp0pQaOnS8cuQoobJl62jy5Fm6e/ee0dEjTcqUyTR58gitXbtW06dPNzoOAERJLVq0UHBwiOrXb60jR04aHQcwHAUdAPARFxdnOTs7K3fu3B895+rqqkaNGmn9+vV6+vSpli1bplSp0mrkyMnKlau0SpWqqYkTZ+jWrbsGJI9cVatWUIsWHurWrZvOnz9vdBwAiHISJ06sLVu2KCAgRD/95K6mTTspJCTE6FiAYbgGHV/ENehAzLNnz0HVrt1cFy5cULZs2b7qNa9fv9a2bdu0evVqbd68WW/fvlW2bJlVvXoFVa9eSenT/xDBqY3h7x+gsmXrKCREOnXqlJycnIyOBABRTmhoqJYuXaqff/5Z/ft3U48e7YyOFOVwDXr0wAw6AOAjhQvnV6xYjtqyZctXvyZ27NiqW7euVqxYoadPn2rNmjXKnj2XJk2arfz5K6hIkZ80evQfunLlegQmj3wODvaaO/d3eXreVceOHY2OAwBRkpWVlRo1aqQ+ffpo1KjJOn36b6MjAYZgBh1fxAw6EDO5u7fVmzdB2r9//3edx9/fXzt27NCqVau0ceNG+fj4KGPGdKpWrYKqVauorFkzymQyhVNq4yxdukYdOvTR4sWL5eHhYXQcAIiSgoKCVKRIYT1//kx79qyRqyszwV+LGfTogRl0AMAnlStXQocPH9arV6++6zwODg6qVq2aFi1apCdPnmjz5s0qVKioZs1aomLFqipfvvIaOnS8zp+/FKV3Q2/YsJbq1auutm3b6vr16LVKAAAii62trZYsWaqXL71VtWpjPX363OhIQKRiBh1fxAw6EDPdu/dQOXKU0OTJk9WpU6dwP39gYKD27NmjVatWaf369Xrx4oVSp06patUqqHr1isqdO3uUm1n39X2tUqVqytU1no4cOSJ7e3ujIwFAlHTx4kWVK1dOsWM7au3a+UqRIqnRkSweM+jRAzPoAIBPSpEiqZo0qa+uXbtq1apV4X5+Ozs7VaxYUXPmzNHjx4+1c+dOlStXQcuWrVeZMrWVK1cpDRw4SidPnlVoaGi4jx8RnJ1ja86c33Xx4kX16tXL6DgAEGVly5ZNhw4dUnCwWZUrN9SNG7eNjgRECmbQ8UXMoAMxV0hIiNq37621a7do9erVql69eoSPGRwcrIMHD2rVqlVau3atvLy8lCxZElWtWl6VKpVRwYI/ys7OLsJzfI/p0+erb9/hOnjwoIoWLWp0HAUFBWnz5s1Kly6dsmfPbnQcAPhqDx48ULly5fTs2VOtWTNH2bNnMTqSxWIGPXqgoOOLKOhAzBYcHKxWrbpry5ZdOnbsmPLkyRNpY4eEhOjw4cPvy/rDhw/l7BxbpUoVUblyJVSuXEklSpQg0vJ8rdDQUFWoUF/+/kE6c+asbG1tDc0zcuRI9evXT9bW1urTp48GDRpk8V9yAMC/nj17pooVK+rGjeuaMWOcKlQoZXQki0RBjx4o6PgiCjqAoKAg5clTVtWr19SUKVMMyWA2m3Xu3Dlt3bpVW7Zs1rFjx2U2m5UrVzaVK1dC5cuXVJ48OWRlZRlXb50/f0mlStXSqFGj9MsvvxiaJXHixKpcubSSJEmoMWOmKlu2bFq4cCGz6QCiDB8fH9WtW0c7duxUmTLFNWRIL4WGhih16pRydo5tdDyLQEGPHizjUwwAwKLZ2tqqfPmS2rZtq2EZTCaTcufOrf79++vIkaN68uSJFi1apMyZs2v27KUqV66uMmYsrLZtf9HatVv06pW3YVklKUeOrGrdurEGDx4sT09PQ7NIUpIkCfXLLx21a9dqBQS8Vd68eTV69GiFhIQYHQ0AvsjFxUV//bVda9eu1Z07D1S0aBUVL15d5crV1bNn7PSO6IMZdHwRM+gAJKlSpYaKGze+tm7dZnSUjwQHB+vYsWPvZ9fPn78ga2tr5c+fR+XLv1sKnyVLhkjfFd7Hx1cFClRUoUJFtHbt2kgd+//KkiWzSpUqpOHD+0mSAgICNGLEJP3xx2wVLFhACxYsVPr06Q3LBwDfIjAwUGvWrJGDg4PatWunRInia+PGRXJ1jdmfU5lBjx6YQQcAfJGn5wMdO3ZKDRu6Gx3lk2xsbFS0aFGNGDFCf/99Xp6enpo2bZoSJEiisWOnqWjRKsqZs5S6dx+kbdt2682bt5GS6+1bPzk4OOjq1auRMt5/SZQosW7f/t9ZfHt7ew0Z0ktbty7T48ePlCtXLk2dOjXK7JYPIGazs7NTw4YNVbNmTe3YsUOeng/UoEFrvX3rZ3Q04LtR0AEAXzR9+nzFjh1bNWrUMDrKV0mRIoVat26tDRs26Pnz59q+fbtq1qytAwdOyN29rdKmza86dVpo5syFunMnYpafP3/+QjVrNlVQUIi2bNkSIWN8rapVq2r37oMfLfsvWPBHHTy4UQ0b1lTHjh1VoUJ53bt3z6CUAPDtcuTIoW3btunChSv6+ecOCggIMDoS8F0o6ACAz7p27aZmzVqsfv36ydk56i0fdHBwUPny5TVp0iRdv35d//zzj0aOHCnJVgMGjFLu3GVUoEBFDRgwUgcOHFVgYOB3j+nt7aNatZrrxQtv7d69W2nSpPn+N/IdGjZsqODgYK1f//HlCU5OsTRu3GCtXTtPV65cVrZs2bRgwQJxBRyAqKJgwYLauHGjDh06odateyg4ONjoSECYcQ06vohr0IGYrV69Vrpx464uX74sBwcHo+OEK19fX+3atUubN2/Wtm3b9OjRIzk7x1bJkoVVvnxJlS1bQokTJ/ymcz565KUmTTrqxo272rdvn3LkyBFB6b9NhQrl5ePzUtu2LfvPY7y9fdSnzzAtX75O1atX14wZM5QoUaJITAkAYbdx40bVqlVL9epV05Qpoyzmrh6RhWvQo4eY9X8tAOCbXL58TTt37tOIESOiXTmXJGdnZ9WsWVNz5szRgwcPdObMGfXq1VvPnvmoc+f+ypy5iEqWrKERI37XyZNnP7vjudls1sqVG1S48E/y9Hyk7du3W0w5l6QmTZrq2LFTOnz4xH8e4+rqoj//HKPFi6fp8OFDypYtm9asWROJKQEg7KpVq6aFCxdq+fL16tt3GCuBECUxg44vYgYdiLnu33+kHDlKqFmzZpo1a1aMmo149uyZ/vrrL23ZskXbt2/Xy5cv5eYWT0WK5FPKlMmVIkVSJU+eVMmTJ5GTk5N+/XWMtmzZKXd3d02ePFlubm5Gv4UPhISEqHTp0rp164YOHtyoOHFcP3v8s2fP1b37IG3atEPu7u6aMmWK4saNG0lpASDsZsyYobZt26pnz/bq37+b0XEiDTPo0QMFHV9EQQdituXL16t9+176448/1KFDB6PjGOL/3sbt+PHj8vS8K0/Pex9cr54gQQL9+eefql27toFJP8/T01M5c+ZUqVKFNWfO71+87ZzZbNaqVRvVu/dQxYoVW3PmzFHFihUjKS0AhN3YsWPVq1cvDRnSS507tzI6TqSgoEcPFHR8EQUdQNu2v+jgwRO6efNmtFzqHhahoaF6+vSpPD099fDhQxUpUkTx48c3OtYXrVy5UvXr19fUqaPk7v51XyY8ePBIXbr01+7dB9W6dWuNHz9esWPHjuCkAPB9+vfvrxEjRmj48H5q0cJd9vb2RkeKUBT06IGCji+ioAO4efOOChSoqAkTJqhz585Gx8F3atasmVatWqkDBzbqhx9SfdVrzGaz5s1bpkGDRithwkRasGCBihUrFsFJASDszGazunbtqsmTJ8vFxVnlypVQlSrlVbZsccWO7WR0vHBHQY8eYs7FhACAMEubNrXq1aumkSNHys/Pz+g4+E6TJ09W4sRJ1KJFV/n5+X/Va0wmk5o3d9fBgxuVKJGbSpYsqTlz5kRwUgAIO5PJpEmTJun8+fPq0aOnbt68p2bNOitdugLateuA0fGAT6KgAwC+yi+/dNDTp081Y8YMo6PgOzk7O2vlypW6du2W2rX7RaGhoV/92jRpUmnz5sVq1qyhWrZsqTFjxkRgUgD4ftmzZ9egQYN09uw53bp1S9myZdPMmYuMjgV8EgUdAPBV0qRJpQYNamj06NHMokcDefLk0ZIlS7Rx43YNGzbxm15rbW2tsWN/Va9eHdW7d2/17NmT2xkBiBLSpEmjpk2bat++w3r1ytvoOMBHKOgAgK/Ws2d7PXv2TNOnTzc6CsJBjRo1NGbMGE2cOF1Llqz+pteaTCb17dtFo0YN0Pjx4zVgwIAISgkA4at27doKDg7W1q27jI4CfISCDgD4aqlTp1T9+tU1adIko6MgnPTo0UOtWrVS164DdfDgsW9+fZs2TdS9ezv9/vvvevbsWQQkBIDwlSRJEhUqVEg7duwzOgrwEQo6AOCblCpVVHfv3tWLFy+MjoJwYDKZNHXqVJUqVVI//9xR16/f+uZztG7dWG/fvtWePXvCPR8ARIQkSZLI1/e10TGAj1DQAQDfJFOm9JKkK1euGJwE4cXW1lYrV65S0qTJVL9+az1//m1fvsSLF0eS5OvrGwHpACD8eXu/ivb3RUfUREEHAHwTJydHSZK//9fdngtRQ5w4cbR582a9fv1W1ao11rlzF7/6tceOnZYkZc2aNaLiAUC4CQ4O1rFjx5UvX26jowAfoaADAL5JSMi7W3JZW1sbnAThLU2aNNqzZ4/s7Z1UpkxtDRo0Wm/ffnnH/iVL1ih9+nQqUKBAJKQEgO/z999/6/Xr1ypUKK/RUYCPUNABAN8kJCREEgU9usqWLZuOHz+uESNGaObMRSpatOpnN487e/aCVq/epDZt2spkMkViUgAIm3//rAoICDA4CfAxG6MDAACiFmbQoz9bW1v17t1bNWvWVKtWrVStWmN5eNRWunRp9ODBYz18+O+Pl548eao8efKoc+fORscGgK+SO3dupUqVShs3bleJEoWNjgN8gIIOAPgmDx48kvTummVEbxkyZNDevXs1c+ZM9e3bV5KUPHkyJU+eQnnzFlSKFCmULFkyVa9eXba2tganBYCvYzKZVLt2bS1evEhjxgziC2dYFJPZbDYbHQKWzcfHR66urrp794xcXJyNjgPAYO3b99Lp0xd19eo/LGmOQcxmM/+9AUQbR48eVeHChbV58xIVKZLf6DjhwsfHV6lS5ZG3t7dcXFyMjoMw4hp0AMBX8/Pz1+bNO+Xu7kFZi2H47w0gOilQoICSJUum9eu3GR0F+AAFHQDw1UaM+F1v3/rJ3d3d6CgAAISZlZWV6tevr/XrtykoKMjoOMB7FHQAwFdZuXKDpkyZo3Hjxil9+vRGxwEA4Ls0atRIz5491969h42OArzHJnEAEMU9euSlvn2H6eLFfySZVahQXhUpkl/FihVUsmRJwmWMc+cuqkuX/mrSpIm6dOkSLucEAMBIuXLlUpYsWbRy5QaVL1/S6DiAJGbQASDKGzx4rA4dOqmqVaurYsWf9PffV9WuXS/lylVaQ4eO19u3ft91/idPnqlRo/bKnj27pk+fzrXIAIBowWQyqVGjRtq6dZd8fV8bHQeQREEHgCjtwoXLWrVqo4YPH66JEydqypQpOn/+gp4/f64BAwZo2rR5KlSosnbs2Bem8wcGBqpJk04KDg7V2rXr5ODgEL5vAAAAA7m7u8vPz19btuwyOgogiYIOAFHakCHjlT59OjVv3vyDx+PFi6dff/1VFy5cUIYMGVW/fis1adLx/T3Mv1afPsN0+vTfWrt2rZInTx6e0QEAMFyqVKlUvHhxrVq1wegogCQKOgBEWZ6eD7R79wENGvSrbG1tP3lM+vTptWPHTi1btkzHj59TwYKVNH36fAUHB3/23F5eT9WpU1/Nm7dMU6dOVeHChSPiLQAAYLhGjRpp374jevz4idFRAAo6AERV/36QyJkz52ePM5lMatCgga5evarGjX9Wv34jlCdPWfXsOVjbtu3W5cvX9ODBI/n6vtabN281duwU/fhjWW3dukfTpk1Tq1atIuPtAABgiLp168rGxkZr124xOgrALu4AEFUdOXJCVlZWSpYs2VcdHydOHE2bNk3NmzfX/PnztXXrFs2Zs+Sj42xtbdWxY0cNHDhQcePGDe/YAABYlDhx4qhq1apauXKD2rdvZnQcxHAUdACIAsxms4YNmyiz2axffumgBw8eafz4P9W+fftvLtF58+ZV3rx5ZTb/oTt37ujx48d69eqVvL295evrq9KlSytt2rQR9E4AALA8jRo1Us2aNXX16nVlypTe6DiIwUxms9lsdAhYNh8fH7m6uuru3TNycXE2Og4QI40bN1XDh/8uOzs7WVtbyc/PX4kTJ9aVK1cUJ04co+MBABClBQQEKEmSJPL29la+fLn1yy8dVLp00Sh1a1EfH1+lSpVH3t7ecnFxMToOwohr0AHAwq1du0XDh/+uIUOG6OzZs+rXr7/WrFmjCxcuUM4BAAgH9vb22rx5s37//XdJ1qpTp7nKl6+nHTv2iflMRCZm0PFFzKADxjGbzcqbt7xy5MiltWvXRqlv8gEAiIrMZrN27typIUMG68iRoxo+vF+UuDadGfTogRl0ALBgJ06c1a1bd9S5c2fKOQAAkcBkMql8+fI6dOiwGjdurBkzFiokJMToWIghKOgAYMGWL1+nFClSqESJEkZHAQAgRjGZTOrQoYM8Pe9rz55DRsdBDEFBBwAL5e8foPXrt6px48aysuKPawAAIpubm5ucnZ21fPk6o6MghuATHwBYqDNnzuvVKx/VqFHD6CgAAMQ4c+fOVdasWRUnjrMaN65rdBzEEBR0ALBQadOmliTduXPH0BwAAMQ0V69eVYcOHVS79k86duwvlSxZxOhIiCEo6ABgoRIlSqCUKZPr2LFjRkcBACDGMJvNatGiuZIlS6xx44YoVixHoyMhBrExOgAA4L/ly5dLhw4dNDoGAAAxxoULF3TkyFEtWTKdco5Ixww6AFiwypXL6sSJkzp16pTRUQAAiBH27dsnk8mkkiULGx0FMRAFHQAsWPXqFfXDD6k1YsQIo6MAABAjFC1aVGazWYcOHTc6CmIgCjoAWDBra2t17dpa69at0+XLl42OAwBAtJc7d25ly5ZVy5evNzoKYiAKOgBYuPr1qyt58qQaOXKk0VEAAIj2TCaTmjdvofXrt6pNm566fv2W0ZEQg1DQAcDC2dnZqVOnFlq2bJlu3eJDAgAAEa1Tp06aMmWKDh8+pYIFK2nChOlGR0IMQUEHgCigceN6ihcvrkaNGmV0FAAAoj0bGxu1b99eN27cUNeuXTV8+ESdPv230bEQA1DQASAKcHR0UPv2TbVgwQJm0QEAiCQODg4aPXq0cufOrY4d+yogIMDoSIjmKOgAEEW0aOGhJEkSqUGD+goMDDQ6DgAAMYKNjY3mzZunq1eva8OGv4yOg2iOgg4AUYSzc2zNmzdJ5879rd69exsdBwCAGCN79uxKmTKFLl++Fi7nM5vNev78hfz8/MPlfIg+bIwOAAD4erlzZ9fQob3Ut+9wlSpVStWqVTM6EgAAMUKWLFl17drNML32woXL2rRph27evKPbtz1169ZdeXv7qEiRAtq8eXE4J0VUxgw6AEQxbdo00U8/lVPTpk119+5do+MAABAjZM6cWf/88/UF3Ww2a+fO/apRo4mKF6+uefNW6NkzX+XJk199+vTVgAEDdPjwcf3996UITI2ohoIOAFGMyWTSlCkj5ewcSw0a1FdQUJDRkb7LvHlzZTKZNHLkSL1588boOAAAfFKWLFl0546n3r71++xx/v4BWrRolQoX/kn16rXUmzeBWr58uR49eqT9+/dr9uzZ6tOnj3799VelTJlSM2cujKR3gKiAgg4AUVCcOK6aM+d3nTp1Wv369TM6zndp3ryFJGnIkCEqWrSoPD09DU4EAMDH8ufPr9DQ0P+83dqLFy81btxU5cxZSp0791OGDJm1f/9+nThxQvXr15eNzYdXF9vY2KhDhw5avXqznj59HhlvAVEABR0Aoqi8eXNp8OBfNG7cOG3ZssXoOGESEhIia2trTZgwVLt2rdaLF0+VP39+eXl5GR0NAIAPZMuWTfHixdPhwyc+ePzWrbvq2XOwsmUrrvHjp6tGjZq6evWqNmzYoOLFi8tkMv3nOT08PBQYGKiDB49FdHxEERR0AIjC2rdvpooVS+vnn3/WvXv3jI7zzQIDA2VlZaXbtz2VLVsm7dy5Wm/fvtHEiRONjgYAwAesrKxUrFgxbdu2W2/f+unYsdNq3Li98uYtp40bd6h37z7y9PTUjBkzlDFjxq86579/d//wQ6qIjI4ohIIOAFGYyWTStGmjFSuWgxo2bBjlrkd3dHTUoEGDNHXqXJ06dU4JE8ZX8+bumjZtmh4+fGh0PAAAPtCpUyfduHFHWbIUVaVKDXT9uqemT5+uu3fv6tdff1WCBAm+6Xxnz56VjY2NMmdOH0GJEdVQ0AEgiosbN45mz56oY8eOaeDAgUbH+WZ9+vRRnjx51L59b/n5+atTpxZycYmtmjVryM/v8xvxAAAQmcqUKaNjx46pQYOG2rRpky5fvqzWrVvL0dExTOc7ffq0MmVKL3t7+3BOiqiKgg4A0UCBAnk0cGB3jR49Wn/99ZfRcb6JjY2NFixYIE/PBxo+fKLc3OJp8eJpOn/+vFq3bi2z2Wx0RAAA3suePbumT5+uKlWqyMoq7HXKy8tLK1asUKlSRcIxHaI6CjoARBOdOrVU2bIl1LhxYz148MDoON8kS5Ys+u233zRt2jwdOXJSuXJl09Spo7V48WKNHTvW6HgAAIS7QYMGycbGSt26tTE6CiyIyczUBL7Ax8dHrq6uunv3jFxcnI2OA+Aznj9/oeLFqytr1mzasWOn0XG+SUhIiIoUKSw/vzfau3etrKys1L37IK1evVk+Pj5GxwMAINxcunRJOXLk0NChvdWhQ/NwOaePj69Spcojb29vubi4hMs5EfmYQQeAaMTNLZ5++62Pdu7cpStXrhgd55tYW1trzJixOn/+kjZt2i7p3fL3FCmSG5wMAIDw9csvPZUyZXK1bOlhdBRYGAo6AEQzP/1UVnHjxtH8+fONjvLNihcvrvLly2nkyMkKCQnRlSvXlDVrNqNjAQAQbnbu3Klt2/7S4ME92RwOH6GgA0A0Y29vr7p1q2rhwoUKDg42Os43GzZsuP7554ZWrdqky5evKVs2CjoAIHoICQlRjx7dVaDAj6pWraLRcWCBKOgAEA15eNTW48ePo9yO7pKUL18+Va9eXaNGTVZwcLCuXbtmdCQAAMLFvHnzdOHCRQ0f3lcmk8noOLBAFHQAiIZy5MiqbNkya968eUZHCZPffvtNnp73lTFjOi1ZskRbtmwxOhIAAN/l9evXGjhwoGrXrqIff8xpdBxYKAo6AERTHh61tGnTJj19+tToKN8se/bsatCggR48eKSiRQuoTZs28vb2NjoWAABhNmbMGL18+VKDBvU0OgosGAUdAKKpunWrSZKWLl1qcJKwGTJkiB498lLhwvnk7f1Kv/zyi9GRAAAIk/v372vcuHFq27aJUqZMZnQcWDAKOgBEU25u8VS0aH7t3Bm17of+r/Tp06ty5Ur666+9Gjz4F82aNStKXlMPAMCAAQMUK5ajunVra3QUWDgKOgBEYwUK/KgjR44oNDTU6Chh0q5de50/f0nZs2dRuXIlVbduXZ08edLoWAAAfLWzZ89q4cKF6tOns1xdnY2OAwtHQQeAaKxAgTx6+fKlrl69anSUMKlYsaJSp06tefOWad68ScqUKZ0qVaokX19fo6MBAPBFZrNZPXr0UPr0P6hp0/pGx0EUQEEHgGjsxx9zysrKSocPHzY6SphYW1urbdu2Wrduq168eCVvbx8lT55Mjo6ORkcDAOCLNm3apL1792rIkF6ysbExOg6iAAo6AERjzs6xlS1bZh05csToKGHWvHlzmc1mVaxYTw8femnFipV8yAEAWLygoCD98ssvKlGisCpUKGV0HEQRFHQAiObSp0+jO3fuGB0jzBIkSKC6devq4UMvTZ06VRkzZjQ6EgAAXzRr1ixdv35dv/3WRyaTyeg4iCKYggCAaC5BAjdduXLT6BjfZcyYMapYsaIaNWpkdBQAAL7I399fw4cPV506VZU9e2aj4yAKYQYdAKK5+PHd9OTJU6NjfJekSZNSzgEAUcbs2bP1+PFj9erV0egoiGIo6AAQzSVI4Kbnz58rODjY6CgAAMQIM2fOUPXqFZUuXRqjoyCKoaADQDQXP76bzGaznjx5YnQUAACivYcPH+rChYv66adyRkdBFERBB4BoLleurLKxsdHy5cuNjgIAQLS3Y8cOmUwmlSpVxOgoiIIo6AAQzSVNmlj16lXT+PHjFRAQYHQcAACiNS8vLzk6OsjR0dHoKIiCKOgAEAN07txKjx490qJFi4yOAgBAtFarVi29feun7dv3Gh0FURAFHQBigIwZ06l06WJaunSp0VEAAIjW0qdPr3z58mrVqo1GR0EUREEHgBiiVKkiOnr0KMvcAQCIYB4ejbRz5369fPnK6CiIYijoABBDFCtWQP7+/jp27JjRUQAAiNbq168vs9msLl36682bt5Kke/ceql+/4Vq+fL38/PwNTghLRUEHgBhiy5ZdsrKyUrx48YyOEuX4+fmpbt06Kl26tHr06KHFixfr0qVL3FseAPBJiRMn1qpVq7Rnz2FVqtRQM2cuUtGiVbR06Tq1a/eLMmcuouHDJxodExaIgg4AMcChQ8c1duxUDR48WNmzZzc6TpTTvXt3bdq0WbFi2Wj16pVq3LixsmXLJhcXFxUsWEDt2rXTzJkzdfLkSfn7MysCAJBq1KihI0eOyMfnjXr3Hqpq1arrzp07unHjhn7+uYnGjZumEyfOGh0TFsZkNpvNRoeAZfPx8ZGrq6vu3j0jFxdno+MACIPKld0l2ejgwYOytrY2Ok6Ucvv2baVLl06//dZH7ds3kyS9euWtCxeu6Pz5yzp//rIuXLiif/65odDQUFlbWytz5kzKnTuPihcvrmbNmvHvHABisOfPn+vKlSsqWrTo+8dCQ0OVKVNGZcuWQXPnTgqXcXx8fJUqVR55e3vLxcUlXM6JyGdjdAAAQMR69cpbJ06c0dSpUymKYTBp0iS5urqoadMG7x+LE8dVxYoVVLFiBd8/5ufnr8uX/3lf2s+f/1uLFy/W+vXrtHTpMj4sAUAM5ebm9kE5lyQrKyt16dJVXbp00b17D5UiRVKD0sHSsMQdAKK5vXsPKyQkRJUrVzY6SpS0ZMkSeXjUVqxYjp89ztHRQT/+mFPNmjXUxIm/affuNVq5crYOHTqkggUL6saNG5GUGAAQFTRs2FChoaHasGGb0VFgQSjoABDN7dy5T9mzZ1OKFCmMjhLleHt769mzZ8qZM2uYXl+2bHHt3LlKQUH+yp8/v3bt2hXOCQEAUdWkSZNkbW2tkiWLGB0FFoSCDgDR3KlTfytXrtxGx4iS7t69K0lKkSJZmM+RPv0P2rVrtfLkya4KFSpo3bp14RUPABBFnT9/XiNGjFD37m2VLVsmo+PAgnANOgBEc9WqVdDkybN148Z1pUnzg9KkSaM0adIobdq0KlKkiGxtbY2OaLHc3NwkSc+ePf+u87i6umjFiplq1aqH3N3dtXv3bhUuXDg8IgIAopjg4GC1aNFC6dKlUffubY2OAwtDQQeAaK5793ZycnLSP//c0K1b17Rv3x49euQls9ms3Llza+7cucqVK5fRMS1S0qTvNu15+vT7CrokWVtb688/R6t27eaqWrWqjhw5oowZM373eQEAUcucOXN0+vRpbd++Qvb29kbHgYVhiTsARHOxYjmqW7c2mj59rLZtW6ZLlw7q0aML2rJlqQIC3ihfvnwaOHCgAgMDjY5qcYKCgiRJDg7h8wHK3t5eS5b8qUSJ4qtixYp69OhRuJwXABB13LhxQz/8kFr58nH5GT5GQQeAGMje3l6FC+fT3r3r1L17W40aNUo//phHJ0+eNDqaRfH19ZWkL+7g/i1cXV20cuVsBQb666effno/BgAgZnBwcOBLcfwnCjoAxGB2dnbq27eL9uxZKysrqWDBgurdu7f8/f2NjmYRHjx4IElKkiRRuJ43efIkWrlytm7evKE6dWq/n6kHAER/zs7Oevnylfz8+LsWH6OgAwCUPXtm7dq1Sv36ddXvv/+uXLly6fjx40bHMtz9+/clSUmTJg73c2fNmlGLF0/T3r371LJlS5nN5nAfAwBgeWrVqqU3b95q5coNRkeBBaKgAwAkSba2turRo53271+v2LEdVLp0aR06dMjoWIYKCAiQJDk6OkTI+YsVK6hp00Zr4cKFGjBgQISMAQCwLOnSpVP16tX1xx+z9euvY1S6dC2NHv0HX9RCEgUdAPD/yZQpvTZtWqwff8yhypUrx+jr0p2dnSVJr1+/ibAx6tSpqiFDemnEiBGaPn16hI0DALAcPXv21M2bd7RixUYlSZJCo0ZN1sSJM4yOBQtAQQcAfMTR0UFLl05XpkzpVKFCBZ0/f97oSIb4t6D7+LyO0HE6dWqpNm1+VocOHbR169YIHQsAYLwiRYro8ePHevjwobZs2aLBgwfrt9/G66+/9hgdDQajoAMAPil2bCetWjVbKVIkVbly5fTPP/8YHSnSvX79rpg7OYXfLu6fYjKZNHx4P5UtW1xNmjTh9msAEAMkSpRIVlbv6li3bt1kZWWlx4+fGJwKRqOgAwD+k6uri9aunat48VxVpkwZ3b592+hIkerfXdwTJw7fXdw/xdraWlOnjpK1tUlNmvys0NDQCB8TAGC8ly9fqmnTpjKbzSpRopDRcWAwCjoA4LPc3OJp3br5sre3UZkyZd7vbB4T/Hv7M1tbm0gZL358N02bNlo7d+7S77//HiljAgCMNWzYMO3atVPz509WmjSpjI4Dg1HQAQBflDhxQq1fv1DBwQEqW7asvLy8jI4UKeLHjy9JevXKO9LGLF26mDp0aK4+ffro7NmzkTYuAMAYBw8eUKVKZVStWkWjo8ACUNABAF8lRYqkWr9+oV69eqFy5crqxYsXRkeKcG5ubpKk589fRuq4Awd2V6ZM6dWwYUO9eRNxO8gDAIzl5+ens2fPKX/+3EZHgYWgoAMAvtoPP6TSunUL9ODBA9WsWTPaXyf97wx6ZBd0e3t7zZ49QZ6ed9WtW7dIHRsAEHlOnTql4OBgCjreo6ADAL5J5szptXDhHzpw4ICmTp1qdJwI9W9Bf/Eicgu6JGXIkFYjRvTXrFmztG7dukgfHwAQ8Y4cOaLYsZ2UOXMGo6PAQlDQAQDfrEiRAmrRwkN9+vTRrVu3jI4TYeLGjSuTyRTpM+j/atKkvqpUKaeWLVvGqM35ACCmOHr0qH78MadsbCJnM1JYPgo6ACBMfv21p+LHj6uWLVvKbDYbHSdCWFtby83NTV5extyX1mQyadKk4bK3t9XPP/+skJAQQ3IAAMKf2WzWkSNHlC9fLqOjwIJQ0AEAYeLsHFu//z5Me/fu1axZs4yOE2Hy5Mmtkyf/Nmz8ePHiavr0sdq3b5/GjRtnWA4AQPi6deuWnj59qvz58xgdBRaEgg4ACLNSpYrq55/rqWfPnvL09DQ6ToQoXryETpw4Y+jsdfHihdS5cysNGDBAJ0+eNCwHACD8nDp1SpKUO3c2g5PAklDQAQDfZejQPnJ2dlKbNq2j5VL3YsWKycfHV5cv/2Nojn79uih79sxyd3fX69evDc0CAPh+qVOnliTdvHnX2CCwKBR0AMB3cXV11oQJQ/XXX9u1aNEio+OEu/z588vOzk5Hjhg7c21nZ6dZsybo0aOH6tSpk6FZAADfL2/evIoXL5727DlodBRYEAo6AOC7VahQSmXLltCcOXOMjhLuHBwclD9/Pu3ff9ToKEqbNrVGjx6o+fPna+XKlUbHAQB8B2tra5UtW1a7d1PQ8b8o6ACAcFGuXHEdPXpUb9++NTpKuPPwaKTt2/fq5s07RkeRu3tt1ahRSa1bt4621/0DQExRpUoVnTlzXvv3HzE6CiwEBR0AEC6KFSukoKAgHTkS/T5kNG3aVAkTJtSkSTONjiKTyaSJE3+Tk5OjWrduFS2v+weAmMLd3V1ly5ZRixbddO/eQ6PjwAJQ0AEA4SJTpnRKkCC+9uzZY3SUcOfg4KAePXpo+fL1un//kdFxFCeOq8aPH6Lt23doyZIlRscBAISRtbW1li5dJien2GratJOCgoKMjgSDUdABAOHCZDKpaNEC2rs3+hV0SWrTpo1MJpOWLl1tdBRJUsWKpVWz5k/q2rWrnj59anQcAEAYxY8fX6tXr9bZsxe0YAH7i8R0FHQAQLgpXrygTp48JR8fH6OjhDtnZ2e5u7trw4btRkd5b/TogQoNDVHXrl2NjgIA+A758uXTzz//rDFjpsjXl1tpxmQUdABAuClevJBCQkJ08GD03JG2fPnyunz5Hz1+/MToKJKkBAncNGJEPy1dulS7d+82Og4A4DsMHTpUPj6+mjp1rtFRYCAKOgAg3KRJk1LJkiXR3r17jY4SIcqWLStJ2rfvsMFJ/lf9+jX04485NWTIEKOjAAC+Q8qUKdWpUydNmTJHXl5cuhRTUdABAOHGZDKpWLGC2rMnes7mJkiQQHny5NaePYeMjvKeyWRSjx7tdPDgQR04cMDoOACA79C3b1/Z2tpp7NipRkeBQSjoAIBwVaxYAZ0797devHhhdJQIUaFCRe3de1ihoaFGR3mvYsXSypYts4YN+83oKACA7xAvXjzVr19fhw4dNzoKDEJBBwCEq6JFC8psNmv//v1GR4kQ5cuX17Nnz3Xx4hWjo7xnMpnUrVsb7dy5S5cvXzY6DgDgOzx79kxJkyYyOgYMQkEHAISrlCmTKU2aVNHyfuiSVKhQITk5OVnUMndJ+umnsnJ1ddHy5cuNjgIA+A6enneVPHlSo2PAIBR0AEC4K1asQLS9Dt3e3l4lS5bU3r2Ws1Gc9C5XlSrltHz5MpnNZqPjAADC6O5dT6VIQUGPqSjoAIBwV6xYQV2+fEVeXl5GR4kQFSpU0LFjp/X69Rujo3ygdu0qun79hs6cOWN0FABAGPj5+enJkyfMoMdgFHQAQLgrVqygJEXb261VqVJFgYGB2rbNslYJFCtWUPHju2nVqlVGRwEAhMG9e/ckSSlSJDM4CYxCQQcAhLtEiRIoY8Z00XajuDRp0qhw4UJatWqj0VE+YGNjIxcXZwUFBRkdBQAQBp6enpKk5MmTGJwERqGgAwAiRNasGXXp0iWjY0QYD49G2rPnkJ49e250lPeCg4Pl6XlfadOmNToKACAM7t69K5PJpKRJExsdBQahoAP4rBMnzqp69Z/1008e+uefG0bHQRSSIUNaXb161egYEaZevXoymUxat26b0VHee/DgkYKDgynoABBFeXp6KnHihLKzszM6CgxCQQfwnxYvXqUKFerp1avXevHCRyVL1tDMmQvZIRpfJUOGtHr69KmeP7ecGebwFD9+fFWoUN6ilrnfvv1uaSQFHQCipmvXrrGDewxHQQfwSSEhIZowYYZq1aqls2fP6fTp02rRoqV69/5Ndeu20KNH0XN3boSfDBnelcQrV64YnCTieHg00smTZ3XnjqfRUSRJhw4dV5w4cZQ6dWqjowAAvpGPj482btyosmWLGx0FBqKgA/ik7dv36fbtu+rdu7esrKwUK1YsTZkyRdu2bdOlS9dVpkxt3bp11+iYsGBp06aWlZVVtF7mXq1aNTk5OWn16k1GR5HZbNbq1ZtVp04d2djYGB0HAPB/PHjwQLNnz9aOHTv+85hly5bJ399fHh51IjEZLA0FHcAnzZixQAULFlD+/Pk/eLxixYo6c+aMXFziqFq1xhYzcwjL4+Bgr1SpUkTrGXQnJyfVrFlTK1duNPzSj5Mnz+nu3Xvy8PAwNAcA4EO+vr7Knj27WrdurQoVKqhu3bp69OjRR8fNnDlT5cuXZIO4GI6v2AF85M4dTx04cFQLFy785PNJkiTRnj17VLJkCVWr1libNy9RypTJIzklLN2LFy9la2utf/75x+goEcrd3V2LFy/WlSvXlSVLBsNyrF69ScmSJVOxYsUMywAA+Nj58+f18uVL7d69Rrdve6pv3+HKnDmzqlatqixZsihLliySpDNnzmjZshkGp4XRmEEH8JGlS9fK2dlZtWvX/s9jkiZNqr1798nfP0jTps2LxHSwdGazWcuXr1f+/BX15MkLNW3a1OhIEapkyZKyt7fX/v2HDcsQHBysdeu2qkGDBrK2tjYsBwDgY7dv35YkpU6dQrVrV9Hx49vUqFFtXbt2SaNHj1KNGjVUo0YNJUuWhOvPwQw6gI+tWLFe9erVU6xYsT57XLJkyeTq6sKtQPDezZt31KPHr9q//4gaNGigiRMnKnHi6L1Uz9HRUUWKFNH+/UfVrl0zQzLs23dEz549Z3k7AFigIkWKSHr3Z3WtWj8pbtw4Gjasr6R3X2o/fvxE//xzQ0mSJGIPEVDQAXwsTpw4un371lcd+/z5C8WNGydiA8FihYaG6sKFK9q5c7927TqgU6fOKWXKlNq2bZsqVqxodLxIU6ZMGY0cOUJBQUGytbWN9PEXL16lrFmzKleuXJE+NgDg89KkSaMff/xRmzZtV61aP33wnMlkUpIkiZQkSSKD0sHSUNABfODtWz+9fPlSadJ8+T7KISEhevXqleLGdY2EZAhvFy5c1vz5K7R//1GFhIRI0gcbnf3Xpmf/9/HXr9/o5ctXih07tsqWLas//2wjDw+PL66+iG7KlCmj/v3768yZCypQIE+kjv306XNt3bpbY8eOlclkitSxAQBfp3bt2ho27Dc9ePBIyZIlMToOLBgFHcAHJkz4U0+ePNe4ceO/eKy3t7fMZrPixYsT8cEQbi5evKpu3Qbq1KlzSpIkiWrXrq3YsWO/f/7/lrwv/d7Ozk5FixZVkSJFYvSlDj/++KNcXFx04MCRSC/oy5evk8lkUqNGjSJ1XADA12vRooWmT5+uevVaauvWZXJ1dTE6EiwUBR2A3r71044d+7R27WZt3bpb/fv3V7p06b74uufPn0tSlFniHhAQoOvXb8vW1kYZM375/UVHy5evU/fug5Q+fQatW7dOVapU4Xq3cGBjY6NSpUpp//6j+uWXjpE2rtls1qJFq1S7dm25ublF2rgAgG+TMGFC/fXXXypSpIjc3dtqzZp5cnCwNzoWLBC7uAMx1PHjZ9S0aSdVqtRQGTIUVLNmnfXw4XONGTNG/fv3/6pzvHjxQpLlF/TAwED16zdcyZPnUrFiVVW48E/aunW30bEiVUBAgLp1G6h27Xqpfv0GOnbsmGrUqEE5D0fly5fX8eNn9PDh40gb86+/9uj69Vtq1apVpI0JAAibzJkza/PmzTpz5oJ69RpidBxYKAo6EEONHTtFp05dULp0mdSvX39du3ZNp06dUvfu3b96qfL/zqBb7jXonp73Vbmyu2bPXqJBgwbp0KFDqlmzplq27KrTp/82Ol6k8PR8oEqVGmrp0rWaOXOm5s6dK0dHR6NjRTuNGjWSk5OT/vxzfqSMFxAQoAEDRqlMmTIqWbJkpIwJAPg+hQsX1uTJk7Vo0Srt2XPQ6DiwQEydADHQixcvtW/fEf3xxx9q167dd5zn3Qx6vHhxwyvaB8xm8zdvemU2m3Xv3kMdO3ZKx4+f0dq1mxUnTjwdPnxY+fLlkyTlyZNHZcuWUYMGbbRjxwqlSZMqIuJbhJcvX6lUqZpydnbR4cOHlTdvXqMjRVsuLi7q0KGDJk36Xd27t43wlSVTpszV3bv3tHHjZjaHA4AopGXLllqxYoW6dRuoQ4c2y9k59pdfhBiDgg7EQDdu3FFISIiKFi36Xed5/vy5HBzs5ejoEE7J3jGbzVq8eLUGDhwlPz9/xY7tJGfn2P/nx+mDx1xcYsvW1lYXLlzR8eNn9ODBI0lSpkwZ5eHRWL/99pvixv3fLxEcHR21YcNGFS5cSPXqtdKhQ5tkbx89rwNzcoqlxIkTKiREypgxo9Fxor0uXbpowoQJmj17cYRdi+7l9VT9+4/QmjWb1b17d2XNmjVCxgEAfLtbt25p6NChGjJkiFKl+vQEgMlk0qxZs5QtWzYNHTpeY8f+GskpYcko6EAM5ODwbgl7UFDQd53nxYvwvwf6gweP1KXLAO3efUBNmjRRvnz55OvrKx8fnw9+Xr3ylafn4//5Z1+9fftWWbNmkbt7IxUpUkSFCxdWggQJ/nOc+PHja/XqNcqZM6e2b9+ratWi5z277ezstGDBHypdupZatGihFStWMNsagRImTKjmzZtr+vSFat++uZycwu92c6GhoZo/f7mGDh0vW1s7LViwQI0bNw638wMAvt+AAQO0bNkybdu2TevWrVPhwoU/eVyaNGk0cuRIdenSRTVqVFKRIvkjOSksFQUdiIH+nS328/P7rvM8f/483Aq62WzWsmVr1a/fCDk5xdaWLVtUuXLlcDn3f8mRI4fy5curpUvXRtuCLknp0qXRH3+MUNOmnVWkSBF16dLF6EjRWs+ePTVjxgwtWbJarVv/HC7nfPnylRo0aKMTJ86oefPmGjNmDLu2A4CFuXbtmlasWKF+/bpo374jKlWqlGbMmKGmTZt+8viOHTtq5coV6ty5nw4e3KRYsdgfBmwSB8RI/y5J9/f3/67zvJtBD58N4iZMmK4OHfqoevUaunjxYoSX8381bdpMu3Yd0JMnzyJlPKNUr15J7ds3U8+ePTVx4kS9evXK6EjRVpo0adSgQQNNmTLnu1epSFJISIhatuymGzfuaP/+/ZozZw7lHAAs0IgRI5QoUQJ16tRK69bNV4MGNdSs2bu/e0NCQj463srKSnPmzNWDB481cuQkAxLDElHQgRjIzS2enJ1ja8GCBd91nufPn8vb20d79x7S06fPv+tcR46cUNWqVbVgwYIPrhePaPXq1VNISEiM2El18OBfVLduVfXq1UtJkyZVs2bNdOrUKaNjRUu9e/fWvXsPtWLF+u8+12+/TdC+fUe0YsUKFS9e/PvDAQDC3enTp7V48WJ17txSDg72srOz0++/D9PIkf01ceJEVatWVT4+Ph+9LmPGjBoyZIimTZsXY+4ug8+joAMxkJNTLI0c2V+LFi3SpUuXwnyevHnz6tYtT9Wq1UwZMhRUhgyFlDNnKWXNWkwZMxZWwYKVNGXKHPn7B3zxXJ6eD5UuXbowZwmr+PHjK1OmjDp1Kvr/pWhra6tp08bo4sUD6tGjnfbs2al8+fJpxYoVRkeLdrJnz66GDRtqwIBR8vR8EObzrF+/TZMmzdSYMWNUtmzZcEwIAAgvL1++VJ06dZQzZ1Y1a9bw/eMmk0lt2zbVypWzdfjwYRUqVEg3b9786PU9evRQ7ty51alTPwUEfPkzE6I3CjoQQ1WqVEaSdPny5TCfY/jw4fL19dW1a9e0atUqtW/fQY0a/axWrdqoU6fOypu3gIYOHa8ePQZ98VwPHjxUsmTJwpzlexQsWChGFPR/JUqUQD16tNOZM7tVt241NWnSREePHjU6VrQzbdo0ubrGUevWPRQcHPxNrw0ODta4cdPUunUPNWzYUN27d4+glACA72E2m9W0aVO9evVS8+ZN+uRdYcqUKaYdO1bK3/+N8ufPr3379n3wvI2NjebOnavr129p/Pg/Iyk5LBUFHYihDh48Jun7r0O3srJS+vTpVadOHQ0ePFjDhw/X4MGDNWDAAC1evFgzZszQ0qVrtXXrrs+eJ2PGdDp40Jhl5oUKFdLFi1f09u33bZoX1VhbW+uPP0Yod+7sqlat2ie/1UfYxYkTR0uXLtXJk2fVsmU3vXnz9qted+PGbVWq1FAjR05Sz549NX/+fHbeBwALNW7cOG3cuFF//jlGKVMm/8/jMmRIq127Vit79kwqV66cZs6c+cHzOXLkUP/+/TVx4gxduBD2yRNEfRR0IIa4fPma+vcfoQoV6ql27WZq0aKb3N3d5e7uHqHjNm3aVKVLl9Yff8z57HENG9bSli1b9OTJkwjN8ykFCxZUSEiIzp27GOljG83e3l5LlkyTi4uTsmfPrs6dO+vevXtGx4o2ihQpotWrV2vnzgOqVKnhZ5e7h4aGaubMhSpevJq8vV/r8OHDGjFihOzs7CIxMQDgax08eFB9+/ZV165tVLFi6S8eHzduHK1aNVvNmjVUmzZt1KlTpw9WWPXr10+ZMmVU5879ZTabIzI6LBgFHYjGzGazFi9epTJlaqtIkZ+0atVmpU+fRa6uCdS9e3ctWLBA1tbWEZrBZDKpVq1aOnXq3GdnEOvUqSIrKystWbIkQvN8StasWeXk5KSTJ89G+tiWIF68uNq1a7U6dWqhRYsW6ocfflCzZs30zz//GB0tWqhZs6aOHDkiH583KlGimjZs2PbJ4wYNGq3evX9T8+YtdPbsORUsWDCSkwIAvpaXl5fq16+vggV/VP/+Xb/6dba2thozZpDGjx+i6dOnq1mzZu+fs7Oz05gxY3Xu3EVdvHglAlIjKqCgA9HY5s071KlTPyVJklxr167V/fv3tXjxYq1du1ZjxoyRjY1NpOQoU6aMgoODdfTof+8YHi9eXFWqVFrz5s2N9G+Nra2tlT9/fp06dS5Sx7UkcePGUd++XXT+/D4NGtRDf/21VZkzZ1bdunV15swZo+NFeTlz5tTZs2dVtmx5NW3aWW3b/qIbN26/f/7o0VOaNm2exo4dqylTpsjJycnAtACAzwkODpaHh4dCQoI1e/bEMH2eat7cXX/8MVKLFy/WqlWr3j9epkwZubq6avPmneEZGVEIBR2IxqZNm6/ixYtr8+YtqlmzpmFLZTNmzKikSZPqwIHPb0TWrFlDXbhwUfPnz3//2KtXr/To0aMITvhumfvJk+di/JIyZ+fY6tSppc6e3aPx44fo1KkT+vHHH1WhQnnt378/xv/7+R5x48bVypUrNXv2bO3de0T581dQw4ZttGzZWnXq1FeFChVUt27djI4JAPiMwMBANWjQQPv379fs2ROUOHHCMJ+rfv3qqlatgtq1a6fHjx9LejeLXqVKFQp6DEZBB6Kps2cv6NixU+ratavRUWQymVS6dGkdOHDss8eVKFFY7u611LlzZ92+/W52cfjw4cqQIYPWr18foRkLFiwoL6+nun8/4r8MiAocHOzVrFlDnTy5XbNmTdD9+54qWbKkihQprE2bNlHUw8hkMqlFixa6e/euZs+ercePn6t9+956+NBLc+fOi/BLTgAAYRcQEKA6dWpr06ZNWrBgiooV+75LkUwmk8aPHyIrK5Nat279/u/WmjVr6vLlf3T79t3wiI0ohoIORFN//DFHP/zwg6pVq/bRc76+vu+/qY0sZcqU0fnzl/Ty5avPHjdy5AD5+/tr3bp1kqTy5cvr9evXqlmzpn799VeFhoZGSL4CBQpIUoxe5v4pNjY2qlOnqg4d2qRly2YoJCRQ1apVU86cObR06dJvvn0Y3nFwcFDz5s119uw5+fj46NatW8qYMaPRsQAA/8HPz0/Vq1fTzp07tWTJn6pcuUy4nDd+fDdNnDj0f0r/AklSxYoV5eDgoC1bPn8HHERPFHQgGtqwYZvWrduigQMHfnJGrnXr1kqRIoVatGihW7duRUqm0qVLy2w269Ch4589ztvbV8HBwcqQIcP716VIkUIuLs4aOnSoateuLV9f33DPlyhRIqVJk5qC/h9MJpMqViytv/5ars2blyhhwrjy8PBQsmTJ1Lp1a/31118KDAw0OmaU5OzsrMSJExsdAwDwGY0aeejgwYNasWKWypYtHq7n/umncmrQoKa6dOkiT09POTk5qVChQtq370i4joOogYIORDP37j1U164DVKdOHTVp0uSj59+8eaONGzeqaNH82rRpozJkyKDmzZtHeFFPmTKl0qVLq/37P38d+r/3/sydO7ekdxu4NW3aVGazWXPm/K7du3epUKFCEXLP7oIFC+nEiZi5k/vXMplMKlIkv1avnqv9+9erXr2q2rlzuypVqqSECROqUaNGWrNmjd68eWN0VAAAwsXx48e1du06TZo0XMWLF4qQMUaNGiBnZyc1a9ZMT58+1dGjR1Ww4I8RMhYsm8nMhYT4Ah8fH7m6uuru3TNycXE2Og4+IyQkRFWrNtaDB146d+6c4saN+9Exa9asUZ06dXTq1E4lSZJI8+cv16RJs/T8+QtVrVpV6dKlU9KkSd//pEyZUqlSpQqXfI0aNdL161e0ffuK/zxm8OCxWrp0nby8vGQymSRJN27cUPr06bVr12rFju2kBg3a6Icf0mn37t3hkutfCxcuVJMmTXT+/H6lSJE0XM8dnZnNZl28eFVbtuzUpk07dPnyP3JwcFDFihU1evTo96shAACIiipXrqTbt2/q8OHNsrKKuPnNffsOq2bNpsqcObNu376tCxf2KX58t69+vY+Pr1KlyiNvb2+5uLhEWE5ELGbQgWhk8uTZOn78tJYsWfLJci5Ja9euVdasmZQ2bWrFiuWo9u2b6ezZ3frtt9568uSB1q5drf79+6lBgwYqXry4UqdO/cGu6t8jderUun//4X8+7+n5QLNmLZK7u/v7ci5J/v7+kiQ/P39lzJhO1atX1O3b4T/jX7NmTTk6Omr16k3hfu7ozGQyKXv2zOrTp7MOH96s06d3qW/fzjpx4ph69+5tdDwAAMLsxIkT2rbtL/Xs2T5Cy7kklSxZRKNHD1KcOLHVs2f7byrniD4o6EA0snTpGjVp0kRFixb9z2McHR11//5D3bx55/1jsWI5ql27ZtqyZalOn96pBw/O686dMzp2bJvKlCmuQYMGhcuu3alSpdKjR16fvFbZbDarV68hihs3nn777bcPngsICHifU5ISJoyvJ0+efnee/5+zs7Nq1KihlSs3sEv5d/jhh1Tq3LmVunZto02bNkX6hoQAAISXoUOHKEOGtKpRo1KkjNe6dWNt3bpUPXq0i5TxYHko6EA08eiRl27cuK2KFSt+9rgJEyYoceIk8vBoJ1/f1588xmQyydXVWSEhoTpx4ozy5Mn9wYx2WKVKlUpms1kPH35c2DZv3qHt2/dq8uTJcnb+8FKKtGnTSpJu3Xp3u5H48ePpzZs3EXKdc+PGjXX16vX318Ij7OrWrSpbW5twW4EBAEBkOnXqlLZs2aoePdpxG0xEGgo6EE0cO3ZaklSiRInPHufi4qINGzbo0aMnateu13/etuzp0+dq2LCN0qRJo0WLFodLxn+vZb9378Nl7o8eealXr6GqUuUn1axZ86PXxYkTRylSpNC0afN09ep1vXjxUpL05MmTcMn1f5UrV04JEybUihUbwv3cMU2cOK6qXr2SZs+ezYoEAECU8ujRI7Vr107p0qVR7dpVjI6DGISCDkQTceO6SpJevHjxxWMzZsyoxYsXa8uWnRo/ftonj+nT5zcFBARp06bNH81oh1XKlCklSffuPXj/mK/va9Wv31rW1raaPn3Gf87Ur127Vl5ez1WoUGX17TtcTk5OsrW1/eKY3zrLbmNjowYNGmjNms3c4zscNG5cVzdv3tT+/fuNjgIAwFfZt2+fcufOrfv3PfXnn2OYPUekoqAD0USePDlkZWWlI0e+7p6ZVatW1dChQzVixCRt3frhbuiBgYHasWOfOnXq9L5UhwdHR0clSpTo/Qx6UFCQmjbtpLt372vbtm1KlizZf742b968Onv2rDZs2KBLly7p+fPnSp48+X8eHxQUpBYtWih27NjKli2bPD09vzpn48aN5eX19Iu3hMOXFS6cT2nTptbs2bONjgIAiEaePHnyyT1tvseLFy80ZMiQ/8fefUdHUfZfAL9b0nsghZZC7713CGkgoPQiTQWlCSIIIggWFBXBAghI71JEBSEkNKVI770TIBBaSK+7+/uDV37CdwKTugu5n3M873kvM/M8W7LJs7N7BwEBAShb1h9//fU7ateunqtjED0PF+hELwlnZydUqFBW9QIdAD766CO89tpreOedkTh//v+vK75v32EkJCSidevWuT5Pf38/zJgxH8HBXdGmTU/s3LkP69atQ5UqVZ67r6enJ9q1a4eKFSvCxsbmmdtevHgR8+fPR5Mm9REfH4vXXnsNSUlJquZYq1YtlC9fDqtW8WPuOaXRaNCrV2esWbMGMTEx5p4OERG94C5fvow33ngDRYsWRbNmTXH3bs5KYw0GA8LCwtC1a1cUKVIEn3/+OYYPfxvr1i2Ep2fhXJo1kXpcoBO9ROrWrYF//lG/QNdqtVi0aBF8fHwRGNgZu3btg8lkwoIFK+Dv749q1arl+hxnzJiJ998fibJlK8LOzgnLly9Hy5Ytc32cChUqYOjQodi37zAmThyFs2fP4K233lL1XWiNRoPXX++FDRvCkZCQ+0V0BU337h1gMBiwdGnudBkQEVHBERMTg8WLF2Pq1Kno3bs3ypYtiz//3ID33x+IS5cuoWHDhrh48WKWj3vhwgV89NFH8PX1RWhoKE6cOIrx40fg1KmdGD9+BD/WTmajMbG5h54jLi4OLi4uuHbtMJydc/Zd5NTUVCQlJcPNzTV3JkdPWLlyHQYO/AAPHjzI9DroSmJiYtC+fXvs3LkTdevWxP79hzF//nz069cvD2eb91JTU+Hp6YkhQ/qhTJlS6NfvXXz11Vf44IMPnrvv1atX4e/vj1mzpqBr1/b5MNuXW+/eg3H1ahSOHTueK1cEICKigmHy5Mn48MMP4ejoAG9vT7zxRnf06dMN9vZ2uHbtOjp3fgsxMXFYv3496tev/8xjJSQkYPXq1Zg/fz527doFFxdndOjQBq+/3gk1alR54X8/xcXFw9e3JmJjY+Hs7Gzu6VA28Qw65avPP5+GChUa48svv0dycoq5p/PSqVu3JgBg7969WdrPzc0NO3bswIwZM3DlynVMmzbNbIvzZcuW4bPPPsPSpUtz3PxtY2ODoKAgRET8jVdfDcX77w/EmDFjsHHjxufu6+fnhyZNmmDVqt9yNAd6pEePjjhx4iTOnDlj7qkQEdELxt3dDdevH8WBA+EYOLAf7O3tAAC+viUQFrYSpUv7oWXLlti+fbvY12Qy4e+//0a/fv3g7e2NN998E3q9CT//PBVnzuzG1KmfombNqi/84pxeHlygU77avHk7/Pz88N13c9C9+9tITU0195ReKv7+PihUyB3//JP1cjOtVotBgwYhOjoaw4cPz5X5GI1G/PLLL/jzzz/x8OHD525/48YNvP766/j444/Rq1cvdOrUCffv38/RHFq3bo2DB4/i3r37GDt2OIKDW6BHjx44d+7cc/ft1asXduzYg+3bd+VoDgQ0aVIfVlZW2Lp16/M3JiIi+h9ra+tnlsG5u7vh118XoH79mnjllVceXzXkxo0bmDRpEsqWLYtmzZph+/atGDbsLRw7tgPr1i1Ep05tYWdnm183g0g1LtAp31y/HoULFy5j0qRJCA8Px969h/DRR1+ae1ovFY1Gg1q1quLAgQM5OkZu6dGjO7p164ZXXnkFXl5e6NevH06cOJHp9lFRj9rdt29fh8WLp2P79m2oUqUKwsPDsz2HkJAQmEwmbN26C1qtFrNnT4G3twfat2+P2NjYZ+77+uuvIzg4CJ07v4X585dnew4EODjYo27dGtiyZYu5p0JERC8QGxsbpKWlP3MbOztbLFs2C3XqVEebNm0QGNgKPj4+mDTpc9SuXQXr1y/F4cNbMGrUEJQoUTSfZk6UPVygU77ZsWM3tFotWrZsiWbNmmHcuHFYvnwt4uLizT21l0qlSuWfuQjOT+vXb8DIkYNw6NAWfPjhu4iI2IyqVauiVatW2LhxI4xG4xPb+/j4wMHBAUuWrEbbtsHYvXsDypcvieDgYIwaNSpbcyhSpAhq1qyBiIgdAB613S9dOhO3b99Cz549YDAYMt3Xzs4Of/yxHu+88w7ef38Chg79ECdPns3WPAho3rwhduzYwevLExGRao8W6GnP/H0NPFqkL18+C40b10V8/EN8993nOHt2D3766Ws0blwPWi2XPfRi4DOV8s327btQp07tx+Vlffr0QUpKKv74I8zMM3u5VKpUDjdv3sSDBw8y3ebBgwfo06cPli/P27PCnp4euHTpGkqW9MXw4W/jyJGtmDt3Gh4+vIc2bdqgbt26SEz8/5Z0b29vjB49GvPnL0d8fAKKFPHCmjXzMW7cCEyZMiVbH90HgNat22Dr1p2Pf7mXLu2PuXOnYdOmMIwfP/6Z++r1ekyfPh0zZ85EWNgONGnSFk2btsfMmQtw5869bM2noGrWrCHi4uJw8OBBc0+FiIheEFWrVgUAbN2687nb2tvbYeXKOQgLW4nevbvkuNyYyBy4QKd8YTAYsGPHHgQFBT/OSpQogYCAllixYp0ZZ/byqVixHABkehb96NGjqF27NhYvXozhw4c/sUDObRMnfoJ16/7E2rUbAABWVlbo2PEVRESsxvr1S3Hq1ElMmDDhiX3Onz+PsmVLwdHRAcCj78a/997bKFasCNasWZOtebRu3RoPH8bi4MFjj7NWrZpiwoSR+PLLL7Fu3fOfgwMHDsTNmzfx+++/o0yZ8pg48RtUrNgY3boNwO+/b0JKCvsUnqdGjSpwdnbix9yJiEi1OnXqoEaN6vyqGRUYXKBTvjh+/DRiYh4iKCjoibxv337Ys+cArl6NNNPMXj6lS/vB2toax48fF/+2ePFiNGjQAE5O9li/filiYmLw008/5dlcevfuja5du2LEiI9x5syFx7lGo0HjxvUwevRQTJs2DYcOHQLwqFRu06ZNaN8+5Invwmu1WpQrVwrLly/P1vfr69atC3d398cfc//X0KFvITQ0AO+++y6SkpKeexxra2u0a9cOa9euxa1bt/DDDz8gJiYBffu+iwoVGmLEiI9x4MCRHLfPv6z0ej0aNarLojgiIlJNo9Fg4MBBCA/fgcjIm+aeDlGe4wKd8sW2bbvg5OSEevXqPZG/9tprcHJywsqVv5lnYhbo+vUo/P33P9k+I2tlZYVy5UqLM+hTp05Fnz590LFjG4SFrUTjxvXQs2dHfP3113l2Fl2j0WD27Nnw8/NDx479EBl544l/Hzz4Dfj6lsBXX30FADhz5gzu37+PRo3qimPNmPEVihf3RtOmTbFy5coszUOn06Fjx4749tuf8P33cxAZeQPnz1/Ctm27UK5cady4cQNTp07N0jELFSqEQYMGYd++/Thz5gwGDhyMiIidCArqgrp1gzFlykxcvx6VpWMWBM2bN8SePXvy9JMbRET0cunevTucnJzwzTfTMWXKDAQFdUG9eiF4/fVB+PTTb7Fq1e+IjWWnEb0cuECnfLFjx260aNECVlZWT+T29vbo2LEj1q/Pfkv3y+aTT75B+/a9UbJkbXTp8hYWLfrlucUoT6tYsSyOH///j3ObTCbMnDkTXbu+ih9//PLxZUVGjHgnz8+iu7i4YPPmcNjbO+K11/o98b3tpKRk3Lp1GzVrPrp++86dO6HX61G7dnVxHG9vT6xfvxTt2gWje/fuGDdunCiZe5affvoJPXv2xOTJP6JatRaoVy8EnTq9gR9++BnFixeDvb19tm9j+fLl8cUXX+Dq1avYsmULGjRojGnTZqNateYYPfrTLM3zZde0aQOkpaVh79695p4KERG9IBwdHdGrVy8sXboG338/Fz4+JREc3BppaSasWrUeb789EpUrN8EHH3yKCxcum3u6RDmiN/cE6MUxYMD7SEtLQ0JCElJT02AymWAymWA0GmFnZ4v27UPQs2dHuLu7PbFfQkIi9u07nOkZynLlyuH333/Lh1vwYoiOvouAgAAEBwdj06ZNGDHiY/z5ZwTmzp2muuykUqVy2LAhAkajEVqtFufOncOlS5fw+ecfPPHRcR+f4mjWrAH+/vtvjBw5Mq9uEry9vREREYFGjRqhY8c3sGHDUri4OGPNmvVIT89Anz59AACpqanQ6XSwt7dTPI6trQ1mzfoG5cuXwWeffYEzZ85g8eLFcHBweO4cdDodli5diunTp2P79u1wd3eHr68vihUrJt44yi6dToeAgAAEBARg5syZmDNnDkaOHImkpGR8993n0Ol0uTLOi6xIES8AwMOHD807ESIieqF8+eWX6NatG+rWrQtra+sn/u3mzZuYPXs2Zs2ahZ9/XoKAgKb45puP4e/va6bZEmUfz6CTagaDDoULF0WVKjXQsGETNGnSHM2atUTLloEoWbIsPv98GipWbIK33x6Jf/45+Pis7+7d+5Geni6+f/6vwoUL4+HDWF566X/u349BpUqVMGrUKGzbtg0bN27E/v1HERzcFbGxcaqOUalSOSQmJuLKlSsAgPXr18POzhbNmjVU3N7Gxibb801NTcWlS5cQExPzzO38/f0RHh6Omzdvo2vXAUhKSsayZWsRGhqKIkWKAHh0SbTU1NRn3k6NRoP33nsbS5fOxObNYWjUqBGuX7+uer6urq547bXX0KxZM/j5+eXa4vxpjo6OGDFiBJYsWYLly3/FwIEf8DkOPH6DKKufCiEiooLNyckJjRs3FotzAChWrBg+/fRTREZGYtGiRbh69SZatuyIbdue3/xOZGl4Bp1UW7t2LZydnTP997t372LBggWYPXs2Vq36Ha6uLmjcuC4ePoyDj48PypQpo7ifh4cHTCYTYmJi4eFRKK+m/8K4d+8BChcu/Pj/BwcH459//kGdOnUwZcpMfPbZmOce498m9+PHj6NUqVLYsiUCdevWfPzR9v9KSUl9YoGemJiIu3fvws/P77njREZGIjg4GGfPnoWTkxMGDRqE9957D56enjhx4gQ2bNgAf39/dOrUCVZWVqhcuTI2btyIgIAAFCv26LIpH3/86ePjFS1aFABw+/YduLq6PHPs1q1bISzsF3Tp8hZGjhyJX3755bnzNYeePXvC2toaPXr0QFpaGhYs+OGJTzEUNP9eh5Yf+yciotxma2uL3r17o127dujZswc6d34LH3/8Pt59t3+B/t1LLxaeQadc4+HhgQ8++AAXLlzA33//jWHDhiM2Nhn79h1G+/btM31h/Hcxev9+5tftLiiMRiMePIiBh4fHE3mFChUwevRozJmzBFeuXHvucby8PFCokPvjJvdatWpj//7DorTsypVrOH/+8uM3Xs6ePQtHR0f4+/vjwoUL4rhP++OPP3Dx4kX89tsivPFGd8ycOQN+fn4oVaoUqlWrhi++mIQePXqgVKlSCAt7dL37+vXrIzw8HJ999hmmT5+Odu3aPT7ev2fSo6PvPndsAKhcuTw6dnwF//yzR9X25tK5c2fMmjULv/8ehkuXrpp7OmbFM+dERJTXXF1d8ccf6zFmzBhMnPgN3nxzOBITn3+1FiVr127A++9PwIMHz/6kIFFu4QKdcp1Wq0WTJk0wceJE/P33TsTHx+O7777LdPt/F6NcoAPx8QkwGAxwd3cX//b+++/Dw8MDn3wy5bnH0Wg0qFSpHHbv3g0A+PDDD+Hs7ILPPvv28TbHjp1CcHA3uLm5Y/To0QCAHTt2AABKlCiGHj26P3echIQE2NhYo169Wpg4cRSOH9+B998fiJYtG2LNmvm4fPkAdu5cj5IlS6BHjx64desWAKBRo0YYN24cBg8e/PiMKvD/C/Tbt9Ut0AGgZs2quH79BqKjo1XvYw6lSpUCgCdub0H07+X2ypcvb+aZEBHRy0yn02HSpElYu3YtwsP/QlBQlyxf1jcm5iFGjpyA+fOXo2HDNti4kZcJpbxXsP9SpHxhY2PzzEXJ/59B5zuTDg720Ol0ePBAvllhb2+PL774Ar//HoZ//jn43GO9/nonREREYNu2bXBycsKnn36K1av/wMcff4VJk6bhlVd6wt/fH7t27YKv76MSlX379qFatcoYOXIQDh8+8txLYbVp0wYGgxEjR06AyWSCq6sLRo4chClTJiIgoAmsra1RuXJ5zJ//Hayt9RgwoP8zrxH+7/fYbW3l98syU7NmFQDI1vXR81NaWhoA5Nl33l8Ux46dhLW1NSpVqmTuqRARUQHQoUMH7Nu3D2lpBrRo0SFL30ufMmUmMjKMOHz4MOrUqYuePd/BwIEf4OHD2DycMRV0XKCT2bm6ukKn0+HePZ5B1+v1KF686ONyt6e9/vrrqFmzJsaPn/zc7/B26tQWderUwPDhw5CRkYE33ngDr732Kn77LQzLlv2KkJAQbN267YmP0z98+BCFCrmiWrVKMBqNjz8in5kqVapg1qxZWLZsLRYuzPza5O7ubpg69TNs2PAnli5dmul227dvBwDF66BnxsenONzd3Sx+gf7vmy52dtkv5HsZHD16ClWrVinwb1RYohDPd8R/QTY9xX9ERC+aSpUqYf/+/WjQoAE6d34L338/55knDADg6tVI/PzzUowePRo1atTAH3+sx8KFC7Fp0zY0bNgGn3wyBcOHj0P37m8jOLgrduzYnU+3hl52XKCT2Wm1WhQqVIjf7fkfX9/imS7QtVotpk6dikOHjmHt2g3PPI5Go8HkyeNw4sRJzJ07F3q9Hr/+ug6RkdcRFXULq1evgaOj4xP7+Pv7IzIyCuXLl4Zer8eRI0eeO98+ffpg0KBBGD36M3z11Y+4dUv5o+atWwegefOGWL58WabHevDgAaysrLJU5KLRaFC9eiUcPXpU9T7m8Mcff6BixXIoXLhgFyEeP34atWrVNvc0iIiogHFzc8P69Rsefy996dI1z9z+00+/hYeHB0aMGAHg0d8bffr0wcmTJ1GnTl2sXfsnTp26CJ3ODocOHcPRoyfz42ZQAcAFOlmEwoUL8Qz6/zxaoF/O9N+bNWuGV199FZ999i2Sk1OeeayaNauiW7fXMH78eFXXnS5TpgyuXbuOhIREVKhQFocPH1Y152nTpmHAgAH48cd5qFKlGfr0GYITJ86I7WrXro6jR49lepxu3brB2toa1aq1wJtvDseff0YgJSX1mWMnJCQiMTHZoi9hlpycjPXr1+O110LNPRWzSkpKxtmzF1CrVi1zT4WIiF5iaWlpWLduHaKinizH/fd76a+99hp+/HFupp9GPHDgCNat24jPP/8c9vb2T/xb8eLF8fvvfyAy8joOHDiI9evXAwCcnByVDkWUZVygk0Xw8PDkd9D/p2hRb/EL5Wlff/01bt26g59+Wvjc43388ftITk7CJ5988txtO3fuDGtra4we/RmSk5ORnJysas7W1taYPn06bt68ie+//x7nzl1FUFBnrFz52xPbValSAbdv38bt27cVj/Pv5dk+/HAsLl6MxOuvD0LZsvXx9tsjERa2Dfv3H0GfPkMQENARnTq9gb59h6JKlaY4ePAoWrRooWqu5nDs2DEkJCSgZcsm5p6KWe3dexBGo5ELdCIiyjNbt25F1apV0aFDB5QtWxaTJk1CSsqTJzRGjhyJCxcuIzx8h+IxPv74a1StWgW9e/d+7nhJSUkwGAxwdnbKjekTcYFOlqFw4cJscf8fZ2cnxMbGPXObMmXKYNCgQfjuu9m4c+feM7ctUsQLw4e/jenTp+PcuXPP3LZw4cIYNmwY1q7dgDt37qNx48ZZmruLiwsGDx6Mo0ePolu37hg4cBTGjPkM6enpAICqVSsCwDM/ju7v74+PPvoIx44dx+nTp/H++yNx4sT5/33HqwvOnbuKGjXqwMXFA3FxqXjjjbdw+fJljBw5MktzzU9eXl4A8NzH9WWWmpqKsWO/QN26dVC9enVzT4eIiF4yt2/fRrdu3dCqVSu4uzsjLOwX9O3bFRMnTkS/fv2e2LZhw4aoX78epk+fJ45z58497N17EKNHj4FOp3vuuLGxjwrjuECn3KI39wSIgEeXWjtzht/dAQBnZ0ckJibCYDA88xfDhAkTsHTpUowcOQGLFk1/5ve2Bw9+A0uWrEb//v0xe/ZsVKhQIdNtP//8c4wZMwZOTtn/RWNra4v58+ejTp06GDZsGE6cOIP+/Xth1arfAQCXL2f+Ef7/qlChAiZMmICPP/4Yp06dQlRUFAICAlT9wrQkxYsXh1arxZUrkbDgE/15atq02bh06SoOH/61wF9qLq+ElP1AhgpfHQp7MFdxf5O3h8jC78zK8byIiPKawWBAu3ZtceXKFfz00zfo2rU9NBoN6tWrifLlS2Po0LH44IMPUKNGjcf7jBw5Cp06dcKRIydQo0aVx/nJk4++ole3rrrC2ps3bwIA3N1dc+8GUYHGv5LIItStWxdnzpxHVJTyR58Lkn/fgY2Le/bZVnd3d/z8889Yvz4cCxaseOa2dna2mDbtU5w6dRIVK1ZE06ZNsWTJEsWPsGs0mhwtzv97nEGDBmH79u24dCkS/fq9i+joGEyfPl28k63mWJUrV0ZQUNALtzgHHl1arWbNmti1a5+5p2IWZ85cwNSpszB69GhUqVLl+TsQERFlwQ8//ICDBw9h2bKf0K3bq0+ctOjW7TWULu2P8ePHPbHPq6++ipIlS4qz6CdOnIGjoyNKliypauxNmzbBxcUZ1atXzvkNIQIX6GQhXnvtNVhZWWHduo3mnorZ/Vsy8u9Hpp6lQ4cOeOeddzB27Be4eFG5+f1fLVs2wenTOzFv3nfQaDLQu3dvFC1aFEOHDsXJk3n36YXGjRvjzJkzOHv2LA4dOoTBgwfDzs4uz8azVG3btsXWrTsfXw+9oDAYDBg27COUKlUK48ePN/d0iIjoJXPlyhWMGzcO/fu/jrp1a4h/1+v1GDPmXfz550YcOnToca7T6TBixAj8/nsYIiNvPM5PnDiDatWqqv601x9//IGAgCa8fCjlGi7QySK4urqiTZs2z710WEHw7xl0NQt0AJg6dSpcXFwwb17mly/7l42NDTp0aIPff1+MQ4e2oE+fLvjll5WoUqUKGjZsgAULFiAxMTFH81fi5uaGcuXK5fpxXyTt2rVDXFw89uyx7Ou157Z585bjwIEj+Pnnn2FjU7CvAU9ERNl3/vx5LF++HBs3bsTu3btx6tQp3LhxA++88zYKFXLFuHEjMt331VdD4e3tiUWLFj2R9+3bF87Ozpg16//zU6fOoXp1udBXcuPGDRw6dAihoQHZu1FECrhAJ4vRo0cPHDlyAq+/PggbN259XCxW0KhZoEdFReHcuXMwmUyws7NDr169sHr1+iydnS1Z0hcTJ47CyZN/YdGiH2Fnp8ebb76JokWLYuDAgWa5rviZM2cwZswYFCtWDL6+vpg0aVKmje8vmmrVqqF06dL44ovvC8xZ9OvXo/DZZ9/inXfeyXLhIBER0b/S0tLQpk0b9OzZE23atEHjxo1RuXJllChRAuHhEfj220+RlpaW6WXTdDodOnRog1WrVj1xWVYHBwe88847WLp0DdLS0pCcnILz5y+pLjPdsGED9Ho9WrVqmhs3kwgAoDGZTCZzT4IsW1xcHFxcXBAbGwtnZ+c8G8doNGL27Nn4+ec5OHLkKDw8CqNLl3bo0aMjKlYsm2fjWpro6LsoX74h/vjjD7Rt21Zxm6ZNm2Dnzl0oXbo02rVrh86dO6NBgwZYvHg62rYNzvbY165dx5Ilq7Fs2Vrcvn0HtWvXxoABA9CtW7dc+V76s+zYsQMtWrSAq6sLOnZ8BSkpKfj11z+Rnp6BDh06YODAgWjWrNkzy/As3b59+9C0aVP06tUZU6ZMNPd08pTJZELXrv1x+vRFnD59Ok9fO5QE6rvJ0GgQUYRxdT7MJvcF2/cS2cPXqovMLfy8yMLuzlY8ZqOOU0S2e615ro4QZNNTZOGpz/+UEBG9nKZPn45hw4YhImI1vL09ERcXj9jYeMTFxSM9PR1ffTUdx4+fQkBAE8yZ8y3c3d3EMY4cOYGWLTsgPDwcgYGB/8mPoGbNmvjjjyXw9vZE3brB+Ouvv9C06fMX3a1bhyIxMRa//744V29vdsXFxcPXt2ae/81OeYtn0MliaLVaDBw4EIcPH8HRo0fRvXsP/PLLH2jUqA1atuyAn39eipiYh+aeZp573hl0o9GIw4ePoEuX9mjcuDZmzpyJLVu2oHbt2li2bG2Oxvb1LYFx40bgxIm/sGzZT3B3d8Q777yDokWLon///jh+/HiOjv8sEydOROnS/jh7djemTJmI6dMn4/TpXfjss9E4evQQWrRogeDgILzI7ynWq1cPP/74I+bNW4YVK34193Ty1KpVfyAi4i/MnDmTfyQQEVGOfPfdd+jcuR1q1qyKokW9Ub58GdSrVxOBgc2wfftuREbexA8//ICjR0+jRYvXcPSo7NapXr0ySpf2x7JlT77ZV61aNXh5eSEi4i/cvx8D4NHVhZ4nISEBW7duQ2hoy9y5kUT/wwU6WaRq1arh+++/x82bN/Hrr7+ieHE/fPjh5yhfvhHeeGMYdu7ca+4p5hlbWxtYWVll2uJ+5coVJCYmokuX9pg27TM0aFALBw8eRL9+/bBly9+Ijr6b4zno9Xq0bt0Kv/zyM44d24EhQ97Apk1/ok6dOtizZ0+Oj6/EYMhA7drVn/iesqurC955py/27t2En3+eioiILVi/fn2ejJ9f+vfvj379+mHEiAk4fvyUuaeTJ27evIXRoz9Fjx490K5dO3NPh4iIXmAZGRm4evUq6tWrKf4tMvIGFi36BaNHj8bQoUNx6NAheHoWQXBwV/TpMwRr1qxHXFw8gEdXhGnXLgQbN2584s1+rVaLkJAQbN26E/fvP7o0ZeHChZ87r6tXryItLQ1Vq1bKpVtK9AgX6GTRrK2t8dprr+GPP/7AjRs38MUXX+D8+Wto164XOnTomycLHJPJhKSkZNy+fQfnz1/CoUPHsH37LmzbthORkTcy/X5TbtFoNHB2dsr0DPq/Z7ErVXpUulatWmUcPHgQ3bt3h16vf3yt8dxSvHgRjB49FIcORaB27Wp49dVXVV/HPCs8PDyxZs16vP76IISFbXviO2IajQYdO76Chg3rYOLEiS/0WXSNRoOZM2eiUqVK6NVrCB48iDH3lHKVyWTC0KEfwsHBEdOnTzf3dIiI6AUXFRUFg8GA4sWLin/76qsf4e7ujqFDhwIAfH19sXPnTnz++eeIirqP/v1HoEyZ+ujWbQCWL18LZ2dH3L17F9evX3/iOCEhITh9+hxOnDgDjUYDNzf5EfmnlShRAgBw61Z0LtxKov+nN/cEiNTy9vbG+++//79LYvyODz/8EM2avYpOndpi3Lj34OtbQtVxMjIycPnyNZw5cx6nT5/HmTPnce3aTcTFxT/+77+Lw6fZ2dmidOmSKFPGH+XKlUKDBnXQpEn93LqZMBqNsLGxfuYCvXDhQvDyevTxq+rVK+G772YjLS0Nr776KpYv/xVDhryZ69/VtrGxwZIlMxAY2AWvvPIK9uzZA1dX11w7/oIFC7BkyRLMmzcX3bu/DW9vT3Tr9hp69uyI0qX9odFo8PrrnTBo0GjExsbm6tj5zdbWFmvXrkWtWrUwYMD7+OWXn1/I67srmTdvObZv342wsDBVf+AQERE9S2RkJACgRIknF+jnzl3EypW/4bvvvoODg8Pj3NbWFqNGjcKoUaNw7do1rFu3DmvXrsGQIR/CZDKhTZvWKF68+BPHCgoKgoODA6ZMmQk3Nzfo9c9fIrm4uMDNzQ2RkTdz4VYS/T+WxNFz5VdJXFZlZGRg/vz5mDBhAh48eIC33uqJ998f+LgYxGQy4fr1m/9bhF/AmTOP/vf8+UuPW7S9vLxQuXJllC5dGq6urnBxcRH/OTs7w8XFBUajEefOncPZs2dx9uxZnDlzGmfOnMW9e/fwyiuBmDx5PIoVK5Kj22QymTBy5EQsWLACGzZsQOvWrcU2HTt2xP37t/Hbb48uCXLt2nVUr94Sf/75J3Q6HUJCQrBlyxrUqlUtR3PJzIULlxEU1AV16tTBn39uzJPrfh45cgRz587F8uXL8fDhQzRoUAevv94Rf/+9Fxs3bkVsbOwLXRb3ry1btiA4OBjvvff2My8P86K4dOkqmjZth169emPWrFlmnUurxp+LTH9Hfm3EcPGKyPKrOC6k0liRhZ36QtW+LVpNVrXd9i1jVM+n1ltTRXZornmelyGFBojMpHD1g83xC/NlbJjkJ6dM6fKN3LyYD1FBt3z5cvTs2RORkUfg5OT4OB87dhLWrQvD1atXVV3G89atWzh69ChatmypuP2ZM2cwevQHsLa2xpo16jp9atasgWrVymPatM/U36A8xJK4lwPPoNMLS6/XY8CAAejZsyemTZuGr7/+GsuWrUVQUHNcvXodZ86cR0LCo2t6u7i4oHLlSmjUqCnefnsQKleujEqVKqkqAfmvkiVLIjQ09PH/N5lMWL16NYYNG4b69UMxduww9O/fS9U7r08zmUz46KMvMH/+csydO1dxcQ4Ax48fQ1DQ/zeL+vgUh6urM44ePYrRo0ejePHiWLZsbZ4t0MuUKYnFi6ejQ4d+GDp0aJ4sxGrUqIEZM2ZgypQp+O233zBv3jwMHjwGWq0WM2fOfCkW5wDQqlUrfPHFFxgzZgxq1qyK1q1bmXtK2WYwGDBw4AcoUqQopkyRbeBERETZ8e+nse7cufd4gW4ymRAWth3t2rVTtTgHgCJFiqBIkcxPpFSoUAF//JG1nhs/P39cv84z6JS7+B10euE5ODhg3LhxuHTpEnr37oOrV6NQoUIVfPzxBGzcuBGRkZGIiYnBrl27MWvWLAwZMgTNmzfP8uJciUajQZcuXXD27Fn07t0HH330JVq16oQjR05k6ThJSckYP34yfvppIWbMmIE333xTcbuEhARcunT58ffP/51DxYrlcOzYMeh0OvTu3Ru//vonkpNTcnTbnqVJk/r45psJmD17NrZu3Zpn49jZ2aF79+7YsmULrly5glOnTuHtt9/Os/HM4YMPPvjfZeQ+wEWFs7kvirCwbThw4AgWLFgAR0fH5+9ARESkQsOGDaHVavHXX/9fUnvx4hVcuXIt08vR5pfq1atj795DuHv3vlnnQS8XLtDppeHh4YEffvgB+/cfwKJFizBq1CiEhoaiRIkSeX7G1cXFBTNmzMDevXsB6NGqVSeMHv3p4+bQzERH38WkSdNQpUozzJy5AFOnTsWgQYMy3f7kyZMwmUyoVKn8E3mlSuVx/PgxAEDfvn0RGxuHP/+MyPHtepY+fbqiXr1aGD582DO/s59b/Pz8UL58+edv+ILRaDRYsGABihYtht69hyA+PsHcU8qWFSvWoWbNmmjSpIm5p0JERC8RFxcXtGjRAuvXhz/ONm/eDltbW7Rsad5LnA0ePBg6nR7ffTfbrPOglwsX6ES5qG7dujh48CC++eYbLFv2K+rXD8Xvv28SreMnT57F4MGjUbVqc/z00yL07Pk6Lly4gPfee++Zx09MfPSR/UuXrj6RV6pUDufPX0BycjLKlCmDxo0bYfnynF0T/Xk0Gg0mTx6HU6dOY86cOXk61svO2dkZ69atw40bt9C4cVts3rzd3FPKkvv3HyA8fAf69Olj7qkQEdFLqHPnzvj7739w796jM9Xh4TsQENAS9vb2Zp1XoUKFMGLECMybtxw3b95CWlraC/tGO1kOfgedKJfp9XqMGDECnTp1wrvvvou+fd9FYGBzfP31eFy4cAUzZy7Ajh27Ubx4cXz++efo37+/6kbyli1bokuXLhg27CNUqVIBZcqUBACkpqZBp9M9/qRAv35v4K233sL161Gi9TQ3Va9eGT17dsT48ePRrVs3uLu759lYL7vy5cvj0KFDGDx4ELp1G4BXXgnEu+/2R+XKFWBnZ2vu6T3T2rV/wmQyoXv37tk+RmjJ90W26fK36vb1lW9spVZTet7Lwpwt5/OpEK7sByLTJCaLTOm2bLo2TWQPS1uLzGPBIZEF6rqILMKwSnGOGoNibBYaNxcZPucTSbnFUE5eESTDQZZhGmx4joMov3To0AGDBg3Chg0R6NmzI/755yCmTpXFlubw3nvv4ccff0T9+qFITEwC8OiTjY0b18XAgX3h41P8OUcgehJ/uxDlER8fH/z2229Yt24dzpy5iBo1AtCly1tISEjF8uXLcfnyZYwaNSpLlwvTaDSYO3cuihcvgd69hzwuwTtw4Ahq1aoJW9tHC7nOnTvDzs4Ov/yyLi9u2hPGjRuBpKQk/PTTT3k+1suuTJky2Lw5HCtXrsShQycRFNQFPj410KRJO3z22dTHVx+wNCtXrkPr1q1zpdeBiIjoaR4eHmjZsgV+/fVP3L8fg4yMDPj7+5t7WgAefQpuxYoVeP/9kfj5558xb9481K5dD6tWrccHH3xq7unRC4gLdKI89uqrr+L06dP48ccf8ffff2P//v3o3r17ti9P5uTkhF9//RXXr0dh+PBxMBgM2LVrHxo1avzENp07d8by5evEx+tzm5eXB7p2bY/p06cjNTU1T8cqCDQaDbp27YqrV6/i4MGDmD59OurWbYAff5yLjh3fwIMHMeae4hPOnr2AI0dO8OPtRESUp4YNG46dO/di8uQfAMCi3hQODAzExIkT8eabb6Jfv35YsGABRowYgT17DuRLTw+9XLhAJ8qCqKgoTJs2DdHR0Vnaz8nJCUOGDEGTJk1ypbCuQoUKmD9/Ptau3YCQkK6Ijr6Lnj17PrFNv379cOXKNezZcyDH4z3PwIF9cfv2baxcuTLPxyoorK2tUatWLbz99tuYN28etm7dijNnLiIwsAvOn7+UrWPmxZs1K1f+Bnd3d7Rp0ybXj01ERPSvNm3a4L333sOiRb+gQoUKqF69urmn9EwBAQGIj0/A4cNZu7IPERfoRFnw3nvvYcSIEfD19cVvv/1m1rl06dIFkydPhpWVHX744QfUqFHjiX9v2rQpSpUqhYkTv85WYUlKSirWr9+MGTPmY+PGLThz5kKml24rV640AgObY9q0qXl+xr6gatKkCfbv3w9bW3sEBXXB9u27VO1nMpnw99//oF27XihSpArq1AlG585vYdSoTzBz5gJs3LgFV65cy9acMjIysHr1H+jWrZvq69ASERFlh0ajwbfffosVK1Zgw4YNFv97p3bt2nB2dsbff/9j7qnQC4YlcUQqXblyBatWrcJnn43BX3/9g6FDhyIoKMisDaKjR4/G6NGjFf9No9FgxYoVaNWqFTp1ehNr1syDk9Pzr099//4DfPnlD1i9+g/ExcXDzs4OycnJj49ZrFgR+Pv7wN7eDhkZBhgMBmRkZODGjVu4ejUS//zzDxo2bJirt5MeKVmyJP755x9069YVnTu/hS+/HIf+/V9X3NZkMiE8fAe+/fYnHDhwBDVq1MCnn36KW7du4dKlS/jnn8NYtmzt48f29dc7YcKEkShcuJDq+WzYEIGoqNvo379/jm9bQmXvbO9rdHcS2d3q8teb3/Rz2R4j2L6XYq5xkcVzYbdmiMxkr/CHpMKnaUy374qsZcCXInPRyX3DU5eJLMTzHTluJuzvqfsYZqC2s8gijLlbtmdSKoRLS8/VMTJjtNKJzGCrcD4jn96LDLKTP+MmhT6KzMr/iF4mGo0G3bp1M/c0VNHr9QgICMDPPy9BrVpV0aJF4+fvRASeQSdSbdu2bdBqtejVqwu++eZj3LlzB1OmTDH3tJ6pTp06iIiIwNmzF9G581vPPJNuNBqxdOlq1KkTjLVr/8SwYcNx5swZJCYm4tatW9i5cyfmzZuH3r37okgRH9jYOMHFpTA8PYvBx6cUmjVrgYEDB8LPzy//bmAB5OzsjPXrN2DIkCH44INP0K5dL/z881LcvHkLABAdfRfLl69F8+avoVu3AdDrbfDnn3/i0KFD+OCDDzBt2jT88ccfOHnyFBITExEVFYUZM2Zgw4YtqFMnGAsWrIDBoK7Oe+bMBWjRooXFf8yQiIjIHGbMmIGqVauhQ4d+GDt2ElJS2NVDz8cz6EQq/f3336hSpSJcXJzg4uKEt9/uja+//hrvvvtulprY81vdunURHh6OoKAgdOnSH6tXz4Wjo8PjfzeZTDhw4CgmTPgae/ceRK9evTBlyhR4eno+3sbb2xve3t5o3Jjv/loCnU6H7777Dg0bNsTcuT9j7NhJ+OCDT+DjUxyRkTcAPPru27ZtP6J58+aZ9h5oNBoUKVIEgwYNQqdOnTB69GiMGPExbty4hfHjRzxzDvv3H8GBA0ewfv36XL99REREL4MiRYpg8+Zw/PDDDxgzZgx27NiDOXO+ReXK5c09NbJgPINOpNKRI4dRs2aVx/9/0KB+SEtLw4IFC8w4K3Xq1auHzZs349Spc+jY8Q2sXPkb/vprD8aPn4zq1VsgOLgLHj5MwLZt27B48eInFudkubp06YLw8AjcvXsXy5Ytw6uvdsDSpUsRHR2NLVu2oEWLFqpLCT09PbFgwQJ06NABhw4de+72P/20AGXLlkHr1q1zejOIiIjyRHy8wtdl8plWq8Xw4cNx4MAB6PXWaNWqE44fP2XuaZEF4wKdSAWDwYDz5y+gXLlSjzNvb0+8+moopk+frvojweZUv359bN68GQ8exGHgwFF49dU+WLVqPVq3bott27bh5MmTaNGihbmnSdng6uqKHj164Pvvv0fPnj1z9AaLn58fbty49cxtIiNv4I8/NmPYsOHQavlrhIiILM+ZM2dQqFAhbN682dxTAQBUqVIF+/cfQJkypfH++xNhNBrNPSWyUPzLikiFa9euITU1FWXKlHwiHzCgFy5fvoxNmzaZaWZZ06BBA1y4cAEPHz7EiRMncPPmTfz0009o0aIFdDpZjEQFj6+vL27ciHrmHw5z5iyBi4sLr31OREQWa/78+UhPT8cnn0y0mCvM2Nra4qefZuHgwaNYvJjFjqSM30EnUuHBgwcAAEfHJ1vQa9eujlq1quGHH77HK6+8Yo6pZYuLiwtcXFzMPQ2yQD4+PkhNTcW9ew/g6VlY/HtcXDyWLFmNQYMGw8HBQeEI2ZPqmv33i5OLy6sTeO+VRTxhD+Zme4zUppUVc9sDKq9Jr/BVg+SS7iL769xXIqs6bJrIim569qccHvNU38qf4qbuTTqNlbXqY2aX4cFDkelLFM3zcQHgYWlbkdnEyTes7O7JJvWcCNQrN1NrbeUVALTubrk6NtHLJj09HUuWLEGVKhXwzz97sWPHDov5lGDjxo3Rt29ffPLJFLRpEwgPD/Wv01Qw8Aw6kQrVqlWDo6Mjdu3aJ/5twIBeiIjYgjNnzphhZkS5y9fXFwBw/fpNxX9ftmwNkpKSMWTIkPycFhERkWphYWGIjo7G9OlfokqVivjii0nmntITvv76a2g0WkyYIN+UJeICnUgFKysrtGjRAtu37xL/9uqrofD09MCPP/5ohpkR5a5/F+g3bkSJfzMYDJg1azG6du2KYsWK5ffUiIiIVFm4cCGqVKmIqlUrYcSId7Bly1Zs27bN3NN6zMPDA1999RVWrFiH3bv3m3s6ZGG4QCdSKSgoCPv2HUZCQuITubW1Nfr164bFixfj4cOH5pkcUS5xc3ODg4MDrl+XC/Tly39FZOQNvPfee2aYGRER0fPdu3cP69evR8+eHQAA7doFo0GDOnj77beRnJxs5tn9vzfffBP16tXFp59+a+6pkIXhAp1IpcDAQKSnp2PPngPi3zp3bofExETs2yc/Ak/0ItFoNPD19XniDPq9e/fx9tsj8e67Y9G1axfUqlXLjDMkIiLK3PTp0wEAnTq1BfDoMmfTpn2KyMhIfPbZZ+ac2hO0Wi0GDhyE/fsP4/btO+aeDlkQlsQRqVS2bFmUKFEC27fvQlBQ8yf+zdnZCQCQkpJihpkR5S5fXz+cOXMBFy5cxoEDRzBu3GRoNFosXLgQvXv3zvHxQ4oMFplVQ/9sH+9BeSuRFf3hYLaPF+zyhshMjcorbht2f46qYxrt5By1GbJVOLT0KJHZNCoixz3/tapxkYXm4gxbWWSnRGsnS9Rym66kjwwz8udylsme8n6wTpDbpTvk8p9QJuUrJxhTZOGhzkYWxxHRo0urffnll3j33bdQqND/F3GWK1caI0a8g2+++QbdunVD1apVzTjL/9emTRtotVqEhW1D377KRZFU8PAMOpFKGo0Gffv2xaxZixAVdfuJfztz5jwAIC0td1t9icyhQoUK+Pvvf1C3bjAGDx6DNm1ewdmzZ9GnTx9oFNrIiYiIzM1oNKJ//7fg41MMI0fKN4KHDx+A0qX90avX6xbzUffChQujcePG2Lhxi7mnQhaEZ9CJsmDgwIFYuHAhXn21D5o2bQA7O1vcvHkL69ZtRO3atREQEGDuKRLl2OTJk9G3b1/ExMTAyckJNWrUMPeUiIiInmn27NnYvXsPNmxYCluFyxPa2Njg55+nolWrThgxYgR++uknM8xSat++PcaOHYuEhEQ4Oube5UvpxcUz6ERZUKRIEWzatAklSvjh0KGTiIjYibNnL2POnDnYu3cv3N3ldY2JXjRWVlaoUqUKmjZtysU5ERG9EGbOnIEOHdqgUaN6mW5TuXJ5fPHFWMyaNQtr167Nx9llrn379khNTVW8UhAVTDyDTpRFlSpVwtatW809DSIiIiICkJiYiNOnz6B//x7P3bZfv+746689ePPNN1GrVi34+fnl/QSfoVSpUqhUqRI2btyKtm2DzToXsgxcoBMRUb6KaywL4eyj1BUsBtn0FJn2ndoiC09dlvWJ/U9qvbIiszt0NdvHA4BbjRxFdvIbebm6kAofiqzQpvPZHtdkLX/NhxYdorht0lul1B3UWhbe5USgrovI0oLlY/rXxg9yddzMpDvKYj19isxiyubu/aDNpPhtc9ISkYW4v5WrYxO96A4fPgyj0YgaNao8d1uNRoMffvgCTZu2R/fu3fD33zthZZW7P89Z1b59e/z000xkZGRAr+fyrKDjR9yJiIiIiMgiXL58GQsXLsTAgQMxceJE/Pnnn7hz58nLkBkMBuzfvx+TJ09GYGArBAUFwc3NFeXLl1Y1houLM+bOnYqDBw9h3LhxeXEzsqR9+/aIiXmIffsOmXsqZAH4Fg0REREREZmVwWDAyJEj8d1330Gj0aBs2VK4d+8B7t9/AADw9fVFnTp1kJ6ejh07diA2NhaOjg5o0KA2xo17D61bB2TpTHidOjUwbtx7mDjxa7Rs2RLBweb7eHnt2rVRpEgRbNy49ZnfoaeCgQt0IiIiIiIym/j4eHTv3g2bNoXh888/RM+eHeHq6gKTyYTIyBs4fPgEDh8+jsOHj0Or1WLw4L5o0qQBatWqmqOPpw8d+hZ27tyLXr164fz583B1dc29G5UFWq0Wbdu2xZ9/bsJnn42BVssPORdkXKATEREREZFZGI1GhIaG4MSJE/jll5/RqlXTx/+m0Wjg61sCvr4l8NprrXN9bK1Wix9//BLVq7fE3LlzMXLkyFwfQ60+ffpgzpw5WLJkNfr06Wq2eZD5cYFORESZUiply0kBGwA8KK8TmcvBB6r2NdatKLJCp1JzNJ+nWe84JrKwtBWq9w/UdhaZblBDVfvG1Cossn1Lv1Q99tPiyziLzM5JuYzM4aYsQlOkkWd2lG5zhHG1usPVlI9phl3+nD1SKqjTfFJfZA7n5fPzbjVPebwc3A/I5IxZsH0vGerkz5Divk59RbY5fqG6+RDlk+XLl2P37j1Yv34pGjfO/493R0beREZGhtmL4ho2bIi+ffti4sSvERLSEl5eHmadD5kPPz9BRERERET5Ljk5GWPHjkXbtkFmWZzHxydgwID3Ub9+PQwePDjfx3/alClToNdb46OPvjD3VMiMuEAnIiIiIqJ8N23aNNy+fRsTJ+bPZRSftnPnPkRG3sDcufMs4vJmhQoVwrfffou1azdgy5a/zT0dMhMu0ImIiIiIKF/dvn0bX375Jfr3fx0lS/qaaQ7R0Ol0KFeunFnGV9KrVy8EBARg5MiJSEpKNvd0yAy4QCciIiIionz18ccfQ6/XYeTIQWabw5079+Dl5WlRrekajQY//fQTbt++g8mTfzD3dMgMzP9ZDiIiylMhHm+LLOzubFX73hpUO7engxQvg8g2XZkqshatJovMJiZJZPpbd7M9l9DSo0QWnoVCOCV3FArhrJJkAVugvpvIUgbm7ncwNUaFTGUXHKBcohbfRc5x74qZWZnWE64Hu4jMd020yEKLDRXZpps/ZntcAIBJ3hle++XzE0Z5R3odSBOZtloFVcMG2b0usvDkpYrbhhSR34sNuzVD1TjGxESR5ajIToHS8zgzGq1G1XYmg3wMIgyrVI9Dli8iIgLz5s3DpEkfws3N1WzzOH36HEqWLGm28TNTpkwZTJw4ER999BFCQwPQoEHu/y4my2U5bxcREREREdFLbdu2bWjXrh0CAprgzTfllULyS0ZGBv7+ey8CA4PMNodnGTVqFOrXr4eBAz9AfHyCuadD+YgLdCIiIiIiynO7d+9G27Zt0bBhbSxePMOslzY7ePAYYmPjEBwcbLY5PItOp8OSJUtx/34MW90LGC7QiYiIiIgoz/3yyy8wGAxYsOAH2NramHUuW7f+DXd3d9SubbkfHy9ZsiSmTZuGJUtWY+PGLeaeDuUTLtCJiIiIiCjPvfXWW0hNTcXmzdvNPRVcvHgFpUuXhk6nM/dUnunNN99E27ZtMWzYONy5c8/c06F8wJI4IqKXXExwWVXbhVT4UGQ29T2yPW5w9fGKeXF/Z7nth31FFtelqsg8L8iSOEOCLMJSK9XXPdv7AkBQ3U9EltJa3j7bi7KMTFtVXtYnTe6qWrB9L5E5lZKXLkp3s1M+gEJ/V0bLmiK7V0Nd0ZcSxedEG4XHQCfPH2SUyP5zMTNK5WhB9T4VmSZDlpZZxaXL7a5FqRrXlJqqajvgUaNzduWk/E0tnaODYm5UuI0aa2uZFfEUmSnyZs4nRhapatWqCAxshRkz5qNTp7Y5en7/y2g04tSpc9i9ex927tyHU6fO4bXXWmP48AFwccn8RTUgoAneffcjREVFoWjRojmeR17RaDT4+eefUaVKFQwb9hGWL5+VK/cbWS6eQSciIiIionwxcuQoHDt2CoMGjcbs2Yvw1197EB19FyaFqyooMZlMOH36PObMWYzevQejTJn6aNq0HSZOnIKkpAwEBYVgzpwlqF69JaZPn4eUFOU3xNq2DYa1tTVGjhyJjIyM3LyJuc7Lyws///wzwsK2YeHCleaeDuUxnkEnIiIiIqJ8ERgYiJEjRyI8fDN+/fVPpKU9umShm5srypcvg/LlS6N8+TKoUKEMypcvg8KF3XH+/CXs3LkPu3fvw65d+3Hv3n1YWVmhfv16GDJkKJo3b44GDRrA1tYWAPDJJ5/gk08+wcSJ32D27MUYO3YYunRp/8TH2V1cnDFz5ld4++2RSE5OxsqVK2FjY97vxT9L+/btMWDAAHz44SRUq1YJNWvKT5nRy4ELdCIiIiIiyhcajQbffPMNvvnmG2RkZODSpUs4derU4/8OHDiOpUvXID39ya+R6PV61K1bB2+//Q6aN2+Ohg0bwt7eXnGMIkWKYNasWRgxYgQ++ugjDBo0Gtu27cbPP3/7xHYdOrSBg4M9+vYdih49umPNmrUW/fHxH374AUePHkGfPkOxffuvKFy4kLmnRHmAC3QiIiIiIsp3er0e5cqVQ7ly5dChQ4fHeXp6Oi5evIhTp04hKSkJXl5eaNSoERwdHbN0/LJly2L16tWYMGECvv/+O8VtgoNbYNasb9C377tYu3YtOnXqlJOblKdsbGywdu2vqFmzJt588z2sXTsfej2Xcy8bPqJERC+RYMc+IkvtXU3VvgY35TMR2WVwVP6ooP1NWfQW27aKyDy3y6Ioo5v840zzMDYbs3tEl5yz7x0mFZf3md8fD0X2oKqLyDRpcuzUQsZsz2Vz0hKRZVbUp8SkcNIoqrF8DO1z0N91t46byNzPygK2xNJyO6v4/PmOqDYuWYYKJXFahccv7MFcVWNkqbzNwhumDfHxinmEYZWq/QP13USmscr+n6eKx9PKJ3d42opsj0F5z8rKChUqVECFChVy5Xhly5ZFbGwcEhOT4OAgX7fbtw9FcHALjB8/zqIX6ABQvHhxrFq1Cq1atcLIkRNRvXplXLkSiejou3B2ztobGGSZuEAnIiIiIqKXVrFixQAAJ06cQf36tRS3KV3aH1evvhhXEGjevDmmTJmC9957D0uWrIaPTwkULVoU0dHHzT01ygVscSciIiIiopdW48aNUaVKZXz88VcwGpU/qXT37n14esrL/lmq4cOH486dO0hOTsaVK1exe/ceHD58xNzTolzABToREREREb209Ho9fvxxOg4cOIJffvlNcZt79+7D09MrfyeWQx4eHrC2tjb3NCiXcYFOREREREQvtWbNmqFbt26YMOEbxMY+2Z2wefN27N59INe+806UE/wOOhHRS0RTzFtkhU6lqNr3YRkHkblekIVuapl0yu8Bp3jJd/tjysltnddEiSyjibzuq+64ckmVGiaF8iglob7vKeZpzYqLbNfhT0RW9vOpInNdeknhiO6q5pMTJr3y42JUOAmT6iHL0Xw2yxK1QG1nkSkVoT2oJj9aWv6TCyK7/G55kflPOSMnmAc0qWky1MuiNm1yutwuB0K8BinmaZVL5Oo4uU1tGVym+2esFFmwU9/sH9Aon7PhGVko5aOX2jfffINy5crh1Vd7o0GD2ihTpiTS0zPw0UdfoG3bthg3bpy5p0jEBToREREREb38ihcvjhUrVmDevHnYunU35sxZAoPBgB49emDRokW8ZBlZBD4LiYiIiIioQGjXrh3atWsHAEhNTcXt27fh4+MDjUbdJ6qI8hoX6EREREREVODY2NjA19fX3NMgegJL4oiIiIiIiIgsAM+gExG9RFJ83URmeytB1b5pLvLjffqY7JfEwWRSjDWywwkl510T2aa0FSJrEThZZEplZGqZrNS9T228e08xd7rmIbKQQgNEZvWmbAbWVSgtMofrufu+uUkny80MtjIDAJPCxztdTsttk4rYiczZW16aKLDhZyIrWlzuayxZTGQOUfK5szl2vsjygslGoS1PoUxQEy9/NoLte4nMmCJLGpWes0Yf5esvWz2QpXwvE6VCOGNiYraPl5PXAyIiS8Az6EREREREREQWgAt0IiIiIiIiIgvABToRERERERGRBeACnYiIiIiIiMgCsCSOiOglYtLL9101ceoKlxKLymKusFNfiCxQ10VkEYZVIrtfWRaCAYD3uksiy4i+o2aK0CVlyPloO8v5qC2KMigX2T0tpVllxfyvTaNFVumDaSIrsls+Bulu8v6xjlc3n5zQJ6Qr5ro0+SeBy+U0kV1vJUvUnE45iuxeNQeRuV6Qx4stLbdzO58qsiDr7iILVygSzClNunyOGdzl7dMp/FxpnJzkdtYKpXMK7ld1VswPzRuhav/8oFSCp3GwV9w27O5sVcc0pcnnI4veiKgg4xl0IiIiIiIiIgvABToRERERERGRBeACnYiIiIiIiMgCcIFOREREREREZAG4QCciIiIiIiKyAGxxJyJ6iVjFy0bkTddkq3iI5zsiK1K/lMiCnfqKzNSgqsiCbHqKLH5SLcU5ehsMIlPb2pzgI5vPXc+4qNpXydW28nhKbeGa5tUU9w/xeFuGb5YXkTZFoRncUbZ7mzSKw6gSWmKYDL3dsn9AAAnFFRrISypcFSAmTkYVPURW+OejIkt8r57IXNedFplSQ3qeMBpFpI1NktspPI9hlJnJJJv5ldrQ9R2qq5qeORlTZbs+FFrYs8KULpv9c3RlBiKiFxzPoBMRERERERFZAC7QiYiIiIiIiCwAF+hEREREREREFoALdCIiIiIiIiILwJI4IqKXiFVUjKrtDPfui8xuc7zcsEJJEWXYy18dsf1kIVyNhucVx15zZ5aKGQKhRYeI7O57cj5uuxxUHU+J0UoWeKUGVBfZX5tGK+7frPXXIit0SqE0S6eu/c3pRvYLt9JKe4ksw04+VvoE5TFMCm/Z3wtKEZnVeXl/3w8tLTL3k/J4upI+InOIkqVsm5OWiCy46niRKZWJAblfKGayk2V5mmRZmKbRyMfZmCBL9eJerSEyqyR5P+SFQH03kUVkrFS1b4RhVW5PB1C4z7SOjrk/DhHRC4Jn0ImIiIiIiIgsABfoRERERERERBaAC3QiIiIiIiIiC8AFOhEREREREZEFYEkcEdELSqkgS+fqku3jhacuE1nzkK9EZrtXlr/dqVVZZOdXlVMeqKG6+WT4eIrMaCNL3TZd/17V8UJLjxKZTY+iItMY5BjBLm8oHtMQUEFkeoWyL22iLBQz2MpfwVbx2S+JS3WzEplRLwu4Er3sFPd3Oy/n2KD/aZEdXi8Lzu5XleP4r5Olgyl+7iJzvpKkOJ+n3a3nJudyPHfL4ADAcCNKZAmvyhJEp803RabRy8c0PHmpyKoNnSYy791xaqeYI/qi3vkyjlpaO/l8NCUni0zp9S63ywCJiCwBz6ATERERERERWQAu0ImIiIiIiIgsABfoRERERERERBaAC3QiIiIiIiIiC8CSOCKiF1ROCpLU7mt7LFJkJh9ZrJZYSpablVmQlvWJ/YfRTv6Ksr+R/feVMwo7iSyliEFkVlsPi8zQoKriMZ32yfvndlt/ke0I+0JkrZpMkgeU/XSqJXrpROZ+SpZt2RuVB4kpby+yG0muItMqlOhpDLIkLnz/BJG1bPmlHHjvcRGFVBorsvieheW+mchJoVh42gqRVRsiS932xM4XWUiRwarmEv9NA5Ed+/ETVfPLMVMOnmR5QSOfOyaD/LnUOTvnx2yIiMyOZ9CJiIiIiIiILAAX6EREREREREQWgAt0IiIiIiIiIgvABToRERERERGRBWBJHBERZS4jQ0TRTdxE5rNeodQpKWclcXer2Yms2PbYbB8vqpksifNfmyo31Mj3rk1aWWQFAJtu/iiyGgOnZn1y/w6d2wVeCgVccSVtFTd9UFmOfe9iCZFZ1ZT3T+Hj6uat/+eUyMIVytuavvK1yLTp8rYoFbABgEafu3/eGG1UbvdQPj+NjauLzOViDieUA4Y790QW7PKGyDYrlODlVJBNT5GZMmTBZIRhlcgye6yJiF42PINOREREREREZAG4QCciIiIiIiKyAFygExEREREREVkALtCJiIiIiIiILABL4oiIKFNpVf1E5nRdFsLZ3Jdla5uPfKp6nGD7XiKz6l5DbqhQeqZWsqcsMrM9fUNk6fUqy7ncVl9OZ1L51rf+xGWRGSr6qR5HjKtw15h0MkxxU56gd8XbIkv801seMyBGZG4/J6mYIRCevFTVdrH+ViKzzkI/YHjaCvUbq6BLUVneZ5TbZTjK2+IQLX+G8kt46rIXcuwIhTJBIqKXEc+gExEREREREVkALtCJiIiIiIiILAAX6EREREREREQWgAt0IiIiIiIiIgvAkjgiIsrUg/I2IvNedU5kxti4XB871V0WnGlOy2I1JSFlPxCZ1etF5IZ6+Wsw3cVaZFt2f61qXADQZqjbLrlBWZFZx6aJLLToEJEZ7t2X2eC6IjNay/fh42rJQj8ASDzmJTKTj0I5WqKtiDZdUl8I+LSQKuNEZlvNTWTxJcx3TsHxlspSN618zupS5L62t5JzOqU8p1TcuDlpSb6MHVpsqMg23fwxX8YmIjI3nkEnIiIiIiIisgBcoBMRERERERFZAC7QiYiIiIiIiCwAF+hEREREREREFoAlcUREBAAIqTRWZM7+riILuzs7R+ME6rrIUCPfL9YpdJltTlgkMqVCqXtB/iJzO2sUWVopT5HZXXsoB84Dd2rKMroSESlyu9YlRVZosSyJS6yXJDLPQ3Lcqv63FOcTtUOOY9UtWmQxu70V98+uh1VkIZzDLVmWZ5Vovj9ZHC7KEsQQj7dFptHpRBZTThYtHvnpw9yZ2HMEajuLLMK4WtW+Gls57/xicrAz29hERObGM+hEREREREREFoALdCIiIiIiIiILwAU6ERERERERkQXgAp2IiIiIiIjIArAkjojoJae2KOp+ncIiK7TpYvbH1XdTzHWeHjJ0dZZjn5SFaUrutZKFcHYPDCKLaiQLvLQZsqht6/YvVI2bGbv7soxOSYajSWQPKjuJzOFWhsgMjaqITKeTtzmxuL3IXLRyOwBwvZAssh5+u0S26Lv2ivtn1/3KGjmXrdflhpVLyEwj980LmhSFxkKFsZVKDKsPnpoXU8pVIYUGmG1spdenjIBaZpgJEZFl4Bl0IiIiIiIiIgvABToRERERERGRBeACnYiIiIiIiMgCcIFOREREREREZAFYEkdE9LJTKLMKduwjskL+soTLFB+f7WEzmldXzPXnbonMaGslMm2aLDML8Rok921bWmQ7fx8lslobPxKZw682inPMCV2qupK4dGe5XWxp+b55oZUnRBY5oqY83h15f8X5yuNFX1UoWwPgUM9OZIuuNxCZVXy64v5qBNWZKDLbJi4iC4ueKbLGHb4RmZNP8WzPJSuMrg4i06XL8r4WgZNF5mxtvnMhSmWQirxlQSS0+TNvrYO8b9Oc+ecpERVcPINOREREREREZAG4QCciIiIiIiKyAFygExEREREREVkALtCJiIiIiIiILAAX6EREREREREQWgDWZREQvO5NJRBonR7lZZJTINictUTVEq0afiyyxlGwFB4DtW74XWUDTSSJLd5bN7gkBpUTmufmayIJrfCyyEj/GiOy3vbItPCuCnfqKzF6nU7VvzeqXRHZ9ThmRaRTa9Q228jGFLOtHqpvczvkf5ccltpJsgU846y2y0khV3F+NmIrOInM/kyayQG1nkWV0rS8yk23ut/ArSXOV49jGy+x2XZn5/nonT+aUmx7ULCQy96Py5yWnlB5XXWl/kdk8zP6VAoiIXnQ8g05ERERERERkAbhAJyIiIiIiIrIAXKATERERERERWQAu0ImIiIiIiIgsAEviiIhecrpC7jJMlUVfpjRZ1qVWVDMHkfn8flf1/gk+tiKzvy2LotKKyV9bm67L0rlKo6eJLPGIixy4scoJZkJjpfBr1CiL2UKLDhFZ623nRPbnXlmiZnSxF1nhY0aZvXtVZFfWyVK9DHk4AICn/32Rpf/mITKTQhmdWknecudC4ZEik3V1QIad3DfDXT7v8kKquyws1CfLosXkYnLmxsvy9pmTYlFbF1nAl+aZs/tWaRxFNtYisrqflKOxiYheZDyDTkRERERERGQBuEAnIiIiIiIisgBcoBMRERERERFZAC7QiYiIiIiIiCwAS+KIiF4igbouItNYyxKm8OSlIguy6alqjBatJovMpbAs0Qo79YWq4wHKxWN3atmIzGfVdVXHSy0ki9qcL+b+e9ImgyxrU3L71ZIi23RHzifs3Fciq/XWVJF5rDsrsne+2iOyqfu9Reb+jfJ9eGleOZGZ5EOgWmiJYSKzC/QVWditGSIL1HcTWYadwiDaHDTWZYHtfVlYeD1Qtu3Z3ZT7al0VygnNSKOXf/rpk+TzOM0lD/5E1OpkdvO2iDRespyQiKig4Bl0IiIiIiIiIgvABToRERERERGRBeACnYiIiIiIiMgCcIFOREREREREZAFYEkdE9BLR+/mIzHDjlsgUy+T0suhNabv7QxuIrNi6SLVTVJTmLMu+rGNl0dumK7IwLbTk+yIzDi4mMrfzadmc3TMYDOo2s5W378wRWZgW3LqP3Ld3NXlAa/lYhdiniqz1rnEi23G1jOIcv9zvKbK7DdwUt1XDFJ8gssKbLolMqZxQ5+ggMq3saQNM8jmSmVCf4SLbFPmdqn11KfJx1lSOE5n1DmeRZZSVz0VzCk9bIbKGnafk+jgRxtUiC3bqKzJTmnxgtanyZzXY5Q2RbY6dn73JERFZMJ5BJyIiIiIiIrIAXKATERERERERWQAu0ImIiIiIiIgsABfoRERERERERBaAJXFERC8opcIljV9xkYWnLpP72vcSmUmhcCu5XR2ROd2QhVmbrk3LbJqqJJSQWen5t0UW4v6WyGJCK4jM5aI8nl6h6CvHNLL8Tak4LqWQvG/dTsl9U5pUFJnnwXiRxTX2F9nY6KoiOxowVmQf/WkUGQBsPv6ZyGq8I0v5VLOzFZEh+o7I9N5eItsUNV1kdXt9K8dQ3xEHk621+o3FznKg2sVkMeLl2/K5mOxlk/1x80CI1yCROZvkc+LqO+VyfWxjYqLIlMrkWjX6XGQ6R/tcnw8RkSXiGXQiIiIiIiIiC8AFOhEREREREZEF4AKdiIiIiIiIyAJwgU5ERERERERkAVgSR0RkQQK1nUWmc3NT3Da6tywF81p0TN1AVlYiMiUkiCymrPw14bP8qroxMhFUa6KcTqiLyMLOfy2y5iFficw2Rpay2d+RpVcmpUI3lZSKtQDAlJoqMo2NLAUrsVVuF1tSbvegvCwyOzFttMjKfSpL+dacrSEy95p2IptxK0BkANDET2YahT45jVFdM5spKVlkSoVgQXUmqjqeLk2Oq1EobwOAkEIDVB1TrRRP+VhdeOghMvd9N0V2vYtPrs4lp2KblxSZy/H7IjPlwV+ISo+/WhmusnSQiOhlxDPoRERERERERBaAC3QiIiIiIiIiC8AFOhEREREREZEF4AKdiIiIiIiIyAKwJI6IyEwCdV1UbadxdVbMvbdEiywsYZHIgmx6ikxX2F1kWoXM41iayDZd/15xPmpFN5CFcHbRsuwr2LGPyOJ6VhOZ55qzIjs/trzIyk46rWp+IeXHiCypjp/itvZ75P1jiI0TmXV0vMhMpWXxmOulDJEF1/hYZMZOriLTXLQX2X15d+Hu/nIyBIAGMrKJk4+LLildZErlhqpp5bmC0JLvi8xUr6jqQxpLFxeZ7m5s1ub1H3E+8s+lxOOeItt3bYTISk79Ntvj5oWEojqROW+8JbNLsgQvuOp4kW0+/pnqsRWfJwrljfoyssguoUIh1eMQEb3IeAadiIiIiIiIyAJwgU5ERERERERkAbhAJyIiIiIiIrIAXKATERERERERWQCWxBER5YPQokNEpnV0FJkxXqFM7KEsHQMAQ0yMqrG1Lk4ytLaSxyssy+is4mQJmlpB1t0V84Qv6oiszM+y8C6jRlmROdw2iCzs/hyR+X8ni7nCHsxVnM/TolvI8i+vnfcVt9W4yPssQmGcoFoTRRZTWRawea69ILL7r8jCO6sEWayV7G0UmX2UfB8+qagcNzNOlxNEpklKFVmEcbXqYz7NaCXnqFMojrOOl4+9JlVmAJDoL3+2du+TZXtqZdjJTJciHwMlRvmjlm+C7XvJ8J2aItocv1Bk9XoqlNvpc3ZeR2NlLTKTQeExjJGveSZt4RyNTUT0ouAZdCIiIiIiIiILwAU6ERERERERkQXgAp2IiIiIiIjIAnCBTkRERERERGQBWBJHRJTLQgoNENn9trLo68DCEXJf1zflAXXK76WqLuYyKZSCKZRw6e48lNtlKJdwqaEt46+Y29+U5VqGi1dEFtO4vsg8w+R2gboucpCp9VTMEAgpN1pkdtU8RBZ2cpLi/qGlR6ka51o7F5EZrTNEZkqVBWz3q8vHz2dzushutJBtZIWPy5K/aFtZ1JUZbVyyyMLOThZZoLazyNQ+Pw228k8RvY28LVZx8jabFArmAMBgra7ATS2lorcMR1nKp0ijvpQv15WTP4NFdzxUtat1vLx9qYUV2vKywiSPqXN0EFlY9EyRBdWZmLOxiYheEDyDTkRERERERGQBuEAnIiIiIiIisgBcoBMRERERERFZAC7QiYiIiIiIiCwAS+KIiHIgxONtkd1rLwvhPLbfUHU8Q0KiyCIyVmZ9Yv+hsbVVCBWK2m7eEll42gpVYwTqu4ns4et1Fbd1uiGL59KCa4tMnyrLtTbd/FFkAS2+EJn7CXUlYUrldE7Xo1TtC0C5gE9BpVbnRXZ1URmRRfepJjLbO/K2aNNk2ZbBRs7FOuKIyFJD6mQ6z6el+LiKTG0hnNrtUt3knyJWsbLITpcqnzexZWTBGAA4XUtRzNUILTZUZPZtZNmawU7dc8z+pk5kSuWEYee+UnW8rEjxlveP/Ul1z2+bB7KwMMEnZyVxSq8nwU59Ve2ru3lPZCGe74gs7M6sLM+LiMiS8Aw6ERERERERkQXgAp2IiIiIiIjIAnCBTkRERERERGQBuEAnIiIiIiIisgBcoBMRERERERFZALa4ExHlwN325USmS1NoH78yVWSBui7ygCpbwbPCULSQDI+ckUNnZGR7jIwW1UXmcDtdeT428r3hu9WsROa76qaqsfUxySKzUWgBVxJhWKVqu8yY7GVDfkjlj0Tm/LNsXfc48FBk50fJ43lsshGZNl0ez/2kbBVXugJAtSHTRJaZZA/5uNg4KDenP03n5SmyUJ/hIjM0LSEyk04+R7Sp8vkZ56t8nsFlrXx+q5VWyltk7qeTRBZTUV2juX20/JnO8HTO+sSyIcVd/pn31/XvVe2r9BxTem3LKY29vciUrgCg9/aSO6cpv8YQEb3IeAadiIiIiIiIyAJwgU5ERERERERkAbhAJyIiIiIiIrIAXKATERERERERWQCWxBERqRRSfozIYvvJIqxSnxwVWeDybiLTFS4ssrDomXJfpTI5KBechbi+KTJDtVIi25q2Qo6jUMykRGk766rlRaZJUS5wiuwgy57sFIq0Nl2aomo+2pgEkbnseahqX7WCrLsr/0N1ebsfVHISWTG9LLyLj5fldvYOsujN7WSKyNLdZEGZQV0vHpwj1ZcBuv8TJTKTQqmXEmMJ+bOhOXdN9dhPSygpi9UcbimXloUnL832OHH+8r51W3lIbtippqrjaWTXWp6UQSrRZmR/HNOBEyKLCWiYk+kovnboPDxk5iwfa2OiLOrTOsufNSKiFx3PoBMRERERERFZAC7QiYiIiIiIiCwAF+hEREREREREFoALdCIiIiIiIiILwJI4IiKVIl+T5WbFt6eJbHPSEpGFuL8lMmNMjKpxlcrkMnO/fSWRJRaTxWNKtLa2qrYzNqshsjQ7+evE7uI9xf1T3WRxlc+6u6rGVnI7tITICh+VxXE5oSlfWvkfUmTh2v1q8vZtOVFBZL4V5ONiPGAlx864r2KGgEahD0ypYNBWo/69ecPN2yIzZcjyv1Cf4SJLK+8tsh2x80VWt9e3IlO6LQZreX9pDHK7nDLpZBaeukxkNQdMFVmrxp+LTF9M/lxpMpSa43ImUC+LKG1ayZ9VJUE2PUUWYVwtsnITp2V9Yv+hVAiHwq4iMlnJB0F7P05u5+yQo/kQEVkinkEnIiIiIiIisgBcoBMRERERERFZAC7QiYiIiIiIiCwAF+hEREREREREFoAlcUREClq2/FJkxiay7GlH2GhVxwt7MDfbczHGyXIkAAgtMUxkdz9UKEw7oPK92NJ+qjaLKSvvB8+/7ogsvoqn4v5W8bLsK+yMvL/Vsr8rC7eMCqV1eeFeHTeRFT4it4vzt5b7VpHbeR6SpYOaWFl4p3G3l5lC71iEYZUMs0Dr7CiysLuzRRZSaazIbO4lqxtEocPQqJfP2SRPmTlHypK+rFD6GUrr4KdqX63C0No02VpnlSQfmDR3dYWMWaErV1Jk+vPy51KJ1tVF1XZ2d2R7X0jlj5Q3viPLDU3JKXLsZDuRZbjJn6vNR78XWYOuU5THJiJ6gfEMOhEREREREZEF4AKdiIiIiIiIyAJwgU5ERERERERkAbhAJyIiIiIiIrIALIkjogIvyLq7yK5NqiOyMovuyZ0/yYsZPSk8ealirliQpFC45XJZFjMp0smdm7T/RmQZ/vJXR9jZySIr9c1UxWH8NqgrD1N6XLSODiJL6VBRZA7X01WNodbm458p5hU+miayEmGxIrN5PUlkGfO9RJbmIu9bGw9XkSWUsBGZw21ZUJYVIYUGiCyjoq+qfW+18BBZ0d+vqtrXKlEWjyV7yxI1g0Kvmn1koqoxMpPuI+et9DOkxKjwF5TRSicy22j5fI+p4KRukCzIcJc/G0YrleNo1d1omzj5WBkd5HMRANKq+4lsR/gYkQXb9xKZzlGWICqxSpAFfMFOfUW2OX6hquMREVkCnkEnIiIiIiIisgBcoBMRERERERFZAC7QiYiIiIiIiCwAF+hEREREREREFoAlcURU4MV2ri0yl/Nyu7CTk/JhNlKo73uKeUpoCZE5XZRlT1b3EkQWqO0sMl3FsiK7W03+mvD7VZblhVT4UGT6bp4iA4Ctf41VzJ+mqVRGZGFHPhVZtaGyqC18/wRVY6gVXH28Yp7R2U1kunuyJC42WZZ1FT0XJ7I7dV1E5nL9tsjS6jqLzDEyTXGOahnKyeeTVaR8rEOLDRWZdSt/kW26/r26gRX6yRK95PkDqwRZUGayytl5hjQ3a5G5XMlQta9G9pNBY1AIDXLeeSGpiCxrc7wif/aVaLTyflQqadS1ryWyVHflkjiTyuK5zUlLRKZUHKfEKl6WQZpSU1XtS0RkqXgGnYiIiIiIiMgCcIFOREREREREZAG4QCciIiIiIiKyAFygExEREREREVkAlsQRUYHnfCVJZJqDp+WGP+fDZBQkVCuqmHvtfiCyc2/J0rKwU1+ILKTKOJGleTqIzEqhY0qpLK9u729F5nlIXdlWTqW65v0Y92rJ+xUAvPcZRJbuU1hkyWfsRLb58AiRNWn/jcjC7swSWa03p4pMlyrnkhW6e/EiMz6IEVly84ois4nP/th20bLU6251eX85X5b7Gq112R4XAOJLyD+DvDdeV7WvLlWWvynNxypRlvfZxuTssVIS5yPHdt5+S9W+Ri93kWmNsvDO4WayHNffXvGYtg9y8POvUFqnxPqaLDE0aHjuiYhebHwVIyIiIiIiIrIAXKATERERERERWQAu0ImIiIiIiIgsABfoRERERERERBaAJXFEVOBF7Blv7ik8Flp6lMjS6nkrbutgkiVVdtEq33dVKIC63spGZKWW3hVZSNkPRJYaVERkhXZFqZsLgBatJovMWqMRWajveyIz9i+hehw1gp36iuzh+KqK2xZedUpkKY0riMzmvrwtSu5XUvdr2WgtM4NNzgrTDJcjVW2X6CXn6PH37WyPq78TJ7J0f3l/Ff5FljmmejuqHie02FCROdWUz500Pw9Vx3M9JxsUH1RyEpnbkhMis/KopmqMzARZdxdZxpi6Igu7O1vV8bTRsnDSUMJTZCaFn8kUN+XXHIO1laqxlZjSZLGeovR0EekKKRc6EhG9KHgGnYiIiIiIiMgCcIFOREREREREZAG4QCciIiIiIiKyAFygExEREREREVkAlsQREVmQ+w1kIZz74fuK22a42YvM8bosf1Nyt0FhkdnelQVQYae+EFmjjlNE5nFMFnhBq/wecEi50SK71U3e7rOfjJH7lpeZ43XFYbItqWUlkblcUN52c/xCkdXt/a3I7O/IQj8lNg/UbadPlpku1SCyENc3VR0PACIyVoqsVZNJIkt1VXienP9a9ThPu9pFPvamB/J5bNIp3Gh1d9cjevknj/VDWTJmtFJ37sJoJUv5dOlyQkr3a1C9T1WNkalq5UTkdC0rd8aTNt38UWTB1WV5pubgSZElvqtceOe5xjbb8wlPW6FqO0PMQ5Fp/XK3NJKIKL/xDDoRERERERGRBeACnYiIiIiIiMgCcIFOREREREREZAG4QCciIiIiIiKyACyJIyIyk5BKY0WmqV5IZEpFbQAQWF8WTRX657aqse/VloVi5WfGiSy0xDCRJbb1FZnTTtnUZjIpl1ZFd5QFV4VPZChu+zRNcqrItLLnK0fuVZa/Gn3WP1C9v1WSvN2pTrJYTYna22JU+O1ttFYoLXN2EpnB203dIAAu9pfHLPa7fO7kRHolWTDocEQWIGqS00SmNdipHietpIfIrK/JAsb0Yu6qjqe/GCUyt/Pq7hvtxRuqtstMqoe8f6wT1RVEqnZJ/kxHGFeLrPSqzxR316Vmv7ROrfDkpSIL9X0vz8clIspLPINOREREREREZAG4QCciIiIiIiKyAFygExEREREREVkALtCJiIiIiIiILAAX6EREREREREQWgC3uRERmEqPQ2O6+95bq/Q32ViLTG2SLdEDTSSKzDpXt15uPyzbmpm2/FpnnwXg5GZ1s+4ars8wAPCwv2509FhxV3PZpyeW8RGYfra4BXklw9fEiM7WXLd5K9w0ABGo7i8y2SQ2ROZ1SuM8U6FU2X+vS5HbaVHk/GAu7iCy1kK2qMQAgsOJpkd34xFP1/mrU8b0mssi1ZVXta3VLXnkAUH5cjC1riWzT5W9F1rLll6rGDoueqWpcJYaHD1Vtl5lEb/nnm8vF5BwdU1B4LVGSkSJfhwAg3dE854AMt++YZVwiotzCM+hEREREREREFoALdCIiIiIiIiILwAU6ERERERERkQXgAp2IiIiIiIjIArAkjoheeIH6biKLyFhphplkLqTKOJFZl5QFXpsuTVF9zBstbUTmN0kWJF1/o4TIPA/JAqiQIoNFZl2yiMjC908QWaj/CJHdbu4hMgDwPCgLzsJTlylu+7RUd1lI5XQlUdW+Su7WcROZxxH1pXMRxtUiU3qsYZK3ObjGxyLTllUu1nuaUa+RmY38la5PlPeNdWya4jFDiw4RWfE/5HZZeY6KMRSeJ3ZLZcGg3T2FOSrch5q0dMVxdK7yZ0t/IVrFDAFtulFkal9jlJ4PihRuS1Yke8jHv/CfN3N0zKeZVM7RlKZ8rsdopr8w1b6WEBFZKp5BJyIiIiIiIrIAXKATERERERERWQAu0ImIiIiIiIgsABfoRERERERERBaAJXFE9EIJsukpMo1OlkyZU6C2s8jiu9UXmdtfV1UdL9ipr/I/jK4qoowGlUSW7iJLr3avGSmylgFfiszqn9PPnyAAQ2FZbvawnHLJVLkvL6k6ppJ0O1mOZbBR9/iHuL8lspiPK4is8NJjWZ/Yfxnl/a3EpM/+e+SxpWXmseWuwiDyMdDeuK14zMSm5UV2M+lGluf2LEkVvEV27roseiudJIv6TLdkASKsMvkzRi9zU1LS8ycIQP9AoXSwlK+qfdVSXSYHINi+l8h0/WuKLCx6Zo7m9DRTurqyRI2NLJwEALt7uTkbIqKCg2fQiYiIiIiIiCwAF+hEREREREREFoALdCIiIiIiIiILwAU6ERERERERkQVgSRwRvVBMBllIFJGx0gwzyZyunGzwcr6YILJNN39UdTxDNYVGMACO12R2u76tyDwOytIypSI7G28vkW1KWqJihsCtpi4iczutXBKXkzKrhBKyJK7wP/Gq9o0LkCVo7ifk8cKTl2Z9Yv+heSjnY0qXRWgaO0+R6ZOV77OnpTvJ7TZFfqdq30BdF8X8QTkrkV07V1xu2FTVMIpi/eWfHdprCn+KHD8sImNqqtzXwUFxHK2t/Dkw3LuvYoaZPH7Jyar2zQumyvLnv8j2B3k+rtLrqtJzRz9JFmACQLqDurJEIiJ6Es+gExEREREREVkALtCJiIiIiIiILAAX6EREREREREQWgAt0IiIiIiIiIgvAkjgieqFYWiGcUmmSqUFVkelPXsn2GOnO1op5bDmZ2d5Rd0ydlywoMyVlvwgruW6iyIqPfZjt42U6TtEMkYWdnaxq37vV5XvSpZbezfGcBJ1ORGEKhYCB9T8VWaqLuvfNtbJzTpFSGaCucCHFbRN9ZKmXbZQsjlMr2LGPyOInVBOZ1wE5bnKQ3G7n76NEFlJogOLYJkd7kYVHTVfc9mlqyxuVKN3fEcbV2T4eAGiT0kRm0ubu+ZVAfTeRKb3W6iqWFVmhE8rFhk7nYnM+MSKiAohn0ImIiIiIiIgsABfoRERERERERBaAC3QiIiIiIiIiC8AFOhEREREREZEFYEkcEVEO6IsXE5npbrzIwh7Oy/YYsX7KL9V6/wSRFfldFpTdbCoLs9wzFMrWVM6xechXIstoYyeyTZfGqTpeXgiqJwvYdEFOIgs782XuD65T9963SS+3M2k1KvfN0oyekFS3pGLuelqOneCrXACmhqmCv8gKHZfHs7+VKrL7leXzSYnGzUV57Fj5s5EfdB4euX/QDIOIDB7yZzontHa2qrYz6eRzxCkyJVfnQkRU0PEMOhEREREREZEF4AKdiIiIiIiIyAJwgU5ERERERERkAbhAJyIiIiIiIrIALIkjIlIp2L6XyDJqlxeZ7sCZXB03ppYsdAMA3JVFWiZ9usj0udzhFF3bWmRFd8oiKwzN2TihxeQBnLorF5w97U4tR5F5HZL3TV4wOagrONOmysdVa1BZyqZyswjjapFVHT5NcVuPY8kiSyym7rYoiSstS/lcLiWJzKhQlqdWcunCirn1thvZPqZawU59RaZ1ks+7EPe3RBb2YK7qceIry9votP286v3VMCbJx0VJcjH5mNpffai4rSaJ5XFEec1oNCIqKgpXr17FlStXcPbsWXNPiXIBF+hEREREREQW7NatW1i4cCGuXLmCq1ev4MqVK4iMvI60tLTH2xQq5G7GGVJu4QKdiIiIiIjIgvXo0QP79+9DmTKl4ONTFCEhzVGiRDH4+haHr29xlChRDAaDAb6+Nc09VcohLtCJiIiIiIgs1LZt27Bjxw4sXz4LoaEBmW4XFxefj7OivMKSOCIiIiIiIgtkMpkwfvw41KxZFSEhLc09HcoHPINORKSSxre4yKxux4osLHlpro67rtV0xXxM5zdFlu5iIzKreNkoFnZ3tqqxQ0u+L7KM/sVE5nw6RtXxssJQTJZjuZ2XxWohRQaLLHaMLJPzmH0wdyb2HEYH+RgoSfCThWK2DxTK9hSY9Opa4oKsu4ssblotxW2PfzdWZOXHKxfKqZHmpBGZ7vRVkZkq+4tMo+5ugFEnxwAAk0HlARQE6rqITGtvLzJNUS+5s0IxmslgzPZcACDVWZ5L2X1/To6O+bQIwyp1Gyqc1jFZ6RQ3Nd29LzKl52N42gp1YxMVUOHh4diz5x+sXj0PGo3yax69XHgGnYiIiIiICow7d+4gJCQYzZs3w+3bt809nUz9e/a8bt2aCAhoYu7pUD7hGXQiIiIiIioQjh8/jtatWyM9PQ1arQZ16tTB77//jpo1La9cbcOGDThw4CB+/30xz54XIFygExERERFRgTBnzhxkZKRhx451MJlMeP31QWjcuDEWLFiArl27mnVuMTExOHnyJCIjIxEZGYkFCxagUaO6aNKkvlnnRfmLC3QiIiIiIioQ7O3t4eDggCJFHvVI/Pnncrz77lh069YNsbGxGDBggFnmdefOHVSuXBl3794FALi6usDPrwS+/PIjnj0vYLhAJyJSEOzUV2TpdcuJTL/zeK6OW7fXtyJ7bUxlxW3D908QWbUhstSr8InkbM/negdZjOd8SaGgLF2Wt+WYQY5jUvitFddElowVOir/mFFdhJVTRnWlYClusgbGOeKMujHUdcRB6+ggMv91yo9VyEeydNC2ZyVV4yiVfxXKkOOEGVfLfet+IjJdqhxDqbzNoWgRxflsysFjrfQ8qd9D/lxax8siOvurcSLTpKVney4AoEtT+WDngzgf+QNot+O64rYavdxWY2+X63PKD4HaziKLUHgu04vh4cOH0On+//XXzs4Wc+Z8CxcXZwwePBiBgYHw95e/V/LaqFGjkJ6ehr/++g0lS/rBUeH1mwoGlsQREREREdFLLyMjA7///juCg1s8kWs0GrRq1RQZCm8s5oe//voLixcvxsSJo1C1aiUuzgs4LtCJiIiIiOil9/fff+POnTt47bXW4t/27TuMIkWKwM/PL1/nZDQaMWjQINSpUwO9eslPa1DBwwU6ERERERG99P766y/Y2tqgUiX5lbX9+w+jYcOG+f59b4PBgMTERGRkZCA9PWdfiaGXAxfoRERERET00uvcuTPS0zMwY8aCJ/K0tDQcPnwcjRo1yvc5WVlZYc2aNTh16hzGjv0i38cny8OSOCIiBRqfoiKzjpIFUGFpK3J13NhXE0U2JyJAcdsPlfq7FN521RjVlUyFVBorspRehUVWZI+cI+ISVI2R6diVPxJZQkU3kWlkLxfu1JY3usysmzmaT05E13NRtZ1W4auOYQ/nqds3Xd0Znls95JOk0JkU5Y1LyMI156vqvo+psbYWmUnldzlNevn42d1Tt68h+o6q7XIqyVPO0faewpkuk0KxYUom9/dTQrwGKeb6JiVV7Z8flH7+NscvVNw22L6XyLTurrk7oXyiVHgXqO8msoiMlfkxHcqBypUrY9iwYZgyZQY6dWoLH59iAIATJ84gJSUVDRs2NMu8ateujR9//BFvv/024uMTEBzcAi1aNIK7u/w9SC8/nkEnIiIiIqICYeLEibC1tcP33895nO3bdxi2traoUaOG2ebVv39/fPPNNzhz5hLeeus9lC5dDwEBHTFp0jTs2XOAH38vQLhAJyIiIiKiAsHJyQmjRo3C8uW/4sGDGACPvn9ep05tWCt8Gii/aDQajBw5EidOnMTNmzcxf/58lC1bEQsW/II2bXqgdOl66NixHz75ZAp++20Trly5BpPCp3boxccFOhERERERFRhvvfUWjEYjli5d8zgz1yXWlBQtWhR9+/bFihUrEB0djf379+ODD0bD0dEdq1dvQL9+76JmzVbw96+Ntm1fx7hxX+LKlWvmnjblEn4HnYiIiIiICgwPDw9069YN8+Ytx+DBb6BVq6Z4992PcO/ePRQuLLtXzEmn06FOnTqoU6fO4yw6OhpHjhzB4cOHcfjwYaxevQHr14fj998XmXGmlFu4QCciIiIiogJl8ODBWLx4MSIi/kK1apVgMplw6dIli1ugK/Hy8kJISAhCQkIAANeuXUPt2rUxePAYM8+McgMX6ERU4AXZ9BSZ1q+4yAwXr+TquIENPxNZtW9l+/jtBaWUDzBcRrFlZc3ysR9kQ7qSWy08ROZ1QB5PmyyLapRajjOj1O6c3LKKyOxvpYrsYRk7kdncl43mmy5/q3o+ORHi+Y7IXGurbN1W+dXBkPLyDy679l4iC9R1EZl9p7oi27b1Q+VxKijkKr8Ip/WUf9Cabt5Wt7OChGLy+WTn6CjHSEvL9hhZYVD4WqpVgkJhk8L1kzU26r7TmljfXzG3vZs/t1ENhzsKNe6ZUGz2T1bXaG9plG6LTuE5Ty+WunXrok6d2pg7dylGjRoCAHBUeJ15Efj6+mLNmjUICFC+6gu9WPgddCIiIiIiKnCGDBmKrVt34quvfoCzszN8fHzMPaVsa9asGSZPnmzuaVAu4AKdiIiIiIgKnC5dusDDwwPbt+/GqFGj4OTkZO4pqWI0GhXz/v375/NMKC9wgU5ERERERAWOra0t/vnnHyxbtgyjRo0y93SeKSEhAcuXL8crr7SBg4MD5syZI7bRKHzNhl48/A46EREREREVSKVKlUKpUpl0vZhZWloaNm/ejBUrVuD3339HUlIS6tSpgVatmuCdd96BnZ0devWSvS70YuMCnYgKPF1hd5GZ7sWILMKwKlfHjQyWZTQX95UVmX+ScklUsFNfkWk+l2VrSkJ93xNZ3PuyGM9rziG5c8XSIjJ4u6kaFwBQ1k9EJp1819/qxn2RJbQsIbJiO5LVj53Lwu7MElnTV75WtW+hQ/I5piTdU37k0nuvwm2uJx97o1792RRNqnye2dyVpV6hRYeI7F6gLMY7sCj7RX36FNmgZyotvxtqOnY222NkhVahGy1iz3iRKf1MwqSuDfB+JeU/yXxmnVO1f36wu52Fkjc7W5k5OeTeZPKR1l2+vj2sU8QMM6GCwGg0YufOnVi2bBnWrFmDmJgYVKxYFu+/PxAdO7aBr28JGI1GDB8+Dn379oWtrS06d+5s7mlTLuICnYiIiIiISKV79+5h3bp16NOnD6wVWv6zKiUlBcePH8eqVauwcuVK3Lx5Ez4+xdC3b1d07PgKKlUq98T2Wq0W06Z9huTkFPTo0QN2dnZ45ZVXcjwPsgxcoBMREREREalgMpnQu3cvbNoUhuXLl2Pt2rVwd5efxMvM7t27sXv3bly8ePF//13AjRs3YTKZULhwIbz6aig6dWqLunVrPPM75TqdDj/99DVSU1PRqVMnbNiwAXXryktr0ouHC3QiIiIiIiIV5syZg02bwvDhh+9i9uwlqFevHjZs2IBy5co9d9+jR4+icePGcHZ2gr+/L0qW9EHnzm1RsqQPSpXyR61aVWFlZaV6Lnq9HnPnTkPPnoPQvn17rF27Nic3jSwEF+hERERERETPcfHiRYwYMQJ9+nTFBx8MRZcu7dG9+zuoV68e1qxZg1atWj1z/48+GotSpfywd+8m6PW5swyztrbG4sXT0bVrf34X/SXBBToRFSjB9rLtVFu4kMjC7svLl+REYMPPZBgkS+KsY+XVL60OXVA8Znod+W69yzl1pWB3AmXZmscBWWYVnrZCZE3afSMy240KZXKZiG4oC5e815wXWXJNf5GleMi2rq1/jVU9dn5wOHNH1XamsxdVbac/LO8bU3qGyO71qSUy14upqsYAAGgVrryqlc+n9FKyHEufqq4ITYnuQaLM0uzlVJLkbQnLWJntcTMTUmWcnE9TdR9fNSbK2xJhXC3H8HhbZIah5RWPGfZgrty/yGC53a0ZaqaIQF0XkaktwNRHx6raLrP5NG2jrkDR0myK/E5kAc2+yP+JkFkZDAb07t0LXl4e+PzzDwEAfn4+CAv7BW++ORwhISH48ccfMXDgQMX9d+3ahY0bN2HevO9ybXH+Lzs7WyxfPgv9+7+PsLCtuXpsyn9coBMRERERET3D119/jX379mPjxhVwdPz/KxK4uDhh5crZGD9+MgYNGoT9+/ejfv36sLOzg52dHezt7WFnZ4ePP/4YVapUxKuvhubJ/BwdHTB79jfw9a2ZJ8en/MMFOhERERERUSaOHj2KCRMmYNiwAahXTy6A9Xo9vvxyHMqWLYVPP/0WixYtgknhEourV8+DVunTSkT/wQU6ERERERGRgpSUFLz++usoX74MxowZ+sxt+/Xrjn79usNkMiEtLQ0pKalITk5BSkoKNBoNfH3l18uInsYFOhERERERkYKPPvoIFy5cwPbt61Rf81yj0cDGxgY2NjZwcXHO4xnSy4YLdCIqULSuLiIzxjzM83GjGstCOJ+weJGleNmJbHPsfMVjtgicLDKt7A5DiPtbIrv/mSykKj9RltEFWXcXma5ldZFFKJR1ZVaiZKgpb2PYnVkiq/DRNJF5/WOUBxyiOIzZmBKSVG2nVMCnZHPCIpEF6ruJ7EE1ed8UXnRS1RgAAIWPY5oUSuK0abKoz6D+qkCCJi1dZM7n4+R2SSnZHyQLTHr58VPPgwm5OkZ6ZV+ROdzMQtGek4OIQrwGiUxjbysynZOTqiGUXjdQzFvVvplJLCL/7FR6Liu9nlgaXUKayJTK/8Luzs6P6VAe+euvvzBt2jR8+uloVKxY1tzToQKCX4IgIiIiIiL6j6SkJPTp0wcNG9bBoEH9zD0dKkB4Bp2IiIiIiOg/jh8/jmvXrmH+/KksdqN8xWcbERERERHRf0RFRQEA/PxY7Eb5iwt0IiIiIiKi/4iKioK1tTXc3FzNPRUqYPgRdyJ6KQU79VXMtU6yrG1z/MJcHTuw/qciMwbIYibNkXMis69UWvU4MWVlm2yhk7JI68ErFUTmfkyWfymVGQVXHS8yu4v3VM0vuq4sgwOAIrvVFW6lVZFla+6L76ja15w01jloTFPJ1KCKyAofku+5h6cuU3/QDFn+pk2WrYNRLWXRYrGtD9WP8xSTQpHZ3VpyDI8VV7M9Rlbcq+UqMvfTiar21Zf0E5lSCVpq21ois7unUICYiRQ/d5HtCP9aZKH+I0Rm8iuqaozUmvK1yObUdVX7ZsbugXyO6cqVzNExzcVoL3/OM6r45f9EKM9ERUXB29sTGo38fUmUl3gGnYiIiIiI6D9u3boFb28Pc0+DCiAu0ImIiIiIiP4jKioKXl5coFP+4wKdiIiIiIjoP6KibsLb28vc06ACiAt0IiIiIiKi/7h16za8vT3NPQ0qgFgSR0QvJU1R5Xe9DZE383zsmy1kIVyJ8FiRaRQK4ZKLOuRscIW3XaMbyvKpil/fVnW4DFdZ4GV1M1pkIeXHiCy1t/IfNhF7ZPFcs9CvRGZdy15km65/r3hMcwktNVJk6X55/wddmossqHK5IgsCs8LkKEv9bjWVZW2eh+U4mnRZ/qWWJjFZZMlespRpc8IikSk97wAg7OzkbM/HYCMz3dlrqvY1RsmfK52bvA8TiuhEVuiM+sfP5p68z5SYHORjqr0To2rfdCc5x+23ZqjaFwACtZ1F5lBNFlbiBb2+tDZVFiimFJavWfRiSk1Nxf379/kddDKLF/NVkYiIiIiIKA/cunULAHgGncyCC3QiIiIiIqL/OX78OACgVCk/806ECiQu0ImIiIiIiP5n48aNKFnSD76+Jcw9FSqAuEAnIiIiIiICYDKZsHlzGAICmph7KlRAsSSOiF54ob7vicxYWBYzAUB48tJcHTuo7iciMwU6y3EPTBRZtSHTRJaVoqiYKrKYyyHaWmRux+V7sZsufysypaI2K4NJDmyQ4z6sIYt0vPeqLw6Lrivn7bU/TfX+5hJb01tk9rdyVtamht3NBBmeu5Kzg2bIx8uoUJhmFSNvn0mf/ff7DR7yZ9XxusLzTolVzv6MCdR3E5l3KV+RhT2Yq+p4m5OWiCzIpqfI4srI2+e54LSqMQAAF9SV1ikV8BnjFZ47ijur20ypDO7R/vIAptOX5Ha2Ck+yF4Dutizbi2kuX/vpxXP+/HlcvXqNC3QyG55BJyIiIiIiAhAWFgZra2s0blzP3FOhAooLdCIiIiIiIgAPHjyAg4M97OzkZUaJ8gMX6ERERERERACaNWuGmJiHOH36vLmnQgUUF+hEREREREQAGjRoABsbG+zatdfcU6ECiiVxRPRCUSok0itcBkV76Xp+TAeRwbIUqEREvNxwkrrj6eNlMVqQ3euK22q+riGy6NqymKn0oruqxlYqavObLkudTCZZcJXiLsd1WX9ScZyQsh+ILL2/QtnaySjF/S1Jhq1CEZZWZbuWSkHW3UWmdXISWZhCQVlOpTnLx1pz657MFArB1ErxsBOZ81V1RXsmXQ7va5NRRIYLl3N2zKdoXeRj5XxBzjsrBZab4xeq2s5kLz+ia0xMVLVvho3KcziZPPa6woVFFhY9U90xXwCbIr8TWamvp4osUNdFZBGGVXkxJcoldnZ2aNiwIWbMmA8A6NbtNbi6KhfPEuUFnkEnIiIiIiL6nxkzZqB+/UYYP/4rVKjQGO+8Mwp79x5SfIOaKLdxgU5ERERERPQ/FSpUwOrVq3Hjxg1MnDgRBw4cR2hoNzRs2AazZi3Ew4ex5p4ivcS4QCciIiIiInqKl5cXRo8ejQsXLiAiIgJVqlTnWXXKc/wOOhERERERUSa0Wi1atWqFVq1aITo6GgsXLsScOXPwyy+/oXz5MmjduhVatmyMunVrwMrKytzTpRccF+hE9ELRVSwrMqOVTmSbr8iynpwKrP+pyEwhsgAqYu/H6g6o0K0Uvn+CyFq2/FJ5d9lvBVeFq8KEnZH7Nw/5SmTOHvJXgjFBFkpp/YqLzHvrHTluwiI5GQB1+srHxumKwoZay/+Ql9tJ+TFHTbIs+sttxqSkXD+mJjlVZIWPyzNDYbdmiEypyC7YvpfINisU2cX5yeed99YHmc7zv4wnL6jaLjNKZV1KRZQ5YYxPEJn3X7JoL6cC9d1Epi8qyxcjjKtF1qrx5/KAJWR5nxJ9saKKecaNm6r2f5l4HZAvyppalcwwE8pL/55VHzVqFLZv344FCxZg0aJVmDr1Jzg5OaJp0wYICGiCgIAm8PGRvy+JnocLdCIiIiIioizQarUICAhAQEAADAYDDh8+jM2bN2Pz5jCMGvUJDAYDypQpiZYtG6Nv324oX76MuadMLwjLPz1BRERERESUx65fvw6jUeHjac+h0+lQp04djBs3Djt37sK9e/ewdu1aNG8egPXrtyAwsDO2bt2ZBzOmlxEX6EREREREVKDNnTsXPj4+qFOnDrZs2ZKjY7m6uqJDhw6YM2cOzp07h2bNmqFr1/5YtmxNLs2WXmZcoBMRERERUYG1ePFiDBgwAJ06tYVOZ0JgYCCCg4Nw9OjRHB/b0dERv/32O958800MGfIhJk/+gc3v9Ez8DjoRWaxAXReRaWpXFpnuxt38mA4iQ2UhnM9mWQCFieqO570rRtV2mgzlj9v5VL4lMrsZ6t53vV3PWmS+6x+KzGSSY8dX9hCZ0x7Z8hZk01Nx7LtTaorMc7/czmRj+U24m4/I4sBQ3/dydQytq4vIDPfVlahlhSk9XWROF+JV7asrLovCTAoFgyGub4oscbQs0Qo7O1nVuJqaFVRtlxmlQjilErWcSHilusicLqm7X7NC5+woMqXHVEmai3w9MFgrtFgqMBRxV8wjIr9Ttf/LxOZhhsgynOR9S5Zl+/bt6NevH3r16oxp0z6DRqPBn39G4NNPv0XNmjXRWKDjRAAAHLJJREFUs2dPDB8+HNWrV4dOJ0tp1dDr9Zg1axb8/PwwduxYREXdxrRpn2X7ePRy4xl0IiIiIiIqkLZs2QIvLw9MnfoptFotNBoNXnklCHv2/Ilvv/0EERGbUbt2bRQqVAjt2rXDtGnTcOTIERgMhiyNo9Fo8OGHH2Lx4sVYtmwtBg8ek+VjUMHAM+hERERERFQgRUVFoXjxouJstl6vR79+3dGzZ0ccOnQcu3btxa5d+zF27IdISUmFm5sbSpUqidTUVKSkpPzvf1ORmpoKjUaDPn36YPTo0ShSpMgTx+3Vqxesra3Rs2dPGI1GzJz5FfR6Lsno//HZQEREREREBVJUVBS8veVXt/5lbW2NBg1qo0GD2hg1CkhNTcXBg8ewa9c+REXdho2NDWxsrGFjYw1bWxvY2Njg/v0YLFy4ALNnz8aAAQMwZsyYJxbqXbt2hVarRffu3WEwGDB79hQu0ukxPhOIiIiIiKhAunUrCvXqVVe9vY2NDRo1qotGjeo+c7v33nsbs2cvwk8/LcScOXPQv39/jBkzBkWLPurs6Ny5MzQaDbp0edS3M2/ed9m9CfSS4QKdiCyWvphC8VRsksg23fwx18cOrC/Lv9BalsRF7Bmf7TGSi8tSJyXXg+wU87RzNiK7en6kyIJqTZQ7t5HFY8bj50SmK+UrMocb8jEIuzVDZE1f+VqOC8D9uCyfSpN3LTK85BwtjWKRobUshVIqRwt7OE9koUWHyOM5Kzzv7sxSO0XVNLby+aRRuB5wkN3rInvQXRb/HZw/QmStGn0uMsdItTNUoFFXZJaZnBTCBeq7yeNlrBRZhm3O5qiWxt1NZCaturGtY9NEFl1XXUljmpt83hRU+nh5P8aXdDDDTCgroqJuwcsrMNeP6+LijA8+GIq33+6LOXMWYebMBZgzZw569OgBOzs73L17F3v37oXJZMI//xxEcnIK7Oxsc30e9OLhAp2IiIiIiAokR0dHPHig7qoq2eHi4oRRo4ZgwIA+mDNnEVat+gO2trYoVMgNrVu3QEhISzRsWAfWCm/uUsHEBToRERERERVIzZs3x86d+/J8nH8X6qNGyU9KEf0XL7NGREREREQFUvPmzXHq1FnExDx8nN24cQtLlqxGePgOs82LCi6eQSciIiIiogKpRYsWMJlM2L17PwwGA7744nucP38JAODv74ugoObmnSAVODyDTkREREREBZKvry/8/f0wadJ36NdvGMqWrYBVq1Zh/PjxuHPnrrmnRwUQz6ATkUUItu8lMo1PMZEZLl7Nh9kA14Nlc7bPxni54cfqjhfQ4guRGd3UtSSjfIJi7P2rQjvwIBlFN5Jt6N77Zduwzlm2ypvsFZq9T19WnM/T7tRUvn2+62UZT2Rr2UCtj5Ft8RZHo/A+t8EgM2t1j3Vqefmct45WeN7lgfRi7iLTZMgWd30RL5mlmFSN8aCyvcjczqeq2leRwvzyi658KVXbGWxkk/rmw5/k9nSQrnDVA6tb6oqvkorK5mjvfemq9jXlT0n9C0F3OUpkiY3KmWEmlFXNmjXHwoULMWzYMEydOhVarRZpaWlITExCQkIiHB3Zxk/5hwt0IiIiIiIqsCZMmIDWrVujU6dO0Pzv8o3e3t4AgLt373GBTvmKC3QiIiIiIiqw/Pz84Ofn90T27wL9zp378Pf3NcOsqKDid9CJiIiIiIj+w8vr0dd5+D10ym9coBMREREREf2Hu7s79Ho97ty5Z+6pUAHDj7gTkeW6LwuOIjJW5vowgfU/lWGQLImL2KuyEU7B/QqyhKnQmRSRhXi+I7JWm5RL4i6ulcVcoSXfF1niAFk8duyH0XJsL9kwZ7LSiSw8fqHIgmtOkPu2dxUZAGw+Iu9v37lfiyzs5CTF/S2J1kGWnhmqyvIw7T3lx/Bp0XXl86T4TxeyPrFs0KbLwjVtoixwe1iniMhcD6s7wxRXUmZeG2+r2leJ6ejpbO+bUyZrdX9CeYZH5vFMHkkqJp87LjfUlejZ35KPsy5Wvj6FFh0iMqtS8vlQUIXdmSWychOniSzYsY/INicsypM5UfZptVp4enpwgU75jmfQiYiIiIiInuLt7Y3oaH7EnfIXF+hERERERERP8fYugrt375t7GlTAcIFORERERET0FC8vL37EnfIdF+hERERERERP8fb25gKd8h1L4ojyUaC+m8jyovTsRWRMlSVFSJElRXnhZktZCOcTFic3VOiSUyupiEZkRf6U32szmWTxW9hfNRSPeTlVFsLV6TtVZEV3Z6iZIjR6WQinu6Huu3e3G7uKzPOwunEBAAZ5/7wItIXcRBZX1EZk/+z8SGRBdSaKzKqus8g2x87P3uSySuG5p4lLFJk+xVVkxsvXRBZk01Me7+NaItt0/XuRBWo7iyzCuFpmhlUiy8r+OaFJUnjNUpBx42aujpuZFFd5zmXPNVlQpkSbki4y48mzMlPYd0vUdFVjvGzU/j53vC5/rgzVy+TJnCj3PTqDfhcmkwkazYv5e4pePDyDTkRERERE9BRvb2+kpKQiPl7dlTiIcgMX6ERERERERE/x8vICAH7MnfIVF+hERERERERP8fb2BsAFOuUvLtCJiIiIiIieYmVlBQBIyadOHCKAJXFEeUappEhra2uGmbwgFAqqcrvUCQCC6smmN00zWRIXvn9Cro6b7qRQr5QhS9TOflxWZL6bDIrHDPn8LZHFjKkoskJfnFMxQwA21jJLTZPjer4jsvgxsvTI6+djisOE+o+QQ79ZXMUELc+t0GIic7qu/Hg9La60fN65XMlCsV42hRQaoJhr9Qp/Ejjai8hh1wWRhaWtEJlSiZbXIXX3jdqffaWiPQDQ1K6sav8cefBQRCHu8mcSeVAsFer7nshsGqj7GQp26ivD8n4iyovX35eJ1laWQSqxjZWv/WluCq+1ZJFOnToFAChfnsV+lH94Bp2IiIiIiOgpx44dg5ubK4oU8TL3VKgA4QKdiIiIiIjoKcePH0flyuV5iTXKV1ygExERERERPeX48WOoVKmcuadBBQwX6ERERERERP+RlJSECxcucoFO+Y4lcUR5RKNQuGRkC2im8quQyGAvHxefNTfkhl9nfwyl4iqnhi4iu9fKX2T2UfJjdCatcrFWXKvyInM/Kcv2wh7OE1mgrovIdBVlQR0exoooNlBh3BNy3uHJS+XxALQM+FJk9rcUN7V4caXk/e299b6qfR+Wlu+R+/14Osdzeh5jfLxirnVxFpnJVpZZGWJiVI2j0elE5nRA4WdNgVLJZlZeIzTp6srocsKULF/PNVby9SXCsCrXxza6OYpMl6pQRKlA6+Yqj3f2ag5nVPAo/Y5XYndbPk9iysvyRbI8J0+ehMlkQuXKFcw9FSpgeAadiIiIiIjoP44fPw6tVoty5UqbeypUwHCBTkRERERE9B/Hjx9H6dL+sLPjJXIpf/Ej7kREREREVKDs27cPsbGxKFSo0OP/7O3tcfXqVZw6dQpbt27l98/JLLhAJyIiIiKiAuP69eto2LAhjMYnuxs0Gg1MpkfdIi4uzhgxor85pkcFHBfoRDmkVGYEANDKgqT8KkKjzB8XK1dZ1rbpwdxcHdtgL4u1NAqdVemy5wnu5zJEZn8tTnGcC33cRVZ2hroSLqUCLxhlyVSYwn1TevJUmS2IVjUuAGjS5TjadNW7WxSDi3xgw85OFlmo73sic2hVQu6rUOgXWmyoyDbd/FHtFAVd8aLK/5Ahb4vBwUZkal/HwlOXZWle2RkDWuVv6iUXzfsSLq2zk8hMycl5Pi4ApBV2EJl1rHztUKSXP/ub4xfmcEa5K8i6u8jC01aYYSaZM6amqtpOd+KyyOJDKuf2dCiLFi5cCDs7W2zduhbJySl48CAGDx48RHx8Anx9i6N8+TIoUuT/2rv/KCvrOg/gn7n8GmCQUWAELE0NNY3KdDW1CE6NgodT5oqbga5WpKTHEBM7tUtJ/lgJ06PSKTc5okbkj8g6G+CP1DYrtW3XxLN5QMUyBERBEBmGmbn7R62b+30mL8yP+2Xm9frzM89zn++997kX3vPMfd99ff85VSGgAwAAvUJbW1ssXLgwTjllkgI4sqQkDgAA6BUefPDBWLNmTUyb1s5fQEKVCegAAECvsHDhwhgz5qA49tj3V3spUEhABwAAerxNmzbF3XffHdOmnebz5WTLZ9Chi9zXsqTaS+jV2iuZarfUrxO9enD6nalD1qYFTkOeSIvVtr2rIZmtPyEtg4uIGLoqnS17Li1wK1JuLWqtS9fYePzXk9mAcWm73fKnr67ouBERO/fql8z6NpUr3r8aTvy7rxXO+/39XhXtv+n4tyWzoWsqK5lq27K1ou2KTNzns+ntbW8q3La0V3pfdu6VlsQVKXpddUcpZlvf6l1nKBeU6kVN96xn55C06G3wmsrOk9YX1nb2cjpdaVDXl/x11L3bb69ouxWvLkxmh825NplNbDgvmS3f8O1dXxh/0+OPPx47duyI8eOPr/ZSoF2uoAMAAD3eCSecEHV1dbFs2c+qvRRol4AOAAD0eIMHD44pU6bE4sU/TL4DHXIhoAMAAL3CZz7zmfjDH16IX/zi0WovBQoJ6AAAQK9w/PHHxyGHjInvfe/uai8FCimJg10w8ZDZyWxPKLPpLicN/XQyKyrIqaZuKa5KO9Ci39a0UGrZM/OT2dGfTkveXtu/+DgHf/+VXV7b/yo8bzdvSUbrTx6VzBp+U1m5WXt21KcFV0P+2LHb7Gp/mjC0cD7wpcr233xI+vvw+vvXVLRve6VuFRkxLBnd206h34cnpfMd9ZX9N6GmX/9dW1dnaaeEuWlYeo51+qHr0tdQedPmLj9uRETLwILrK08/V9G+9zZ/v5NX0wUGVFZOuKeq+2NaitkyJi2SpGvU1NTE2WefE3PnXhbz5n01hg4dUu0lwZu4gg4AAPQaZ511VjQ374y77/5JtZcCCQEdAADoNfbbb7849dRT4xvfWBBbOvBVltAVBHQAAKBXmT9/fmzZ8lpcffUN1V4KvImADgAA9CoHHHBAzJkzJ77znVtj5crfV3s58AYlcdCOxr6fTGald49JZjV9e+fLaGLDecmsVDe4CivJz+bD0gKgEbc9VdG+r4xN993voeLval3+5OW7trC/Um7emQ4PfHsyem3/9Ni/u+5Lu33ciIh9frk2mbXV13XoNjvTpP1nJrPWsw8o3HbgC+nzNXHEucms9vRDk9nyl75T2YLa0oLBSrWurqw4LCKieWj6XtZvW2XfE1ze2VzxcTpV+vBHRERr/3ba4zpR24vrk1l5bPpvREc19jk9mQ0af2QyW/H6bZ1+7Gopb9uWzE4cMDWZ3bvje92xnE43eF36/vv66NoqrISLLrooFi1aFF/84tfipz9dHKVS+9cud+zYEaVSKfr1K2iChU7kCjoAANDr9O/fPxYsWBCPPvofsWTJ0r+57TnnfCHe+94JsWTJ0mhrq+yXl7A7BHQAAKBXmjBhQnzqU5+KOXPmxaZ2virx9de3xwMP/HvU1e0VM2bMjsbGKfHoo7/t3oXSawjoAABArzV//vzYubMlvv71bxb+/Fe/+k00NzfH0qVL4+GHH45yuU9MnPgPcfrpn42f//xXUS6383kb2A0COgAA0GuNGjUq5s6dG7fcsiRWrXo2+flDDz0So0ePjsMPPzzGjRsXjz/+eNx6662xbt3L8fGPnxUf/vApsWTJj6K5uUp9HPQovbPdCipQc+Rhyay0blMyW7b55u5YTnZeP+agZDbwZ09WYSXVVVRc1Pefj0pmRQVOkw7+YjJr+9qwZFb7b0/s5uraV25JS4o2fHDvZNbweOdfFWh9IS2JK69p6fTj7K5NH0zL8uoKyuAiIga/mD6ONbVp2dO+v9y82+u5r+3O3d+39Y6Ktx16738ns7YD31bZzjW7X8pW9BoqKp0rfBxKxcfts6Prr2YVvaYnvvsrnX+gmvRaSv8nn+/842RkxWuLktmJA6dVYSW75qQhZyezFVtvSWb9Xkvf77aNVDxWbeedd17Mmzcvrr322/Gtb81708+eeWZNjB07Nmr+8l7Xp0+fOPPMM2PatGlx//33xze/eU3MmHFJXHbZN2L69DPjnHM+GXvvXV+Fe0FP4Ao6AADQqw0YMCBmz54dd9zx41iz5g9v+llDw/DYuPGlZJ+amppobGyMZcuWx8qVK+PkkyfH1VffEEce+ZG4/vp/jaamHd21fHoQAR0AAOj1pk+fHsOGDYvrrrvpTfNRo/aNtWvTv/76a0cccUTcfPPN8fzzz8fUqdNi7txr4thjT4q77vqJ1nd2iYAOAAD0eoMGDYqLL744Fi/+YfzpTy++MR85siHWr98QLS1v/XGskSNHxoIFC2LlypXxvvcdFdOnz4rGxinxyCOPdeXS6UEEdAAAgIiYMWNG1NXVxQ03fPeN2ciRDdHW1hYbNmyo+HYOO+ywuOeee+LBBx+Mmpp+MXny1Jg27fOxevVzXbFsehABHQAAICKGDBkSM2fOjEWL7oj16//8ufNRoxoiIt7yz9yLjB8/Ph577LG4/fbb48knn47jjjs5Zs+eGy+//EqnrpueQ4s7RMSk/Wcms7b9hyez8ovru2E1+Sl6fAb3TxtnlxW0Gvd47xmTjOqfrqxB+vVDRiSzPi+mj+t9LUt2fV1voTRgQDLb/O70M3LvunxNpx+7XPAngh1pKu9sL70/bQYf9Uhr4bYDH3smHQ4elIxW/OfcDq+rqy1/5bvJbOKwz1W0b2ngwIq2K2psr6lNz8XSgWmTfuFxm4ufl7a+u98qX6mJh30pmbXWp899h7Wl97F148udf5zMlXfkX7bVNvbgZFb0GqrZlH4jzMtTPtAla2L3XHjhhXHNNdfEggULY+7cS6Oh4c//Xu9OQI+IKJVKMXXq1Dj11FPj+uuvjyuvvDJ+8IMfxaxZ58W55/5j1Ba8D9J7uYIOAADwF/X19XHBBRfEwoWL44knnopzzvlClEql2HfffTt0uwMHDoxLL700Vq9eHWeeeVZcfvm1ccwxJ8add/5YkRxvENABAAD+ysyZM6Ncjhg//pRYu3ZDPPTQQ3Hsscd2ym2PGDEibrzxxli5cmUcddQx8bnPXRwf/ehpiuSICAEdAADgTUaMGBFXXXVVTJ8+PZ544on40Ic+1OnHOPTQQ2Pp0qXx8MMPR9++A2Ly5KkxdeqMWLXq2U4/FnsOAR0AAOD/ufDCC+Omm26K+vr6Lj3OuHHj4te/fjQWL14cTz21Ko477uS45JLLYmMv7JtASRxERMSrH3hbMtvrdxuT2fIuKOvKSWNpSuG8NCgtPmrbvr2rl1Oose8nk1lXlKhVqtyvTzLrt72ykrgXJqSFcAM3VF5u1djn9Iq2u6/1jmS2beJ7ktnQ36f3ZdnaGyteT6VyKoQ78ZjLkln/xr2SWU07Hw1c/vJNyWzi2H/q8Lpy0bp5c0Xb1RSUDhYpDU7L5IrK6cZedG1Ftxf/9XTh+NWPHVXZ/h3QMqwumZWa3/o7kjtDd7yGThp0ZjJbUc0i0JquL/7rqJbB6Xt6ab/0M8v3FbxvHP7l9JyfdNDFyWzZs9fs5urIXalUijPOOCM+8YlPxA033BBXXHFF3HbbnTFhwgnxsY+dFJMmfSTq64dWe5l0A1fQAQAAMlBbWxuXXHJJrF69Oq688srYsmV7fP7zl8aYMR+I0077dCxa9ANX1ns4V9ABAAAyMnz48Jg1a1bMmjUr1q5dG0uXLo277rorZs2aE7NmzYkTTjgmJk9ujOHDh0W5XI5yuRytrd3zVzx0LQEdAAAgU6NHj47zzz8/zj///NiwYUPcc889cdddd8ZXvnJVtLQI5T2NP3EHAADYAzQ0NMT06dNjxYp7Y+vWrfHqq6/Gli1bYuvWrfHAAw9Ue3l0AlfQ6XXGTZ6XzFqHpuVYy3//L92xnLwcM7Zw3LRPbTJ7+Kezu3o1hapZCFdk235p6VXds68ls4kjzk1me986LJkNuzQ9F9tTVP5WqZfek7797798627f3p5q4/uGJLN9nm5NZtuHFT8vRSVO5Zd6zmcDKz3HWjdtqmi7tu1NFW1X/2yFV4RKxcVh9asq270jSi1pc2BNwayjqlWqWM7sqlyfoWl5Y276bU7P750j0pLVIgPXp+WiO0fv3eE10bPV1tZGbe3//R/t6KOPruJq6CyuoAMAAEAGBHQAAADIgIAOAAAAGRDQAQAAIANK4ujRJr39C8ls47R3JLMDlvyxG1aTl4kN5yWz5y4+pHDbd173TEW3OWn0BcmsZcPGZFZp0VtjaUq6b5UKk9pTU9AJVdqWFgVtO/6dyezlVenvSIev6/x2q4lHfDmZtU0bnszu+/WcTj927l55b/oEvuuKNclsY+NBhfuX+/dLZiu23pLMTux/RjK7t/n7b73APUSlr8vyjh0VbVf7k8cq2q6mf//CeeuAinbvkHKftKCuppwWfXWFk97/1WS24reXdeoxsjs/+1ReoFktNTvTgsmddZX9V7t+1fZktvUdaQkp0PO5gg4AAAAZENABAAAgAwI6AAAAZMBn0KnYli1bqr2EXdbSln7esXVH+vngou32xPu7K1rampNZW1P62LS3bdHjU7RdS3lnRfsWHrcD+3aXlp0F51Nrej4VbdfWlP6OtNLHelcUrafouc7tse0ObduL3g/S56C1uZ3XRsFjW/ja2APO5e5Q6eNQ+XbpcxVR/Hx19uPd0pIeo9TaPc9zpeddT9IV742drdL3/sJzueB8KjidsrvP5MX50TPUlMvd1GjCHqupqSkOPPDAWLduXbWXAgAA/A1NTU0xYEA3tGXSJQR0KtLU1BTNzcVXKgAAgOobMGCAcL6HE9ABAAAgA0riAAAAIAMCOgAAAGRAQAcAAIAMCOgAAACQAQEdAAAAMiCgAwAAQAYEdAAAAMiAgA4AAAAZENABAAAgAwI6AAAAZEBABwAAgAwI6AAAAJABAR0AAAAyIKADAABABgR0AAAAyICADgAAABkQ0AEAACADAjoAAABkQEAHAACADAjoAAAAkAEBHQAAADIgoAMAAEAGBHQAAADIgIAOAAAAGRDQAQAAIAMCOgAAAGRAQAcAAIAMCOgAAACQAQEdAAAAMiCgAwAAQAYEdAAAAMiAgA4AAAAZENABAAAgAwI6AAAAZEBABwAAgAwI6AAAAJABAR0AAAAyIKADAABABgR0AAAAyICADgAAABkQ0AEAACADAjoAAABkQEAHAACADAjoAAAAkAEBHQAAADIgoAMAAEAGBHQAAADIgIAOAAAAGRDQAQAAIAMCOgAAAGRAQAcAAIAMCOgAAACQAQEdAAAAMiCgAwAAQAYEdAAAAMiAgA4AAAAZENABAAAgAwI6AAAAZEBABwAAgAwI6AAAAJABAR0AAAAyIKADAABABgR0AAAAyICADgAAABkQ0AEAACADAjoAAABkQEAHAACADAjoAAAAkAEBHQAAADIgoAMAAEAGBHQAAADIgIAOAAAAGRDQAQAAIAMCOgAAAGRAQAcAAIAMCOgAAACQAQEdAAAAMiCgAwAAQAYEdAAAAMiAgA4AAAAZENABAAAgAwI6AAAAZEBABwAAgAwI6AAAAJABAR0AAAAyIKADAABABgR0AAAAyICADgAAABkQ0AEAACADAjoAAABkQEAHAACADAjoAAAAkAEBHQAAADIgoAMAAEAGBHQAAADIgIAOAAAAGRDQAQAAIAMCOgAAAGRAQAcAAIAMCOgAAACQAQEdAAAAMiCgAwAAQAYEdAAAAMiAgA4AAAAZENABAAAgAwI6AAAAZEBABwAAgAz8D2Rz03KCDgY5AAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#proj = EASEGrid2South()\n", + "plt.close(\"all\")\n", + "proj = ccrs.LambertAzimuthalEqualArea(central_latitude=-90)\n", + "\n", + "test_extent = [-3000000.0, 3000000.0, -3000000.0, 3000000.0]\n", + "#np.array(map_extent)+np.array([-1e6,-1e6,1e6,1e6])\n", + "\n", + "fig = plt.figure(figsize=(10,10))\n", + "ax = fig.add_subplot(111, projection=proj)\n", + "ax.set_extent(map_extent, proj)\n", + "ax.add_feature(cfeature.LAND)\n", + "ax.coastlines()\n", + "\n", + "plt.imshow(grids['count_segments'], interpolation='none', extent=map_extent)\n", + "#ax.set_extent(" + ] + }, + { + "cell_type": "markdown", + "id": "5b30ee90-e32c-4abe-9dc4-729fb4ab8b30", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Appendix\n", + "\n", + "### Get grid parameters for Ross Sea region" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "42dc7abd-05bc-4c2b-ba17-e5f375707bfb", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Import GeoJSON of Ross Sea - this is very approximate\n", + "import geopandas as gpd\n", + "\n", + "ross_sea_gdf = gpd.read_file(\"ross_sea.json\")\n", + "bounds = ross_sea_gdf.to_crs(easegrid2_epsg).bounds.values" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "7238b9cb-d2d8-4157-90b0-7c8a429dfdbb", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nrow = 151\n", + "ncol = 147\n", + "width = 10000.0\n", + "height = -10000.0\n", + "upper_left_x = -1040000.0\n", + "upper_left_y = -560000.0\n" + ] + } + ], + "source": [ + "# Calculate parameters for a grid with resolution that covers region\n", + "resolution = 10000.\n", + "minx, miny, maxx, maxy = [func(bound/resolution) * resolution for bound, func in zip(list(bounds), [np.floor, np.floor, np.ceil, np.ceil])][0]\n", + "\n", + "grid_extent_x = maxx - minx\n", + "grid_extent_y = maxy - miny\n", + "\n", + "width = height = resolution\n", + "\n", + "ncol = grid_extent_x / width\n", + "nrow = grid_extent_y / height\n", + "\n", + "upper_left_x = minx\n", + "upper_left_y = maxy\n", + "\n", + "print(f\"nrow = {int(nrow)}\")\n", + "print(f\"ncol = {int(ncol)}\")\n", + "print(f\"width = {width}\")\n", + "print(f\"height = -{height}\")\n", + "print(f\"upper_left_x = {upper_left_x}\")\n", + "print(f\"upper_left_y = {upper_left_y}\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "b640585b-9853-40dc-8aeb-e190bb4a24b3", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# from cartopy.crs import AzimuthalEquidistant\n", + "\n", + "# class EASEGrid2South(AzimuthalEquidistant):\n", + " \n", + "# def __init__(self):\n", + "# super(EASEGrid2South, self).__init__(central_longitude=0.0, central_latitude=-90.0,\n", + "# false_easting=0.0, false_northing=0.0,\n", + "# globe=None)\n", + " \n", + "# self._bounds = [-9000000.0, -9000000.0, 9000000.0, 9000000.0]\n", + "# self._x_limits = self._bounds[0], self._bounds[2]\n", + "# self._y_limits = self._bounds[1], self._bounds[3]\n", + " \n", + "\n", + "# @property\n", + "# def bounds(self):\n", + "# return self._bounds\n", + " \n", + "# @property\n", + "# def threshold(self):\n", + "# return 1e5\n", + "\n", + "# @property\n", + "# def x_limits(self):\n", + "# return self._x_limits\n", + "\n", + "# @property\n", + "# def y_limits(self):\n", + "# return self._y_limits\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/ICESat-2_Cloud_Access/h5cloud/read_atl10.py b/notebooks/ICESat-2_Cloud_Access/h5cloud/read_atl10.py new file mode 100644 index 0000000..c5bd306 --- /dev/null +++ b/notebooks/ICESat-2_Cloud_Access/h5cloud/read_atl10.py @@ -0,0 +1,115 @@ +#!/usr/bin/env python + +#import coiled + +import geopandas as gpd +import numpy as np +import pandas as pd +from rich import print as rprint +from itertools import product +from pqdm.threads import pqdm + + +import earthaccess +from h5coro import s3driver, webdriver +import h5coro + + + + +def get_strong_beams(f): + """Returns ground track for strong beams based on IS2 orientation""" + orient = f['orbit_info/sc_orient'][0] + + if orient == 0: + return [f"gt{i}l" for i in [1, 2, 3]] + elif orient == 1: + return [f"gt{i}r" for i in [1, 2, 3]] + else: + raise KeyError("Spacecraft orientation neither forward nor backward") + + + + + + +def read_atl10(files, bounding_box=None, executors=4, environment="local", credentials=None): + """Returns a consolidated GeoPandas dataframe for a set of ATL10 file pointers. + + Parameters: + files (list[S3FSFile]): list of authenticated fsspec file references to ATL10 on S3 (via earthaccess) + executors (int): number of threads + + """ + if environment == "local": + driver = webdriver.HTTPDriver + else: + driver = s3driver.S3Driver + + GPS_EPOCH = pd.to_datetime('1980-01-06 00:00:00') + + def read_h5coro(file): + """Reads datasets required for creating gridded freeboard from a single ATL10 file + + file: an authenticated fsspec file reference on S3 (returned by earthaccess) + + returns: a list of geopandas dataframes + """ + # Open file object + h5 = h5coro.H5Coro(file, driver, credentials=credentials) + + # Get strong beams based on orientation + ancillary_datasets = ["orbit_info/sc_orient", "ancillary_data/atlas_sdp_gps_epoch"] + f = h5.readDatasets(datasets=ancillary_datasets, block=True) + strong_beams = get_strong_beams(f) + atlas_sdp_gps_epoch = f["ancillary_data/atlas_sdp_gps_epoch"][:] + + # Create list of datasets to load + datasets = ["freeboard_segment/latitude", + "freeboard_segment/longitude", + "freeboard_segment/delta_time", + "freeboard_segment/seg_dist_x", + "freeboard_segment/heights/height_segment_length_seg", + "freeboard_segment/beam_fb_height", + "freeboard_segment/heights/height_segment_type"] + ds_list = ["/".join(p) for p in list(product(strong_beams, datasets))] + # Load datasets + f = h5.readDatasets(datasets=ds_list, block=True) + # rprint(f["gt2l/freeboard_segment/latitude"], type(f["gt2l/freeboard_segment/latitude"])) + + # Create a list of geopandas.DataFrames containing beams + tracks = [] + for beam in strong_beams: + ds = {dataset.split("/")[-1]: f[dataset][:] for dataset in ds_list if dataset.startswith(beam)} + + # Convert delta_time to datetime + ds["delta_time"] = GPS_EPOCH + pd.to_timedelta(ds["delta_time"]+atlas_sdp_gps_epoch, unit='s') + # we don't need nanoseconds to grid daily let alone weekly + ds["delta_time"] = ds["delta_time"].astype('datetime64[s]') + + # Add beam identifier + ds["beam"] = beam + + # Set fill values to NaN - assume 100 m as threshold + ds["beam_fb_height"] = np.where(ds["beam_fb_height"] > 100, np.nan, ds["beam_fb_height"]) + + geometry = gpd.points_from_xy(ds["longitude"], ds["latitude"]) + del ds["longitude"] + del ds["latitude"] + + gdf = gpd.GeoDataFrame(ds, geometry=geometry, crs="EPSG:4326") + gdf.dropna(axis=0, inplace=True) + if bounding_box is not None: + bbox = [float(coord) for coord in bounding_box.split(",")] + gdf = gdf.cx[bbox[0]:bbox[2],bbox[1]:bbox[3]] + tracks.append(gdf) + + df = pd.concat(tracks) + return df + + dfs = pqdm(files, read_h5coro, n_jobs=executors) + combined = pd.concat(dfs) + + return combined + + diff --git a/notebooks/ICESat-2_Cloud_Access/h5cloud/readme.md b/notebooks/ICESat-2_Cloud_Access/h5cloud/readme.md new file mode 100644 index 0000000..baf1630 --- /dev/null +++ b/notebooks/ICESat-2_Cloud_Access/h5cloud/readme.md @@ -0,0 +1,30 @@ +## Running and scaling Python with [Coiled serverless functions](https://docs.coiled.io/user_guide/usage/functions/index.html). + +This script contains the same code to read ATL10 data as the notebook, the one difference is that we are using a function decorator from Coiled that allows us to execute the function in the cloud with no modifications whatsoever. + +The only requirement for this workflow is to have an active account with Coiled and execute this from our terminal: + +```bash +coiled login +``` + +This will open a browser tab to authenticate ourselves with their APIs + +> Note: If you would like to test his ask us to include you with Openscapes! + + +Our functions can be paralleliza, scaling the computation to hundreds of nodes if needed in the same way we could use Amazon lambda functions. Once we install and activate [`nsidc-tutorials`](../../binder/environment.yml) We can run the script with the following python command: + +```bash +python workflow.py --bbox="-180, -90, 180, -60" --year=2023 --out="test-2023-local" --env=local + +``` + +This will run the code locally. If we want to run the code in the cloud we'll + +```bash +python workflow.py --bbox="-180, -90, 180, -60" --year=2023 --out="test-2023-local" --env=cloud + +``` + +The first time we execute this function, the provisioning will take a couple minutes and will sync our current Python environment with the cloud instances executing our code. diff --git a/notebooks/ICESat-2_Cloud_Access/h5cloud/workflow.py b/notebooks/ICESat-2_Cloud_Access/h5cloud/workflow.py new file mode 100644 index 0000000..3ac32e5 --- /dev/null +++ b/notebooks/ICESat-2_Cloud_Access/h5cloud/workflow.py @@ -0,0 +1,74 @@ +#!/usr/bin/env python + +import coiled + +import geopandas as gpd +import numpy as np +import pandas as pd +from rich import print as rprint +from itertools import product +import argparse + +import earthaccess +from h5coro import h5coro, s3driver + +from read_atl10 import read_atl10 + +if __name__ == "__main__": + + rprint(f"executing locally") + parser = argparse.ArgumentParser() + parser.add_argument('--bbox', help='bbox') + parser.add_argument('--year', help='year to process') + parser.add_argument('--env', help='execute in the cloud or local, default:local') + parser.add_argument('--out', help='output file name') + args = parser.parse_args() + + + auth = earthaccess.login() + + # ross_sea = (-180, -78, -160, -74) + # antarctic = (-180, -90, 180, -60) + + year = int(args.year) + bbox = tuple([float(c) for c in args.bbox.split(",")]) + + print(f"Searching ATL10 data for year {year} ...") + granules = earthaccess.search_data( + short_name = 'ATL10', + version = '006', + cloud_hosted = True, + bounding_box = bbox, + temporal = (f'{args.year}-06-01',f'{args.year}-09-30'), + count=4, + debug=True + ) + + + if args.env == "local": + files = [g.data_links(access="out_of_region")[0] for g in granules] + credentials = earthaccess.__auth__.token["access_token"] + + df = read_atl10(files, bounding_box=args.bbox, environment="local", credentials=credentials) + else: + files = [g.data_links(access="direct")[0].replace("s3://", "") for g in granules] + aws_credentials = earthaccess.get_s3_credentials("NSIDC") + credentials = { + "aws_access_key_id": aws_credentials["accessKeyId"], + "aws_secret_access_key": aws_credentials["secretAccessKey"], + "aws_session_token": aws_credentials["sessionToken"] + } + + @coiled.function(region= "us-west-2", + memory= "4 GB", + keepalive="1 HOUR") + def cloud_runnner(files, bounding_box, credentials): + df = read_atl10(files, bounding_box=bounding_box, environment="cloud", credentials=credentials) + return df + + df = cloud_runnner(files, args.bbox, credentials=credentials) + + + df.to_parquet(f"{args.out}.parquet") + rprint(df) + diff --git a/notebooks/ICESat-2_Cloud_Access/img/icesat2.atl10.gridded.count_segments.ross_sea.png b/notebooks/ICESat-2_Cloud_Access/img/icesat2.atl10.gridded.count_segments.ross_sea.png new file mode 100644 index 0000000..82782d0 Binary files /dev/null and b/notebooks/ICESat-2_Cloud_Access/img/icesat2.atl10.gridded.count_segments.ross_sea.png differ diff --git a/notebooks/ICESat-2_Cloud_Access/ross_sea.json b/notebooks/ICESat-2_Cloud_Access/ross_sea.json new file mode 100644 index 0000000..153ae55 --- /dev/null +++ b/notebooks/ICESat-2_Cloud_Access/ross_sea.json @@ -0,0 +1,81 @@ +{ + "type": "FeatureCollection", + "features": [ + { + "type": "Feature", + "properties": {}, + "geometry": { + "coordinates": [ + [ + [ + -191.09608556432593, + -73.84648052492354 + ], + [ + -196.32896148365322, + -76.01486891873441 + ], + [ + -201.3333475059275, + -79.45419249238772 + ], + [ + -195.62738051734928, + -82.20681871096693 + ], + [ + -189.41756278781764, + -84.1511348270979 + ], + [ + -167.0795373869447, + -84.71222453066771 + ], + [ + -154.94650971884352, + -84.47077199426083 + ], + [ + -147.87987772139172, + -83.76551904624706 + ], + [ + -138.89031336546202, + -83.16126208208007 + ], + [ + -139.89760391715487, + -81.81509135152459 + ], + [ + -145.07462138020958, + -75.8454713912678 + ], + [ + -145.2859453568654, + -73.60545521193768 + ], + [ + -155.7529050321871, + -71.77435794070743 + ], + [ + -173.60352774698885, + -71.50777786832501 + ], + [ + -187.08441940129651, + -71.32576778967325 + ], + [ + -191.09608556432593, + -73.84648052492354 + ] + ] + ], + "type": "Polygon" + }, + "id": 0 + } + ] +} \ No newline at end of file diff --git a/notebooks/ICESat-2_Cloud_Access/trouble_shooting_resampling.ipynb b/notebooks/ICESat-2_Cloud_Access/trouble_shooting_resampling.ipynb new file mode 100644 index 0000000..77a2dda --- /dev/null +++ b/notebooks/ICESat-2_Cloud_Access/trouble_shooting_resampling.ipynb @@ -0,0 +1,684 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 49, + "id": "1b46a0e8-7dea-4f81-950f-0c1f714401be", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# To force use of shapely\n", + "import os\n", + "os.environ['USE_PYGEOS'] = '0'\n", + "\n", + "import geopandas as gpd\n", + "from affine import Affine\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# For plotting\n", + "import matplotlib.pyplot as plt\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "8313f3a3-d52a-4751-831e-4b7d15e746cc", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "900000.0" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(upper_left_y - upper_left_x)/20." + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "8d3e363c-c4d6-4190-abd4-b57ffef69215", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Define grid parameters\n", + "\n", + "easegrid2_epsg = 6932\n", + "\n", + "nrow = 20 #2880\n", + "ncol = 20 #2880\n", + "upper_left_x = -9000000.0\n", + "upper_left_y = 9000000.0\n", + "width = 900000.0 #100000.0\n", + "height = -900000.0 #-100000.0\n", + "\n", + "# nrow = 151\n", + "# ncol = 147\n", + "# width = 10000.0\n", + "# height = -10000.0\n", + "# upper_left_x = -1040000.0\n", + "# upper_left_y = -560000.0\n", + "\n", + "map_extent = [upper_left_x, (upper_left_x + (ncol*width)), (upper_left_y + (nrow*height)), upper_left_y]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "964d45c9-b722-4c81-ae9d-34d85273b061", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geometry
0POLYGON ((-191.09609 -73.84648, -196.32896 -76...
\n", + "
" + ], + "text/plain": [ + " geometry\n", + "0 POLYGON ((-191.09609 -73.84648, -196.32896 -76..." + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Read ross_sea.json file\n", + "\n", + "gdf = gpd.read_file('ross_sea.json')\n", + "gdf" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "id": "a72f6427-1203-490f-a3ea-67f4cef71b9a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_grid_index(xy):\n", + " geotransform = (upper_left_x, width, 0., upper_left_y, 0., height)\n", + " fwd = Affine.from_gdal(*geotransform)\n", + " col, row = ~fwd * xy\n", + " return (np.floor(row) * ncol) + np.floor(col)" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "3c52a53c-0c45-4acc-99b8-17d4cf292eaa", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "230.0 1\n", + "230.0 1\n", + "230.0 1\n", + "210.0 1\n", + "210.0 1\n", + "209.0 1\n", + "209.0 1\n", + "209.0 1\n", + "209.0 1\n", + "209.0 1\n", + "228.0 1\n", + "228.0 1\n", + "249.0 1\n", + "249.0 1\n", + "250.0 1\n", + "230.0 1\n", + "dtype: int64" + ] + }, + "execution_count": 104, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get some points from the polygon\n", + "coordinates = []\n", + "for geometry in gdf.to_crs(easegrid2_epsg).geometry:\n", + " coordinates.append(geometry.exterior.coords.xy)\n", + " \n", + "grid_index = [get_grid_index((x, y)) for x, y in zip(*coordinates[0])]\n", + "#x, y = coordinates[0][0], coordinates[0][1]\n", + "grid_points = pd.Series(1, index=grid_index)\n", + "grid_points" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "id": "28ae8fa4-94c8-4a17-a693-03fe2bc081d0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def series_to_grid(series, nrow, ncol):\n", + " \"\"\"Converts a geopandas.Series to a grid using the index\"\"\"\n", + " these_points = series.index < (nrow*ncol - 1)\n", + " \n", + " array_index = series[these_points].index.values.astype(int) # the array index must be an integer\n", + " \n", + " vector = np.full(nrow*ncol, np.nan)\n", + " vector[array_index] = series[these_points]\n", + " return vector.reshape(nrow, ncol)" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "d42de71a-cc2e-41cb-aa1a-635e69376956", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "grid = series_to_grid(grid_points, nrow, ncol)" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "id": "71094f72-7631-45e2-a655-960d600be255", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba871c4446854f77ab08f75dad1d94d4", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnjklEQVR4nO3de3CV9Z348c9BIKhDjqJCEgmIDEpVhkW8AN5lBbGirrai7nJZu7ZurVWpU8XWke4fjbbVdRUva1dBx666bgDZxVbCyEULuqLBtRYR19SwSsrolBzANaA8vz/6I20kCYKQC9/Xa+aZ8Tzn+33yPU8yp2+ec2kuy7IsAABIRpf2XgAAAG1LAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJKZrey+Azmnbtm3xwQcfRM+ePSOXy7X3cgDYRVmWxcaNG6OsrCy6dHE9KDUCkN3ywQcfRHl5eXsvA4Avae3atdG3b9/2XgZtTACyW3r27BkRf3ziKC4ubufVALCrCoVClJeXNz6fkxYByG7Z/rJvcXGxAAToxLyNJ01e9AcASIwA3Efcf//9MWDAgOjRo0cMHz48XnjhhVbHL1myJIYPHx49evSII488Mh588ME2WikA0N4E4D7gqaeeiuuvvz5+8IMfRHV1dZx22mkxbty4qK2tbXZ8TU1NnHfeeXHaaadFdXV13HLLLfHd7343Kisr23jlAEB7yGVZlrX3IvhyTj755Dj++OPjgQceaNz3la98JS666KKoqKjYYfxNN90U8+bNi1WrVjXuu/rqq+P111+P5cuXf6GfWSgUIp/PR319vfcAAnRCnsfT5gpgJ7dly5Z49dVXY8yYMU32jxkzJpYtW9bsnOXLl+8wfuzYsbFixYrYunXrXlsrANAx+BRwJ/fhhx/GZ599Fn369Gmyv0+fPlFXV9fsnLq6umbHf/rpp/Hhhx9GaWnpDnMaGhqioaGh8XahUNgDqwcA2oMrgPuIz3+MP8uyVj/a39z45vZvV1FREfl8vnHzJdAA0HkJwE7u0EMPjf3222+Hq33r16/f4SrfdiUlJc2O79q1axxyyCHNzpk2bVrU19c3bmvXrt0zDwAAaHMCsJPr3r17DB8+PKqqqprsr6qqilGjRjU7Z+TIkTuMX7BgQZxwwgnRrVu3ZucUFRU1fumzL38GgM5NAO4Dpk6dGv/yL/8SjzzySKxatSpuuOGGqK2tjauvvjoi/nj1btKkSY3jr7766njvvfdi6tSpsWrVqnjkkUfi4YcfjhtvvLG9HgIA0IZ8CGQfMGHChPjoo4/iH/7hH2LdunVx3HHHxbPPPhv9+/ePiIh169Y1+U7AAQMGxLPPPhs33HBD3HfffVFWVhb33HNPXHLJJe31EACANuR7ANktvj8KoHPzPJ42LwEDACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgB2chUVFXHiiSdGz549o3fv3nHRRRfF6tWrW52zePHiyOVyO2xvvfVWG60aAGhPArCTW7JkSVxzzTXx0ksvRVVVVXz66acxZsyY2Lx5807nrl69OtatW9e4DRo0qA1WDAC0t67tvQC+nF/96ldNbs+cOTN69+4dr776apx++umtzu3du3ccdNBBe3F1AEBH5ArgPqa+vj4iInr16rXTscOGDYvS0tIYPXp0LFq0qNWxDQ0NUSgUmmwAQOckAPchWZbF1KlT49RTT43jjjuuxXGlpaXx0EMPRWVlZcyePTuOPvroGD16dCxdurTFORUVFZHP5xu38vLyvfEQAIA2kMuyLGvvRbBnXHPNNTF//vx48cUXo2/fvrs0d/z48ZHL5WLevHnN3t/Q0BANDQ2NtwuFQpSXl0d9fX0UFxd/qXUD0PYKhULk83nP44lyBXAfce2118a8efNi0aJFuxx/EREjRoyINWvWtHh/UVFRFBcXN9kAgM7Jh0A6uSzL4tprr405c+bE4sWLY8CAAbt1nOrq6igtLd3DqwMAOiIB2Mldc8018a//+q/xzDPPRM+ePaOuri4iIvL5fOy///4RETFt2rR4//3347HHHouIiLvvvjuOOOKIOPbYY2PLli3x+OOPR2VlZVRWVrbb4wAA2o4A7OQeeOCBiIg488wzm+yfOXNmTJkyJSIi1q1bF7W1tY33bdmyJW688cZ4//33Y//9949jjz025s+fH+edd15bLRsAaEc+BMJu8eZhgM7N83jafAgEACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECsJObPn165HK5JltJSUmrc5YsWRLDhw+PHj16xJFHHhkPPvhgG60WAOgIurb3Avjyjj322Fi4cGHj7f3226/FsTU1NXHeeefFVVddFY8//nj8+te/jm9/+9tx2GGHxSWXXNIWywUA2pkA3Ad07dp1p1f9tnvwwQejX79+cffdd0dExFe+8pVYsWJF/OxnPxOAAJAILwHvA9asWRNlZWUxYMCAuOyyy+Ldd99tcezy5ctjzJgxTfaNHTs2VqxYEVu3bm1xXkNDQxQKhSYbANA5CcBO7uSTT47HHnssnnvuufj5z38edXV1MWrUqPjoo4+aHV9XVxd9+vRpsq9Pnz7x6aefxocfftjiz6moqIh8Pt+4lZeX79HHAQC0HQHYyY0bNy4uueSSGDJkSPzlX/5lzJ8/PyIiHn300Rbn5HK5JrezLGt2/5+bNm1a1NfXN25r167dA6sHANqD9wDuYw488MAYMmRIrFmzptn7S0pKoq6ursm+9evXR9euXeOQQw5p8bhFRUVRVFS0R9cKALQPVwD3MQ0NDbFq1aooLS1t9v6RI0dGVVVVk30LFiyIE044Ibp169YWSwQA2pkA7ORuvPHGWLJkSdTU1MTLL78cX/va16JQKMTkyZMj4o8v3U6aNKlx/NVXXx3vvfdeTJ06NVatWhWPPPJIPPzww3HjjTe210MAANqYl4A7uf/93/+Nyy+/PD788MM47LDDYsSIEfHSSy9F//79IyJi3bp1UVtb2zh+wIAB8eyzz8YNN9wQ9913X5SVlcU999zjK2AAICG5bPsnAGAXFAqFyOfzUV9fH8XFxe29HAB2kefxtHkJGAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxArCTO+KIIyKXy+2wXXPNNc2OX7x4cbPj33rrrTZeOQDQXrq29wL4cl555ZX47LPPGm//5je/iXPOOSe+/vWvtzpv9erVUVxc3Hj7sMMO22trBAA6FgHYyX0+3G6//fYYOHBgnHHGGa3O6927dxx00EF7cWUAQEflJeB9yJYtW+Lxxx+PK6+8MnK5XKtjhw0bFqWlpTF69OhYtGjRTo/d0NAQhUKhyQYAdE4CcB8yd+7c2LBhQ0yZMqXFMaWlpfHQQw9FZWVlzJ49O44++ugYPXp0LF26tNVjV1RURD6fb9zKy8v38OoBgLaSy7Isa+9FsGeMHTs2unfvHv/xH/+xS/PGjx8fuVwu5s2b1+KYhoaGaGhoaLxdKBSivLw86uvrm7yXEIDOoVAoRD6f9zyeKO8B3Ee89957sXDhwpg9e/Yuzx0xYkQ8/vjjrY4pKiqKoqKi3V0eANCBeAl4HzFz5szo3bt3fPWrX93ludXV1VFaWroXVgUAdESuAO4Dtm3bFjNnzozJkydH165Nf6XTpk2L999/Px577LGIiLj77rvjiCOOiGOPPbbxQyOVlZVRWVnZHksHANqBANwHLFy4MGpra+PKK6/c4b5169ZFbW1t4+0tW7bEjTfeGO+//37sv//+ceyxx8b8+fPjvPPOa8slAwDtyIdA2C3ePAzQuXkeT5v3AAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACSma3svAGBPOqfL19t7CTuo2vZ0ey8BoAlXAAEAEiMAAQASIwABABIjAAEAEiMAO7ilS5fG+PHjo6ysLHK5XMydO7fJ/VmWxfTp06OsrCz233//OPPMM+PNN9/c6XErKyvjmGOOiaKiojjmmGNizpw5e+kRAAAdjQDs4DZv3hxDhw6NGTNmNHv/T37yk7jrrrtixowZ8corr0RJSUmcc845sXHjxhaPuXz58pgwYUJMnDgxXn/99Zg4cWJceuml8fLLL++thwEAdCC5LMuy9l4EX0wul4s5c+bERRddFBF/vPpXVlYW119/fdx0000REdHQ0BB9+vSJO+64I771rW81e5wJEyZEoVCIX/7yl437zj333Dj44IPjiSee+EJrKRQKkc/no76+PoqLi7/cA4M9yNfAwBfjeTxtrgB2YjU1NVFXVxdjxoxp3FdUVBRnnHFGLFu2rMV5y5cvbzInImLs2LGtzgEA9h2+CLoTq6uri4iIPn36NNnfp0+feO+991qd19yc7cdrTkNDQzQ0NDTeLhQKu7NkAKADcAVwH5DL5ZrczrJsh31fdk5FRUXk8/nGrby8fPcXDAC0KwHYiZWUlERE7HDlbv369Ttc4fv8vF2dM23atKivr2/c1q5d+yVWDgC0JwHYiQ0YMCBKSkqiqqqqcd+WLVtiyZIlMWrUqBbnjRw5ssmciIgFCxa0OqeoqCiKi4ubbABA5+Q9gB3cpk2b4p133mm8XVNTEytXroxevXpFv3794vrrr48f//jHMWjQoBg0aFD8+Mc/jgMOOCCuuOKKxjmTJk2Kww8/PCoqKiIi4rrrrovTTz897rjjjrjwwgvjmWeeiYULF8aLL77Y5o8PAGh7ArCDW7FiRZx11lmNt6dOnRoREZMnT45Zs2bF97///fi///u/+Pa3vx1/+MMf4uSTT44FCxZEz549G+fU1tZGly5/utg7atSoePLJJ+OHP/xh3HrrrTFw4MB46qmn4uSTT267BwYAtBvfA8hu8f1RdFS+BxC+GM/jafMeQACAxAhAAIDEeA8g0CHsqZdu9+TLrR3x5WSAPcEVQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMR0be8FAEREVG17eo8c55wuX98jxwHYl7kCCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAHYwS1dujTGjx8fZWVlkcvlYu7cuY33bd26NW666aYYMmRIHHjggVFWVhaTJk2KDz74oNVjzpo1K3K53A7bJ598spcfDQDQEQjADm7z5s0xdOjQmDFjxg73ffzxx/Haa6/FrbfeGq+99lrMnj073n777bjgggt2etzi4uJYt25dk61Hjx574yEAAB1M1/ZeAK0bN25cjBs3rtn78vl8VFVVNdl37733xkknnRS1tbXRr1+/Fo+by+WipKRkj64VAOgcXAHcx9TX10cul4uDDjqo1XGbNm2K/v37R9++feP888+P6urqtlkgANDuXAHch3zyySdx8803xxVXXBHFxcUtjhs8eHDMmjUrhgwZEoVCIf7pn/4pTjnllHj99ddj0KBBzc5paGiIhoaGxtuFQmGPrx/2hKptT7f3EgA6PFcA9xFbt26Nyy67LLZt2xb3339/q2NHjBgRf/M3fxNDhw6N0047Lf7t3/4tjjrqqLj33ntbnFNRURH5fL5xKy8v39MPAQBoIwJwH7B169a49NJLo6amJqqqqlq9+tecLl26xIknnhhr1qxpccy0adOivr6+cVu7du2XXTYA0E68BNzJbY+/NWvWxKJFi+KQQw7Z5WNkWRYrV66MIUOGtDimqKgoioqKvsxSAYAOQgB2cJs2bYp33nmn8XZNTU2sXLkyevXqFWVlZfG1r30tXnvttfjP//zP+Oyzz6Kuri4iInr16hXdu3ePiIhJkybF4YcfHhUVFRER8aMf/ShGjBgRgwYNikKhEPfcc0+sXLky7rvvvrZ/gABAmxOAHdyKFSvirLPOarw9derUiIiYPHlyTJ8+PebNmxcREX/xF3/RZN6iRYvizDPPjIiI2tra6NLlT6/2b9iwIb75zW9GXV1d5PP5GDZsWCxdujROOumkvftgAIAOIZdlWdbei6DzKRQKkc/no76+fpffcwhA+/M8njYfAgEASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAOzgli5dGuPHj4+ysrLI5XIxd+7cJvdPmTIlcrlck23EiBE7PW5lZWUcc8wxUVRUFMccc0zMmTNnLz0CAKCjEYAd3ObNm2Po0KExY8aMFsece+65sW7dusbt2WefbfWYy5cvjwkTJsTEiRPj9ddfj4kTJ8all14aL7/88p5ePgDQAeWyLMvaexF8MblcLubMmRMXXXRR474pU6bEhg0bdrgy2JoJEyZEoVCIX/7yl437zj333Dj44IPjiSee+ELHKBQKkc/no76+PoqLi7/wzwagY/A8njZXAPcBixcvjt69e8dRRx0VV111Vaxfv77V8cuXL48xY8Y02Td27NhYtmxZi3MaGhqiUCg02QCAzkkAdnLjxo2LX/ziF/H888/HnXfeGa+88kqcffbZ0dDQ0OKcurq66NOnT5N9ffr0ibq6uhbnVFRURD6fb9zKy8v32GMAANpW1/ZeAF/OhAkTGv/7uOOOixNOOCH69+8f8+fPj4svvrjFeblcrsntLMt22Pfnpk2bFlOnTm28XSgURCAAdFICcB9TWloa/fv3jzVr1rQ4pqSkZIerfevXr9/hquCfKyoqiqKioj22TgCg/XgJeB/z0Ucfxdq1a6O0tLTFMSNHjoyqqqom+xYsWBCjRo3a28sDADoAVwA7uE2bNsU777zTeLumpiZWrlwZvXr1il69esX06dPjkksuidLS0vjd734Xt9xySxx66KHxV3/1V41zJk2aFIcffnhUVFRERMR1110Xp59+etxxxx1x4YUXxjPPPBMLFy6MF198sc0fHwDQ9gRgB7dixYo466yzGm9vfx/e5MmT44EHHog33ngjHnvssdiwYUOUlpbGWWedFU899VT07NmzcU5tbW106fKni72jRo2KJ598Mn74wx/GrbfeGgMHDoynnnoqTj755LZ7YABAu/E9gOwW3x8F0Ll5Hk+b9wACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAdnBLly6N8ePHR1lZWeRyuZg7d26T+3O5XLPbT3/60xaPOWvWrGbnfPLJJ3v50QAAHYEA7OA2b94cQ4cOjRkzZjR7/7p165psjzzySORyubjkkktaPW5xcfEOc3v06LE3HgIA0MF0be8F0Lpx48bFuHHjWry/pKSkye1nnnkmzjrrrDjyyCNbPW4ul9thLgCQBlcA9yG///3vY/78+fGNb3xjp2M3bdoU/fv3j759+8b5558f1dXVrY5vaGiIQqHQZAMAOicBuA959NFHo2fPnnHxxRe3Om7w4MExa9asmDdvXjzxxBPRo0ePOOWUU2LNmjUtzqmoqIh8Pt+4lZeX7+nlAwBtJJdlWdbei+CLyeVyMWfOnLjooouavX/w4MFxzjnnxL333rtLx922bVscf/zxcfrpp8c999zT7JiGhoZoaGhovF0oFKK8vDzq6+ujuLh4l34eAO2vUChEPp/3PJ4o7wHcR7zwwguxevXqeOqpp3Z5bpcuXeLEE09s9QpgUVFRFBUVfZklAgAdhJeA9xEPP/xwDB8+PIYOHbrLc7Msi5UrV0ZpaeleWBkA0NG4AtjBbdq0Kd55553G2zU1NbFy5cro1atX9OvXLyL+eBn/6aefjjvvvLPZY0yaNCkOP/zwqKioiIiIH/3oRzFixIgYNGhQFAqFuOeee2LlypVx33337f0HBAC0OwHYwa1YsSLOOuusxttTp06NiIjJkyfHrFmzIiLiySefjCzL4vLLL2/2GLW1tdGly58u9m7YsCG++c1vRl1dXeTz+Rg2bFgsXbo0TjrppL33QACADsOHQNgt3jwM0Ll5Hk+b9wACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJKZrey+AzinLsoiIKBQK7bwSAHbH9ufv7c/npEUAsls2btwYERHl5eXtvBIAvoyNGzdGPp9v72XQxnKZ9Gc3bNu2LT744IPo2bNn5HK5ZscUCoUoLy+PtWvXRnFxcRuv8MvprGu37rZl3W2vs669I647y7LYuHFjlJWVRZcu3hGWGlcA2S1dunSJvn37fqGxxcXFHeYJb1d11rVbd9uy7rbXWdfe0dbtyl+6JD8AQGIEIABAYgQge01RUVHcdtttUVRU1N5L2WWdde3W3basu+111rV31nWz7/IhEACAxLgCCACQGAEIAJAYAQgAkBgBCACQGAHIl3L//ffHgAEDokePHjF8+PB44YUXWh2/ZMmSGD58ePTo0SOOPPLIePDBB9topX9SUVERJ554YvTs2TN69+4dF110UaxevbrVOYsXL45cLrfD9tZbb7XRqiOmT5++w88vKSlpdU5HON9HHHFEs+fummuuaXZ8e53rpUuXxvjx46OsrCxyuVzMnTu3yf1ZlsX06dOjrKws9t9//zjzzDPjzTff3OlxKysr45hjjomioqI45phjYs6cOW269q1bt8ZNN90UQ4YMiQMPPDDKyspi0qRJ8cEHH7R6zFmzZjX7e/jkk0/aZN0REVOmTNnh548YMWKnx93b53xn627uvOVyufjpT3/a4jHb4nzDnxOA7Lannnoqrr/++vjBD34Q1dXVcdppp8W4ceOitra22fE1NTVx3nnnxWmnnRbV1dVxyy23xHe/+92orKxs03UvWbIkrrnmmnjppZeiqqoqPv300xgzZkxs3rx5p3NXr14d69ata9wGDRrUBiv+k2OPPbbJz3/jjTdaHNtRzvcrr7zSZM1VVVUREfH1r3+91Xltfa43b94cQ4cOjRkzZjR7/09+8pO46667YsaMGfHKK69ESUlJnHPOOY3/v9jNWb58eUyYMCEmTpwYr7/+ekycODEuvfTSePnll9ts7R9//HG89tprceutt8Zrr70Ws2fPjrfffjsuuOCCnR63uLi4ye9g3bp10aNHjzZZ93bnnntuk5//7LPPtnrMtjjnO1v358/ZI488ErlcLi655JJWj7u3zzc0kcFuOumkk7Krr766yb7BgwdnN998c7Pjv//972eDBw9usu9b3/pWNmLEiL22xi9i/fr1WURkS5YsaXHMokWLsojI/vCHP7Tdwj7ntttuy4YOHfqFx3fU833ddddlAwcOzLZt29bs/R3hXEdENmfOnMbb27Zty0pKSrLbb7+9cd8nn3yS5fP57MEHH2zxOJdeeml27rnnNtk3duzY7LLLLtvja97u82tvzn/9139lEZG99957LY6ZOXNmls/n9+ziWtHcuidPnpxdeOGFu3Sctj7nX+R8X3jhhdnZZ5/d6pi2Pt/gCiC7ZcuWLfHqq6/GmDFjmuwfM2ZMLFu2rNk5y5cv32H82LFjY8WKFbF169a9ttadqa+vj4iIXr167XTssGHDorS0NEaPHh2LFi3a20vbwZo1a6KsrCwGDBgQl112Wbz77rstju2I53vLli3x+OOPx5VXXhm5XK7Vse19rv9cTU1N1NXVNTmfRUVFccYZZ7T49x7R8u+gtTltob6+PnK5XBx00EGtjtu0aVP0798/+vbtG+eff35UV1e3zQL/zOLFi6N3795x1FFHxVVXXRXr169vdXxHO+e///3vY/78+fGNb3xjp2M7wvkmHQKQ3fLhhx/GZ599Fn369Gmyv0+fPlFXV9fsnLq6umbHf/rpp/Hhhx/utbW2JsuymDp1apx66qlx3HHHtTiutLQ0HnrooaisrIzZs2fH0UcfHaNHj46lS5e22VpPPvnkeOyxx+K5556Ln//851FXVxejRo2Kjz76qNnxHfF8z507NzZs2BBTpkxpcUxHONeft/1velf+3rfP29U5e9snn3wSN998c1xxxRVRXFzc4rjBgwfHrFmzYt68efHEE09Ejx494pRTTok1a9a02VrHjRsXv/jFL+L555+PO++8M1555ZU4++yzo6GhocU5He2cP/roo9GzZ8+4+OKLWx3XEc43aena3gugc/v8VZwsy1q9stPc+Ob2t5XvfOc78d///d/x4osvtjru6KOPjqOPPrrx9siRI2Pt2rXxs5/9LE4//fS9vcyI+OP/GG43ZMiQGDlyZAwcODAeffTRmDp1arNzOtr5fvjhh2PcuHFRVlbW4piOcK5bsqt/77s7Z2/ZunVrXHbZZbFt27a4//77Wx07YsSIJh+4OOWUU+L444+Pe++9N+655569vdSIiJgwYULjfx933HFxwgknRP/+/WP+/PmtBlVHOuePPPJI/PVf//VO38vXEc43aXEFkN1y6KGHxn777bfDv6rXr1+/w7++tyspKWl2fNeuXeOQQw7Za2ttybXXXhvz5s2LRYsWRd++fXd5/ogRI9r1X+cHHnhgDBkypMU1dLTz/d5778XChQvj7/7u73Z5bnuf6+2ftt6Vv/ft83Z1zt6ydevWuPTSS6OmpiaqqqpavfrXnC5dusSJJ57Yrr+H0tLS6N+/f6tr6Ejn/IUXXojVq1fv1t98Rzjf7NsEILule/fuMXz48MZPdG5XVVUVo0aNanbOyJEjdxi/YMGCOOGEE6Jbt257ba2fl2VZfOc734nZs2fH888/HwMGDNit41RXV0dpaekeXt0X19DQEKtWrWpxDR3lfG83c+bM6N27d3z1q1/d5bntfa4HDBgQJSUlTc7nli1bYsmSJS3+vUe0/Dtobc7esD3+1qxZEwsXLtytfwBkWRYrV65s19/DRx99FGvXrm11DR3lnEf88Yr38OHDY+jQobs8tyOcb/Zx7fXpEzq/J598MuvWrVv28MMPZ7/97W+z66+/PjvwwAOz3/3ud1mWZdnNN9+cTZw4sXH8u+++mx1wwAHZDTfckP32t7/NHn744axbt27Zv//7v7fpuv/+7/8+y+fz2eLFi7N169Y1bh9//HHjmM+v/R//8R+zOXPmZG+//Xb2m9/8Jrv55puziMgqKyvbbN3f+973ssWLF2fvvvtu9tJLL2Xnn39+1rNnzw5/vrMsyz777LOsX79+2U033bTDfR3lXG/cuDGrrq7Oqqurs4jI7rrrrqy6urrxk7K33357ls/ns9mzZ2dvvPFGdvnll2elpaVZoVBoPMbEiRObfAr+17/+dbbffvtlt99+e7Zq1ars9ttvz7p27Zq99NJLbbb2rVu3ZhdccEHWt2/fbOXKlU3+5hsaGlpc+/Tp07Nf/epX2f/8z/9k1dXV2d/+7d9mXbt2zV5++eU2WffGjRuz733ve9myZcuympqabNGiRdnIkSOzww8/vN3P+c7+VrIsy+rr67MDDjgge+CBB5o9Rnucb/hzApAv5b777sv69++fde/ePTv++OObfJXK5MmTszPOOKPJ+MWLF2fDhg3Lunfvnh1xxBEtPjnuTRHR7DZz5szGMZ9f+x133JENHDgw69GjR3bwwQdnp556ajZ//vw2XfeECROy0tLSrFu3bllZWVl28cUXZ2+++WaLa86yjnG+syzLnnvuuSwistWrV+9wX0c519u/fubz2+TJk7Ms++NXwdx2221ZSUlJVlRUlJ1++unZG2+80eQYZ5xxRuP47Z5++uns6KOPzrp165YNHjx4r4Rsa2uvqalp8W9+0aJFLa79+uuvz/r165d17949O+yww7IxY8Zky5Yta7N1f/zxx9mYMWOyww47LOvWrVvWr1+/bPLkyVltbW2TY7THOd/Z30qWZdk///M/Z/vvv3+2YcOGZo/RHucb/lwuy/7/u8IBAEiC9wACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACTm/wFrRxAWpI8ApAAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib widget\n", + "plt.imshow(grid, interpolation='None')" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "id": "f1ef13f8-3bb3-4cd1-ba86-68236182d446", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eea569db7147440092a665fe11213775", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAPoCAYAAABNo9TkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hkZf0+/nsmM+nJpEx6733Te9uGIApYVqSpSxepIigqP6qiIHxUVFBQQJCvVBWUurvJZje9J5uySTa9956ZTDu/P9YdWbbvJjmTmft1XXPBJpOTd5Ip5z7P87wfiSAIAoiIiIiIiIhIVFKxCyAiIiIiIiIiBnQiIiIiIiIik8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyATKxCyDxqNVqaDQascsgIiIiIqINZm1tDVtbW7HLoM9hQLdQarUaISEhGBsbE7sUIiIiIiLaYN7e3ujt7WVINzEM6BZKo9FgbGwMg4ODcHZ2FrsckyUIAo4cOYKenh4kJibC29tb7JJoA83MzKC7uxtTU1Pw9/dHWFgY7O3txS6LaE1otVp8+umn+MIXvgC5XC52OUQXZGVlBd3d3RgaGoJSqURYWBjc3NzELos20NjYGJqamhAaGorw8HBIJBKxSzJpCwsLCAgIgEajYUA3MQzoFs7Z2ZkB/RT0ej0aGxsxPT2NL3zhC1AoFGKXRBtAEARMTk6iq6sLc3NzCA4ORm5uLt+8yOxotVrY29vD2dmZAZ02PWdnZ3h7e0OtVqO7uxutra1wcXFBREQEPDw8GNYsgLOzM7y8vFBVVQUASEpKgpWVlchVEZ07BnSik1Cr1aiurgYAFBQUMJxZAEEQMDo6is7OTqhUKoSGhiI9PR3W1tZil0ZERGfJ1tYWcXFxiIiIQG9vL+rq6mBvb4+IiAj4+PgwqJs5hUKBgoICVFdXo6ysDBkZGTyHo02HAZ3oc+bn51FVVQV3d3defbUABoMBQ0ND6Orqgk6nQ3h4OIKCgiCT8eWRiGizsra2RlRUFMLCwtDf349Dhw6hvb0dkZGR8PPzg1TKjYzMla2tLXJzc9HQ0IADBw4gKyuLs0VpU+EZKNFnjI2Noa6uDuHh4YiMjOSVdjOm1+sxMDCArq4uSKVSREREwN/fnxdkiIjMiEwmQ1hYGIKDgzE0NISOjg60t7cjIiICgYGBfM03U1ZWVkhNTUVnZycOHjyI1NRU9hGiTYMBnQhHpzd3d3fj8OHDSE5Ohp+fn9gl0TrRarXo6+tDd3c3bGxsEBcXB19fX16MISIyY1ZWVggKCkJAQABGRkbQ1dWFjo4OY3hnHwbzI5FIEBUVBUdHR9TW1iI6OhphYWF8vyeTx4BOFs9gMKCpqQnj4+PIzc2Fq6ur2CXROjAYDOjr60NHRwccHByQlJQELy8vvlETEVkQqVQKf39/+Pn5YXx8HJ2dnThy5AiioqIQHBzMqe9myM/PD/b29qiqqsLi4iISExP5dyaTxoBOFk2j0aC6uho6nQ6FhYWws7MTuyRaY4IgYGxsDK2trZBIJEhOTmYwJyKycBKJBN7e3vDy8sL4+DhaW1vR09ODuLg4eHt78z3CzLi6uqKwsBBVVVUoLy9HRkYGm8CSyWJAJ4u1uLiIqqoqODs7Iysri03BzNDs7CxaW1uxuLiI6OhoBAUF8ao5EREZHQvqnp6e6O/vR2NjI5ycnBAXF8cZdWbGzs4OeXl5qK+vx4EDB5CZmQknJyexyyI6ARMJWaSJiQnU1NQgJCQEMTExvFJuZlZWVtDe3o7R0VGEhoYiMzOT6wuJiOiUpFIpQkJC4O/vj66uLpSVlcHHxwcxMTGwt7cXuzxaIzKZDOnp6Whvb8fBgweRlpYGT09PscsiOg4DOlmcnp4etLW1ITExEQEBAWKXQ2tIq9Wiq6sLPT098PHxwfbt23liRUREZ00ulyM2NhbBwcFob29HUVERQkNDERERwQu9ZkIikSA2NhZOTk6orq5GXFwcQkJCxC6LyIgBnSyGwWBAS0sLhoeHkZOTAzc3N7FLojViMBjQ39+Pw4cPw9nZGXl5eXBxcRG7LCIi2qTs7e2RmpqKubk5tLS0YO/evVwqZWYCAgJgb2+P6upqLC4uIj4+nn9bMgkM6GQRtFotampqoFarUVhYyFFVM3GsAVxbWxsAsAEcERGtKRcXF+Tm5hrfa441kuN7jXlwd3dHYWEhKisrUVVVhbS0NM6UINExoJPZW15eRmVlJRwcHJCfn88XXjMxNzeH1tZWLCwscFSDiIjWjUQigY+PD7y8vNDX14eGhgY4OzsjLi6Os7XMgL29PfLz81FXV4cDBw4gKysLDg4OYpdFFowBncza1NQUampqEBAQgLi4OF7tNgMqlQptbW3GBnAZGRm86EJEROtOKpUiNDQUAQEB6OzsRGlpKXx8fBAbG8ttWjc5uVyOzMxMtLa24sCBA0hPT4dSqRS7LLJQDOhktvr7+3Ho0CEkJCQgKChI7HLoArEBHBERmQK5XG5sLNbe3o59+/axkZwZkEgkiI+Ph6OjIyorK3n+SKJhQCez1NXVha6uLmRmZsLDw0PscugCHGsA19HRAUdHR+Tm5nJvWiIiEt2xRnKzs7NobW3Fvn37EBUVxSVXm1xwcDAcHBxQU1MDjUaDiIgIsUsiC8OATmZFEAQcPnwYfX19yM3NhUKhELskOk+CIGB8fBytra0QBAGJiYnw9vbmMgUiIjIprq6uxkZyra2tbCRnBjw8PJCbm4vy8nLodDpER0fzb0kbhgGdzIYgCGhpacHIyAjy8vLg5OQkdkl0nj7bAC4qKgrBwcEcjSAiIpN1qkZy8fHxHCzYpBQKBfLy8lBeXg69Xs9eRrRhGNDJLAiCgKamJkxOTiIvL4/dNzcprVaLtrY2DA4OIiQkhA3giIhoU/l8I7mDBw8iICAAsbGxfD/bhJycnIwhXafTITExkSGd1h2HpGjTMxgMqK+vx/T0NMP5JjY2NoaioiIsLS1h69atiIuL48kMERFtSscayW3duhVLS0soKirC2NiY2GXReXBwcEBeXh6mpqZQX18Pg8Egdklk5hjQaVPT6/WoqanBwsICcnNzuc3JJrS6uora2lrU19cjOjoaOTk5cHR0FLssIiKiC+bo6IicnBxER0ejvr4etbW1WF1dFbssOkd2dnbIy8vDwsICamtrodfrxS6JzBgDOm1aOp0O1dXVUKvVyM3Nha2trdgl0TkQBAEDAwPYt28fDAYDtm/fjqCgIE4dIyIisyKRSBAUFITt27fDYDBg3759GBgYgCAIYpdG58DW1ha5ublQqVSorq6GTqcTuyQyUwzotClptVpUVlZCr9cjJycH1tbWYpdE52B5eRkVFRVoa2tDUlISMjIyeIGFiIjMmq2tLTIyMpCUlIS2tjZUVFRgZWVF7LLoHFhbWyMnJwd6vR6VlZXQarVil0RmiAGdNh2NRoPy8nJYWVkhKyuL65Q3EUEQ0N3djeLiYtjb22PHjh3w9fUVuywiIqIN4+vrix07dsDe3h5FRUXo7u7maPomIpfLkZWVBalUivLycmg0GrFLIjPDgE6bilqtRllZmfEqtEzGjQg2i/n5eRw4cAC9vb3IyspCUlISL64QEZFFksvlSEpKQlZWFnp7e3HgwAEsLCyIXRadJZlMhszMTNja2qKsrIx9BWhNMaDTpqFSqVBWVgZnZ2ekp6fDyspK7JLoLOj1erS3t+PgwYPw8PDAtm3boFQqxS6LiIhIdEql0vi+eODAAbS3t7MB2SZhZWWF9PR0ODs7o7S0FCqVSuySyEwwoNOmsLy8jNLSUri7uyMlJQVSKR+6m8H09DT279+P8fFx5OfnIzY2lhdWiIiIPsPKygpxcXHIy8vD+Pg49u/fj+npabHLorMglUqRkpICd3d3lJaWYnl5WeySyAxIBC56sUgLCwtQKBSYn5+Hs7Oz2OWc1uLiIsrLy+Hr64v4+Hh2+d4EtFot2traMDg4iOjoaISGhvKiCtF5EgQBOp0OWq3WeNNoNNBqtdDpdMb/12q15zTyZjAYMD4+Di8vr7N6flpZWUEul8Pa2hpyuRwymey4fx+7yWQyvk4TnSeDwYDu7m50dHQgICAAsbGxXA62CQiCgJaWFoyMjCAnJwdOTk5il3RGmykLWBoGdAu1WZ6U8/PzKC8vR3BwMKKjo3nStwmMjY2hqakJjo6OSEpKgoODg9glEZkEQRCwurqKlZWV40L12dyO+WwQPtntXPpyHFt+EhMTc1YzWz5/keBC6vzszdraGvb29rCxseFrPNF/LS0toampCUtLS0hMTIS3t7fYJdEZCIKAw4cPo6+vDzk5OVAoFGKXdFqbJQtYInbYIpM1MzODyspKhIeHIzIyUuxy6AzUajVaWlowMTGBuLg4BAYG8mSbLIogCNBqtVheXoZKpcLy8jJWVlaOuxkMBtjY2MDGxuaEoGpnZwdnZ+fThu+1fE5ptVq0t7cjJCRkTUboTjbSf7Lb8vLycf9eXV3F6uoqpFIp7O3tj7s5ODjAzs4ODg4OkMvlfE0hi+Ho6IicnBwMDAygvr4enp6eSEhIgI2Njdil0SlIJBLjBc+ysjJkZWXBzc1N7LJoE2JAJ5M0NTWFqqoqxMTEIDQ0VOxy6DQEQcDg4CBaWlrg4eGB7du3c09zMltarfaE0P3Zm06nM44IH7t5e3sf929z7cMgkUiMFxPOlV6vP+F3OTc3h5GREeOMA5lMdkKA/+yN04DJ3EgkEgQFBcHLywvNzc3Yt28f4uPjERAQwItVJiwyMhIymQwVFRXIzMxkY1w6ZwzoZHLGx8dRU1ODhIQEBAUFiV0Oncby8jKampqwuLiI5ORk+Pj4iF0S0QXTarVYWFjAwsICVlZWjhsJ12q1JwRFpVJ53Ggvg+K5s7KygpOT0ynXbWq12hNmJUxNTR13YUQulx838m5vbw9nZ2fjrASizerY1rIjIyNobm7G0NAQEhMTuYTMhIWGhsLKygqVlZVIT0+Hl5eX2CXRJsKATiZlZGQE9fX1SE5Ohp+fn9jl0CkIgoCenh60t7cjICAA6enpPAGmTWl1dRXz8/OYn5/H3Nwc5ufnsby8DBsbGygUCjg4OMDNzQ3+/v7HjdRy9GpjHRuZP9k6yWNLCz47+r68vIyxsTF0dHRgdXUVDg4OUCgUcHFxgUKhgEKh4FRh2nR8fX3h4eGB1tZWFBcXG2cZ8vXINAUFBcHKygo1NTVISUmBr6+v2CXRJsGATiZjcHAQTU1NSEtLYzMUE7a6uor6+nosLS0hKyuLU7doUxAEASqVyhjGjwVytVptDG8KhQKBgYFQKBRcprGJSCQSWFtbw9raGi4uLid8Xq1WH/c37+/vx/LyMmxtbY8L7AqFAnZ2dgw7ZNLkcjmSkpLg7++PhoYGTExMICUlhRecTJS/vz+srKxQV1cHvV6PgIAAsUuiTYABnUxCX18fWlpakJGRAU9PT7HLoVOYnJxEXV0d3N3dsXXrVo6ak0kSBAFLS0vHhfH5+XlotVo4OjrCxcUFSqUSYWFhUCgUfBybOVtbW9ja2h43xVSr1R4X2kdGRrC0tAS5XH5cYFcoFHB0dGRoJ5OjVCqxdetWNDY2ori4GKmpqfDw8BC7LDoJHx8fZGRkoLq6Gnq9HsHBwWKXRCaOAZ1E193djcOHDyM7Oxvu7u5il0MnYTAY0NHRge7ubsTHxyMoKIgnrGQSDAYDFhcXjdPTj90EQYCzszNcXFzg6+uLmJgYODs7m22DNjo3crkcSqXyuBlAer0eCwsLxsdQd3c3FhYWIJFIjgvsLi4ucHJyOqu944nWk1wuR1paGvr7+1FVVYWwsDBERUXxsWmCPD09kZ2djcrKSuj1eoSFhYldEpkwBnQSVWdnJ7q7u5Gbm3vSqYkkvpWVFdTV1UGr1aKgoIB7ZZKoBEHAwsICpqamjDcAxvAUHBxsHPXkSSqdCysrK7i6usLV1dX4MYPBYJyNMTc3Z9yxAoAx4Ht4eMDJyYkXLUkUEokEwcHBcHNzQ21tLaamppCWlgY7OzuxS6PPcXd3R05ODioqKqDX67mFMJ0SAzqJpre3F0eOHEFubi4UCoXY5dBJjI6OoqGhAb6+voiPj4dMxpcM2liCIGB5eRlTU1OYnJzE1NQU9Ho93N3d4eHhgaioKCgUCoYjWhdSqdTYCf7Y2lFBEDA/P4+pqSlMTEygvb0dVlZWxrCuVCrh4ODAxyRtKGdnZxQUFODQoUMoLi7mziomytXVFbm5uSgrK4NcLkdISIjYJZEJ4tk2iWJoaAitra3IyclhODdBer0era2tGBwcRGJiIvz9/cUuiSyISqU6LpCvrq7C1dUVHh4eCA0NhaurK0fHSTQSiQQuLi5wcXFBeHg4DAYDZmdnMTU1haGhIRw6dAg2NjbHBXaOZtJGkMlkSE5OhoeHB+rr6xEQEIC4uDgu7TExCoUCWVlZKC8vh1wu5zkWnYABnTbc+Pg4GhsbkZGRATc3N7HLoc9ZWlpCbW0tJBIJtm7dyn1Wad1pNJrjAvnS0hJcXFzg4eGBpKQkuLm5cfYGmSypVAp3d3e4u7sjKioKOp0OMzMzmJqaQk9PD+rr6+Ho6HhcYLe2tha7bDJj/v7+cHV1RW1tLQ4ePIi0tDQ4OjqKXRZ9hpubG9LT01FTUwO5XM590uk4POOhDTUzM4OamhokJyezW7sJOrbVXXBwMGJjYzlKSetCq9ViZmbGGMjn5+fh5OQEDw8PxMbGQqlUsrM6bVoymQyenp7G9zitVmvsl3D48GEsLi5CoVAYA7u7uzsvQNGac3BwQH5+Ptra2lBSUoItW7Zwiy8T4+XlhaSkJNTU1CAnJ4eDVmTEdwTaMPPz86isrERcXBz8/PzELoc+Q6fTobm5GePj49yHntbcsTW7o6OjmJqawuzsLOzs7ODh4YHw8HAolUruO05mSy6Xw8fHx7geWK1WGwN7c3MzVCoVXF1doVQq4ePjw54KtGakUini4+OhVCrR0NCAyclJbNmyhReETIi/vz+0Wi0qKyuRl5fHRrwEAJAIgiCIXQRtvIWFBSgUCszPz2/Ii8Hy8jIOHjyIkJAQREVFrfv3o7M3Pz+P2tpa2NjYIDU1lWslaU0IgoDZ2VmMjo5iZGQEGo0GXl5e8PDwgIeHB+zt7cUu0eJptVp8+OGHuPTSSzljQUQrKyuYnJzE5OQkxsbGYGNjA19fX/j6+sLFxYVhndaESqVCXV0dVldXkZaWxv4/JqajowO9vb3Iz8/fsKWFG50F6OzxEhqtO7VajfLycvj5+XFLCRMiCAJ6e3vR1taG8PBwREVF8USQLoggCJiZmcHIyAhGR0eh1Wrh7e2NhIQEeHh4sFER0UnY29sjKCgIQUFB0Ov1mJiYwMjIiLGB1LGw7urqytdoOm92dnbIzc1FR0cHDh48iLi4OAQHB/MxZSIiIyOh0WhQUVGBvLw8ziqzcAzotK60Wi0qKirg5uaG+Ph4vhGYCI1Gg8bGRszOziIrKwtKpVLskmiTEgQB09PTxlCu1+vh4+ODxMREKJVKhnKic2BlZWWcDq/X6zE1NYWRkRFUVlYaP+fr6wt3d3e+n9I5k0gkiI6OhlKpRF1dHSYnJ5GUlMSmhSZAIpEgPj7+uJDOmU2Wi1PcLdRGTGvR6XSoqKiAtbU10tPT2XDMRMzMzKC2thbOzs5ITk6GjY2N2CXRJmMwGI4L5YIgGIODUqnkc32T4BT3zcNgMBjD+ujoKCQSyXFhnc85Olerq6toaGjAwsIC0tLS2KDMRBgMBlRXV0Or1SI7O3td+wVwirvpYkC3UOv9pDz2AqPT6ZCdnc1RNBMgCAK6urrQ2dmJmJgYhIaGcgSGzhoDgvlhQN+ceIGM1oogCOju7sbhw4cRGRmJiIgInheYAL1ej4qKCshkMmRkZKzbc5oB3XQxoFuo9XxSCoKA+vp6LC4uIjc3lyd+JkCtVqO+vh4rKytITU2Fq6ur2CXRJmAwGDA5OWkMApxia14Y0De/zy4xGRkZgcFgMD5HPTw8GNbprMzOzqK2thYODg5ISUnh+mcToNVqUVpaCmdnZ6SkpKzL+y0DuuliQLdQ6/WkFAQBhw4dwsTEBJtcmIjJyUnU1dVBqVQiMTGRJ+J0WoIgYGJiAkNDQxgbG4NMJjM2qXJzc2MoNyMM6Obls00aR0ZGoNPp4OPjAz8/P3h6evK5S6el1WrR1NSEqakppKamwsPDQ+ySLJ5arUZpaSk8PT2RkJCw5s9hBnTTxSZxtKY6OjowOjqK/Px8hnMT0Nvbi9bWViQkJCAwMJAnaHRKKpUKAwMD6O/vh8FggL+/P7Kzs9k5mmiTkEgkcHd3h7u7O+Lj4zE7O4uRkRE0NDRAKpUaO8XzvZlORi6XIzU1Ff39/aiqqkJcXBxCQkLELsui2draIjs7G6WlpbCxseE2xRaEAZ3WTE9PD3p6epCXl8c9jkVmMBjQ0tKC4eFhZGdnw93dXeySyAQdGy3v7+/H2NgYPDw8EB8fD29vb06NJdrEJBIJ3Nzc4ObmhtjYWIyNjaGvrw8dHR3w9vZGcHAwPDw8ePGNjiORSBAcHAwnJydUV1djcXER8fHxfD8QkYODgzGky+VyhIaGil0SbQAGdFoTg4ODaGtrQ05ODqfJiEyr1aK2thYqlQqFhYW8WEInUKvV6O/vx8DAAPR6PQIDA7Fjxw44ODiIXRoRrTGpVGpcprK8vIz+/n7U19fDysoKQUFBCAwM5Kg6Hcfd3R0FBQWoqqpCVVUV0tLSuAxGRM7OzsjKykJ5eTmsra3h7+8vdkm0zhjQ6YKNj4+jqakJGRkZ3KZDZMvLy6isrISDgwPy8/P5hkpGgiBgcnISfX19GBsbg1KpRFxcHEfLiSyIg4MDYmNjER0dbRxVP3z4MEfV6QTHziNqa2tx4MABZGVl8SKuiNzc3JCRkYHq6mrI5XJ4eXmJXRKtIwZ0uiDT09OoqalBcnIyPD09xS7Hok1NTaGmpgb+/v6Ij4/nSRYBODpafmxtOUfLiQjgqDqdHblcjszMTLS2tuLAgQPIyMjgkjkReXp6Ijk5GTU1NVy+aOYY0Om8zc/Po6qqCvHx8fDz8xO7HIvW39+PQ4cOIT4+HsHBwWKXQyLjaDkRna2Tjap3dHTAy8uLo+oEqVSKhIQEODk5oaKiAlu2bEFgYKDYZVksPz8/aDQaVFVVITc3FwqFQuySaB0woNN5WV5eRkVFBcLDwxkIRSQIAtra2tDf34/MzExui2LhOFpOROeLo+p0OsHBwXBwcEBNTQ0WFxcRGxvLCzciCQkJgUajQUVFBfLz8/keb4YY0OmcqdVqlJeXw9/fHxEREWKXY7F0Oh3q6uqwuLiIgoICODo6il0SieCzo+Xj4+Nwd3fnaDkRXRCOqtPJeHh4oKCgAJWVlVhaWkJqaipkMkYJMURGRkKj0aC8vJxbG5shPqvonBx7MTgWAvgGLY6VlRVUVVXB2toaBQUFsLa2Frsk2mAGgwFDQ0Po6uqCVqtFYGAg4uLieCWdiNbMqUbV5XI5IiIi4O/vzwuBFsbR0REFBQWoqanBwYMHkZmZyd1iRCCRSBAfHw+tVouKigrk5ubyXNCMSARBEMQugjbewsICFAoF5ufnz3pbNJ1Oh4qKClhbWyM9PZ1vyiKZmZlBdXU1fHx8kJCQwL+DhdHr9ejv78eRI0cglUoRERGBgIAAPg7onGm1Wnz44Ye49NJLueMDnTWDwYDBwUF0dXXBYDAgPDwcQUFBsLKyErs02kAGgwHNzc0YGxvjLj4iMhgMqKmpgUajQXZ29jnNaDifLEAbgyPodFaOvQBIJBKkpaUxDIhkaGgIjY2NiImJQWhoKGcwWBCtVove3l709PTA1tYWcXFx8PX15WOAiDaUVCo1rkkfGRlBZ2cnOjs7ERYWhuDgYF7ssRBSqRSJiYlwcnJCeXk5kpKSuD+3CKRSKdLS0lBRUYHa2lpkZGTwHN0MMKDTWWlra4NKpUJ+fj6vkotAEAR0dHSgu7sb6enp3P/SgqyurqKnpwc9PT1wdnY2bmnIYE5EYpJIJPDz84Ovry8mJiaMQT00NBShoaGwsbERu0RaZxKJBGFhYXB0dERtbS2WlpYQFRXF96cNZmVlhczMTBw4cABtbW2Ij48XuyS6QAzodEYDAwMYGBhAQUEBr4yLQKfToaGhAXNzc8jPz+c0JAuhUqlw5MgR9Pf3w93dHVlZWdzzlIhMjkQigZeXF7y8vDA9PY3Ozk7s2bMHQUFBCA8Ph52dndgl0jrz8vJCfn4+qqqqsLi4iJSUFA7mbLBje9YfOHAACoUCAQEBYpdEF4BzIOi0Zmdn0dzcjLS0NHYJF4FarUZZWRnUajUKCgoYzi3A0tISGhoasHfvXqjVauTl5SE7O5vhnIhMnru7O7Kzs5GXlwe1Wo29e/eioaEBS0tLYpdG68zZ2RkFBQVQq9UoLS2FWq0WuySL4+joiLS0NDQ1NWF2dlbscugCMKDTKanValRXVyM6Ohqenp5il2Nx5ubmUFJSAicnJ+Tk5HC6oJmbn59HTU0NiouLAQBbt25Feno6XFxcxC2MiOgcubi4ID09HVu3boUgCCguLkZNTQ3m5+fFLo3WkY2NDXJycuDk5ISSkhLMzc2JXZLF8fT0RHR0NKqrq3mRZBNjQKeT0uv1qK6uhlKpRFhYmNjlWJyRkRGUlpYiNDQUycnJnCpmxqanp1FZWYmDBw/CxsYGO3bsQHJyMpycnMQujYjogjg5OSElJQU7duyAjY0NDh48iMrKSkxPT4tdGq0TKysrJCcnIyQkBKWlpRgdHRW7JIsTFhYGpVKJ6upq6PV6scuh88A16HQCQRDQ3NwMQRCQlJTEZh8bSBAEdHV1obOzE6mpqfDx8RG7JFoHgiBgYmICXV1dmJ+fR0hICJKTkzlLgojMkr29PbZs2YLIyEj09PSgsrISCoUCkZGR8PDw4HmGmZFIJIiMjISjoyPq6uoQFRWF8PBw/p03iEQiQVJSEkpLS9Hc3Mxz+U2IAZ1O0Nvbi/HxcRQWFnLkdgMduzAyNjaGvLw8Tm02Q4IgYHR0FJ2dnVCpVAgLC0NmZiabLxKRRbC1tUVsbCwiIiLQ29uLuro62NnZITIyEj4+PgwRZsbX1xf29vaoqqqCSqVCQkIC/8YbxMrKChkZGSgpKUFvby9CQ0PFLonOAQM6HWdychJtbW3Iyclh59UNZDAY0NjYiJmZGeTn58Pe3l7skmiNzczMoKWlBSsrK4iMjERgYCBkMr4EE5HlkcvliIyMRGhoKPr7+9Hc3IwjR44gPj4ebm5uYpdHa8jFxQX5+fkoLy9HQ0MDkpOTGdI3iJ2dHTIyMlBeXg4nJyd4eHiIXRKdJa5BJ6Pl5WXU1tYiISGBb5AbyGAwoK6uDnNzc8jLy2M4NzPLy8uoqalBeXk5PD09sXPnToSGhjKcE5HFk8lkCAsLw86dO+Hp6Yny8nLU1NRgeXlZ7NJoDdnb2yMvLw9zc3Oora2FwWAQuySL4ebmhoSEBNTW1vJ5tYkwoBOAo3ttV1dXw8/PD0FBQWKXYzGONeNbXl5Gbm4ubG1txS6J1ohGo0FLSwuKioogk8mwc+dOREdHM5gTEX2OTCZDdHQ0duzYAZlMhqKiIrS0tECj0YhdGq0RW1tb5ObmYnl5mc3LNlhQUBD8/PxQXV0NnU4ndjl0FhjQCYIgoL6+HtbW1oiPjxe7HIuh0+lQWVkJrVaL3NxcNggzEwaDAd3d3di7dy8WFhZQUFCA5ORkXnwhIjoDOzs7JCcno6CgAAsLC9i7dy+6u7s54mombGxskJubC41Gg8rKSobFDRQfHw9ra2vU19dDEASxy6EzYEAndHZ2Yn5+HmlpaZBK+ZDYCFqtFhUVFQCA7OxsNgkzA4IgYGRkBEVFRejv70daWhpycnKgUCjELo2IaFNRKBTIyclBamoq+vv7UVRUhJGREQYLMyCXy5GTkwMAqKiogFarFbkiyyCVSpGWloa5uTl0dnaKXQ6dAedaWrixsTF0dXUhPz+fI7gbZHV1FRUVFbC1tUV6ejo75ZuBmZkZtLa2Ynl5GTExMQgMDGQTHCKiC+Tl5QUPDw8MDg6iubkZ3d3diIuLY5+cTU4mkyErKws1NTUoKytDdnY2z0E3gI2NDTIzM3Hw4EE4OzvDwcFB7JLoFDhcauGampqQkpLCUb4NolarUVZWBgcHB2RkZDCcb3LHGiuWl5fDw8MDO3fuRFBQEMM5EdEakUqlCAoKws6dO+Hh4YHy8nI2vDIDx7YBc3BwQFlZGdRqtdglWQSFQoHk5GTU19djYWFB7HLoFBjQLVxwcDB8fX3FLsMirKysoLS0FC4uLlxOsMlpNBq0traiqKgIVlZW2LFjBxvAERGto882krOyskJxcTFaW1s5RXoTk0qlSE1NhYuLC0pLS7GysiJ2SRbBz88PoaGhqKurE7sUOgUmBAsXGRkpdgkWYWlpCaWlpfD09OQeoJvYZxvAzc/PGxvA2dnZiV0aEZFFONZILj8/H3Nzc9izZw8byW1iUqkUycnJ8PDwQGlpKZaWlsQuySJER0fDyclJ7DLoFDjcY+EYFNffwsICysvLERAQgNjYWP7ONyFBEDA6Ooq2tjbjFX9PT0/+LYmIRHKskdzExARaW1vR29uL2NhY+Pj48LV5k5FIJNiyZQva2tpQWlqKnJwcODs7i12WWZNIJEhMTBS7DDoFBnSidTQ3N4fy8nKEhYUhMjKSJw2b0NzcHFpaWrC0tITo6GgEBgZyeQIRkQmQSCTGRnIDAwNobm5GT08P4uPj4eLiInZ5dA4kEgliY2Mhk8mMjeP4N1xf3EHIdDGgE62T6elpVFZWIjo6GmFhYWKXQ+dIp9Ph8OHD6OvrQ1hYGDIzM/lmRkRkgqRSKYKDg+Hn54euri6UlpYiJCQEUVFR7A2yiUgkEkRFRcHKygplZWXIysqCu7u72GURbTi+ahGtg4mJCVRXVyM+Ph7BwcFil0PnaHJyEo2NjbCxsUFBQQGn2hERbQJyuRyxsbHw9/dHY2MjiouLkZSUBA8PD7FLo3MQHh4OmUyGiooKZGZm8u9HFocBnWiNjY2Noba2FomJiQgICBC7HDoHx7qzj4yMICYmBiEhIVyWQES0yTg7OyM/Px+9vb2orq6Gr68v4uLiYG1tLXZpdJaCg4NhZWWFqqoqpKWlwdvbW+ySiDYMF1ISraHh4WHU1tYiJSWF4XwTEQQBw8PDKCoqwurqKrZt24bQ0FCGcyKiTUoikSA0NBTbtm2DWq1GUVERRkZGIAiC2KXRWQoICEBKSgpqa2sxPDwsdjlEG4Yj6ERrpL+/H4cOHUJ6ejq8vLzELofOkkqlQnNzM2ZmZpCQkAA/Pz8GcyIiM2Fvb4+srCwMDw+jqakJg4OD2LJlC7fH3CR8fX1hZWWFmpoa6HQ6BAUFiV0S0brjCDrRGujp6UFLSwuysrIYzjcJQRDQ19eHoqIiyGQybN++Hf7+/gznRERmRiKRwN/fH9u3b4dMJkNRURH6+vo4mr5JeHl5ISsrCy0tLejp6RG7HKJ1xxF0ogvU1dWFrq4uZGdnw83NTexy6CwsLi6iqakJKysrSEtL40UVIiILYGNjg9TUVIyPj6OpqQlDQ0NISkqCo6Oj2KXRGSiVSmRnZ6OyshJ6vR4RERFil0S0bjiCTnQBent70dXVhdzcXIbzTcBgMKCzsxMlJSVQKBTYvn07wzkRkYXx8vLC9u3boVAosH//fnR2dsJgMIhdFp2Bm5sbcnNz0dXVhd7eXrHLIVo3HEEnOk9DQ0NobW1FTk4OFAqF2OXQGczOzqKxsRGCICAnJ4cXVIiILJhMJjP2HWlsbMTw8DCSkpLg6uoqdml0GgqFApmZmaioqIC1tTX8/PzELolozTGgE52H8fFxNDY2Ij09nUHPxOl0Ohw+fBh9fX2IiIhAREQEpFJOHiIioqOjslu3bkVXVxfKysoQHByM6OhoyGQ8RTZV7u7uSE9PR01NDeRyOTw9PcUuiWhN8SyV6BzNzMygpqYGSUlJnB5t4iYmJlBcXIzZ2VkUFBQgKiqK4ZyIiI4jlUoRFRWFgoICzMzMoLi4GBMTE2KXRafh5eWFpKQkVFdXY2ZmRuxyiNYULw8SnYOFhQVUVlYiLi4O/v7+p7zf8vIyysrK0N3djZaWFtx4441ISUnZwEotm0ajQUtLC0ZHRxETE4OQkBB2ZyciotNydnZGfn4+ent7UV1dDT8/P8TFxcHa2lrs0ugk/P39odVqUVlZiby8PDg7O4tdEtGaYEAnOkvLy8soLy9HWFgYQkJCTnm/d999F9/73veOu/r+3HPPYXV1lW/yG2B6ehq1tbVwdnbGtm3bYG9vL3ZJRES0SUgkEoSGhsLb2xtNTU0oLi5GWloa3N3dxS6NTiIkJAQajQbl5eXIz8+Hg4OD2CURXTDO9SQ6C2q1GhUVFfDz80NkZOQp71dSUoJdu3ZBq9UYP3brrbfinXfeYThfZ4IgoKOjAxUVFYiIiEBWVhbDORERnRd7e3tkZWUhIiICFRUV6Ojo4L7pJioyMhJ+fn6oqKiAWq0WuxyiC8YRdKIz0Gq1qKiogKurK+Lj4085VXpqagrbtm0DAMzOziEiIhxFRcWnnQpPa0OtVqOurg4qlQp5eXlwcXERuyQiItrkjo2mu7m5oba2FlNTU0hNTYWtra3YpdFnSCQSxMfHQ6PRoKKiAnl5eZDL5WKXRXTeOIJOdBo6nQ6VlZWws7NDcnLyadcxu7m5ITk5GQDwm9/8BtXVNQznG2B8fBzFxcWwtbVFYWEhwzkREa0pFxcXFBYWwtbWFsXFxRgfHxe7JPociUSC5ORk2NnZobKyEjqdTuySiM4bR9CJTsFgMKC2thYSiQTp6eln7P4tlUpRUVGB7u5uxMTEbFCVlstgMKC9vR29vb3YsmULAgMDxS6JiIjMlFwuR0pKCgYHB1FTU4OQkBDExMRwZxATIpVKkZaWhoqKCtTW1iIjI4N/H9qU+KglOglBENDQ0ACVSoXMzExYWVmd1ddZW1sznG+A5eVlHDx4EBMTEygsLGQ4JyKidSeRSBAYGIjCwkJMTEygtLQUy8vLYpdFnyGTyZCVlQWVSoWGhgb2DaBNiQGd6HMEQcChQ4cwOzuL7OxsrmMyMcPDw9i/fz9cXV1RUFAAJycnsUsiIiIL4uTkhIKCAri4uGD//v0YGRkRuyT6DLlcjuzsbMzOzqKlpYUhnTYdTnEn+pzOzk6Mjo4iLy+PjWBMiF6vR0tLC4aHh5GcnAxfX1+xSyISjcFggEajgVarhVarhU6nO+HfZ6LX6wEAhw8fNs4SUqvVGB0dhZubGxQKBYCjI1JyuRxyuRzW1tYn/JtTSMkSWVlZYcuWLVAqlWhsbMTk5CTi4+PPesYdrS9bW1tkZ2fj4MGDsLa2RlRUlNglEZ01BnSiz+jp6UF3dzfy8vK4l6YJWVhYQG1tLeRyObZu3crt08isGAwGrKysYGVlBSqVyhiyT3bTaDTQ6XTGcC2VSo1h+fMh+my+L3C0GabBYMDs7CzeeecdY7i/6qqr4OrqCpVKdVz4P3Y79vVWVlaQyWSwtrY+oZbP3uzs7GBvbw97e3uGejIbvr6+cHFxQW1tLQ4cOIC0tDTO7DIRDg4OyMnJQWlpKaytrRESEiJ2SURnhQGd6L+GhobQ1taGnJwcODs7i10O4ehyg4GBARw6dAihoaGIjo7miT1tOgaDAWq1GisrK1heXoZKpcLy8rIxlKvVakilUtjZ2cHOzu64oGtra3va0Hsho3VarRYDAwOIj4+HXC7H448/jr/+9RW8996r2LHj68jPz8fWrVtP+fV6vf60FxO0Wi1WV1extLQEjUYDlUoFlUoFg8EAW1tbY1h3cHCAnZ0dHBwcYG9vD1tbWz7PaVOxt7dHXl4eDh8+jJKSEiQkJCAwMPC0O7/QxnB2dkZWVhbKy8shl8u5uw5tCgzoRDi6VVdjYyMyMjLg5uYmdjmEo+GhqakJU1NTyMjIgKenp9glEZ2UIAhYXV09LnR/9qZSqQDguBFkR0dHeHp6Gv9ta2sr+sm8nZ0dBEFAe3snACAuLu6097eysoKVldU5LQUSBMF4seKzt+np6VP+rj57c3BwgI2Njei/K6LPk0qliI2NhVKpRH19PaamprBlyxb2sTEBbm5uSE9PR01NDeRyOby8vMQuiei0JAI7J1ikhYUFKBQKzM/PW/xo8fT0NCoqKpCcnAw/Pz+xyyEAs7OzqKurg729PVJSUtgLgEyGIAhYXl7G/Pw85ubmMD8/j/n5eWg0muNGhT8fKtdjVFir1eL999/H4OAgrrnmmnO+iKXVavHhhx/i0ksvhVwuR0NDA1JSUgAAl112Gd5///1zOt7HH3+M999/H1u2bMENN9wAa2vrc/p64OhsA5VKddILHcdmG1hbW0OhUEChUMDFxQUKhQIODg4M7WQy1Go16uvrsbKygrS0NLi4uIhdEuHoTMnGxkbk5ORwMAbMAqaMI+hk0ebn51FVVYW4uDiGcxMgCAJ6enrQ3t6OqKgohIeH86SbRGMwGLC4uHhcEJ+fn4cgCHB2doZCoYCPjw+io6Ph7Ox8Vuu+18ri4iK2bduGuro6SKVSvPLKy2hsbLqgYyYnJyMsLAzd3d246qqrzulr29ra8MUvfhF+fj54/vnnMTU1hQcffPCca5BKpXBwcDhlDxCdToeFhQXj3+LIkSNYWFiARCIxhvZjwd3JyYlT5UkUxxqUdXV1obS0FDExMQgNDeX7mcj8/f2h1WpRWVmJvLw8hlIyWQzoZLGWl5dRUVGBsLAwNg4xATqdDnV1dZifn+fVbdpwnw1+xwL54uIipFKpMfQFBQVBoVCYRPB7/vnncejQIXz66Vvo7x/CzTffi6mpKSiVygs67u23347HHnsMF1100Uk/r9Pp8Mtf/hLvvvsu0tPT8cILLwA4OhIDAH//+x/xs5/9GlVVVRdUx8kMDAzg+eefx7333nvca/axCynHQvvg4CBaWlpgMBjg5ORkHGVXKBQbfiGFLJdEIkFkZCSUSiVqa2sxNTWF1NRUPv5EFhISAo1Gg/LycuTn57MhMJkkTnG3UJY+rWV1dRUHDhyAt7c34uPjeVVbZCsrK6iqqoK1tTXS09PPa2os0blYWVnB5OQkpqamMDc3h6WlJePU6c8Guo2YOn3kyBG0tbXhsssuO6vvpdPpEBYWhtzcVDzzzGP47W9fwJNP/g7d3d0IDQ096+/7+SnuxwiCcNI6RkdH8Y1v7EJFRSUMBgMkEgk0Gg1kMhmmp6fh7++P73//FvzjHx8iMzMHf/3rX8+6lmOGhoZga2t7woUGtVqN3Nxc1NfXw9fXF2+88Qby8/NPeZzPLkX47EUXjUYDR0dHuLi4QKlUwsPD45x2hRAEAcXFxWhubsbs7CyCgoKwa9cui3wfpbOn0WhQU1MDjUaDzMxM7kQiMkEQ0NLSgrGxMRQUFMDGxkbskkRh6VnAlPEyHlkcg8GAmpoauLi4MJybgJmZGVRXV8PHxwcJCQmij0ySeVpdXcXU1JQxlK+srMDFxQUeHh7w8/ODQqHY8EZthw8fxje+8Q20tLQAAD744ANceumlZ/y68fFxDAwMYGBgAG+99T70ej2uuOIKBAYGrkldp/odPP744zh06BD+85/X8cILr6K5ucM4Guju7o7rrrsOv/jFswCA3/3uuXP+vq2trcbQ/bvf/Q7XXHONsZa77roLra2teOONF/Dssy9i27ZtqK2tRVJS0il/BkdHRzg6OhqXLwmCgMHBQezevRuRkZFITEyEr68vHBwcjGFdqVSe8mRdEATccccdeO655yCRSODt7Ynx8Uncdttt+Nvf/oZvfOMb5/wzk2WwtrZGdnY2Dh06hAMHDrAhrcgkEgni4+OhVqtRW1uL7OxsnnuQSWFAJ4vT0tICrVaLrKwshnORHWvYEhsbi5CQEP49aM1otVpMTU0ZQ/ni4iIUCgWUSiUSEhLg5uYmenfl+fl5tLS0ICjIH3q9AR9//PFZBXQ/Pz8899xzaGtrQ3x8PFJTU5GQkLDuU2ednJywsLCIG264G2NjE3j55ZeP+/yf/vQn7Ny5EyEhIcjIyDjj8QRBwNDQEFpbW9HT04Nf/OIX8PX1QnR0OK677jq8/fbbeOCBB/DnP/8Zf/nLX/Db3/4cF1+8Ddu35yEj4xI88cQTeOutt866folEgra2NhQXF6O4uBgeHu7YtetKPPTQQ5iamkJXVxdqa2vh7OxsDOzu7u7Gx0lbWxuee+45PPHET/Dd7+7G2NgEbrvthygpKcff//53BnQ6LalUii1btsDR0RHl5eVISkrill8ikkgkSE5OxsGDB9HS0oItW7aIXRKREQM6WZS+vj4MDw+jsLCQ68BEJAgCOjo60N3djfT0dG55QhdMr9djenraGMjn5+dhb28PDw8PREdHw93d3eSmMWZmZuKRRx7BI488AuBoAD4b8/PzqK2tRWdnB/7zn3/D0dERmZlZ+PWvf33WxzgfP/jBD7C4uAhXV1dcdNFFJ+yRLpVK8c1vfhMAMDU1heLiYnR3d0Ov10On0xkb7s3NzWF2dhZtbW0YGxsDAMhkMiQmxuG11/4AHx8vXHHFJfjBDx5BdnY2XFyc8atfPYJvfetoAJbL5bj77ptx770Pobq6+qwuBhxz8cUX45ZbbsELL7wANzcXVFVVwtvbG97e3gCOzrSYnp7G5OQkWlpajDMtlEol5ubm/rtHvTUkEgm+//3/D62tnXj66adx0003rcFvmMydRCJBWFgYHB0dUVtbi6WlJURFRfHitEhkMhkyMjJw4MABY58RIlPANegWyhLXnRzbTi0rK+uCGynR+dPpdGhoaMDc3BwyMzMt5vFHa8tgMGBubs44ZX1mZgbW1tbGacoeHh6ws7MTu8wzEgQB9957L5ydnbFr166zWnZTUlJiDMe7d18FKysrvP32+wgODsF9992HwsLCs5rufqo16OdjZWUFBw8exL59+7B37x40NjZBEAS4urpAJpNBJrOCo6MDFApnODs7wtnZCSEhQUhLS0R8fDT8/HxgZWV13DFXV1dRW9uIqKhwKJXux31Oo9HgS1+6FhMTM6ivr4e7+/GfP9XP+9prr+EHP/gBbGzkuPLKK/D886+gsbHxlHu+q1Qq42NscnISy8vLaGtrg7OzHZ577kU8/PDDuPrqq8//F0cWa2FhAVVVVXBxcUFycjIHDUQ0OTmJqqoqi2tQa4lZYLNgQLdQlvakVKlUKCkpQWRk5Dk1UaK1pVKpUF1dDalUioyMDJMb0STTZjAYMDU1hZGREYyOjgIAlEqlMZBvxr2w1Wo1Hn74Yfz2t7/F6uoq0tJSUVFRecaT9T/96U+4//77YWdni1//+nEEBPji2mtvw+DgMKysrNDT03PGkH6+AX15eRm9vb3o7e1FU1MT9u7di4qKCmg0Gnh7e6KwMAdbt+agoCAbvr7eZ33cczU4OIKtW7+CqKgofPLJp6edPTA8PIwvfelSNDU146tf/RJ+9auHIJfLceml12B+fgl79+5FVFTUab+fIAhYWlrCww8/DJlMhqSkJLi6usLHxwe+vr5QKpVcx0rnZHV1FdXV1TAYDMjMzIStra3YJVmsnp4edHZ2orCwcFNc3F0LlpYFNhMGdAtlSU9KvV6PgwcPwsXFBYmJiZvuBN5czM3NoaqqCh4eHkhMTDxhtIzoZAwGAyYnJ42h3MrKCr6+vvD19YWbm9umej4PDQ2hpKQEWVlZCA0NRUVFBe688060trbi7rtvRlRUOG688R68+eabuPLKK894vOHhYezevRvl5WXo6amBRCLB7t13Yf/+ckxOTp5x+6CzDegajQbvv/8+XnrpL6itrcPk5KTxc87OTsjNzcDWrTkoLMxBZGTYhv5N6uqa8LWvXY/ExCR89NFHJ/2ZFxYWkJGRgeXlRbz22h+QlBRv/Nzo6Di+9rXrMTw8hqioSLi4uMDFxRVxcXHIy8tDdnb2CcdsbGzE3XffjR/84AfIyckxPjb1er0xrHt4eDCs01nR6/VoamrC5OQkMjMz4eLiInZJFkkQBDQ2NmJhYQF5eXkWcY5iSVlgs2FAt1CW8qQUBAH19fVYWVlBTk6ORbzgmqKRkRHU19cjKioK4eHhmypU0cbT6/WYmJjAyMgIxsbGIJfLjaHc1dV10z1+BEHACy+8gAceeABzc3MAABsbG6yuriIqKhwvvPA0tmw5OsU6OjoH3/72bjz11FNndezKykpkZ2fjzjtvwqOP/hCxsXn49rd348knnzzj154poE9NTeGpp57CK6+8gsnJSaSnJ2PnznwEBgYgKMgfwcEB8PISP4hWVzfg61+/Hmlp6fjggw+O28JKEARceeWV+PTTT7Bv37sIDw854etnZmbxxz/+FRMTU5ifX8DMzByam9swNzcPa2tr3HDDDXjwwQfh5+eHp556Cj/60Y8AHF1PfODAAeTl5UEQBMzOzmJkZAQjIyPQarXHhXW+99DpCIKAI0eOoKOjAykpKfD19RW7JIuk1+tRVlYGBwcHpKSkbLr3mnNlKVlgM+KCFzJr3d3dmJqaQmFhIU+QRCAIArq6utDZ2YnU1FT4+PiIXRKZKL1ej/HxcWMot7Gxga+vL3JycuDi4rKpT5Q++eQTfPe738WuXZfh//v/foDW1sMYGBhCZGQYCgtzjAH3yJFejI9PIjs7+6yO+9FHH2FlZQVXX301XnvtbWRmpmBsbAKXXHLJBdW7urqKl156CQ8++CB0Oi2uueZr+Na3rkRsbOQFHXe9ZGQk4623/oxvfONG7NixHW+88SaCgoIgCAIefPBBvPPOO3j11d+fNJwDgJubK37yk3uO+5jBYEBHRzc+/HAv/vCHl/Dyyy8jKSkJVVVVuOuum/H1r38Jd975E/zyl7/Ef/7zH0gkEri5ucHNzQ1xcXGYm5vDyMgIDh069N+p/97w8fGBl5cX34voBBKJBBEREXB0dERdXR2WlpYQERGxqV/3NiMrKytkZGSgpKQE3d3dCA8PF7skslAcQbdQlnDVbHx8HDU1NcjNzYWrq6vY5VgcvV6PxsZGTE1NISsrCwqFQuySyMTodDpjKB8fH4etra1xpFyhUJjNyemzzz6L++67D52dFXBxOfXz4JvfvAVtbV1ob2+Ho6PjaY85OjpqHGX77ne/iz/+8Y9wc3NFdnY2/v3v/5zV7+7zI+gqlQp//vOf8dRTT2F4eBhXXfUVPPLID+HpuTmaatbVNeHb374DExNTuPLKK+Ho6IgXXngBjz76Q9x1183nfdyFhUW8+upbqKqqQ0FBDm6++ToAwJVX3gQHB1f885//POXXCoKA+fl548i6Wq2Gl5cXfH194eXlxcZgdAIuBxPf7OwsysrKkJGRAU9PT7HLWTeWkAU2KwZ0C2XuT8qlpSUcOHAACQkJCAgIELsci8PGN3QqBoMBY2NjGBoawsTEBOzs7Iyh3NnZedOE8qmpKbz++uvYuXPnKTuAHzM0NISEhARcfPFW/PGPvzrpfWprG3HRRd/AW2+9dVb7aY+MjMDPzw/A0UZ5U1NTCAwMPOuO5sDxAf29997DnXfeiYmJCezadRm+//1bER0dcVbHMSWLi0t4/fV38Pzzf8X09Aweeug+3HLLt9ble33hC1ciPj4JL7300lndXxAELCwsGMO6SqWCp6cn/P394e3tLfpSATIdarUaVVVVbKgqosHBQRw6dAgFBQVnvGC6WZl7FtjMGNAtlDk/KbVaLQ4cOABvb+8znjjT2ju2dYyrqyuSk5N59Z8AHO383d/fj4GBAVhZWSEgIMAYyjej7du3o7i4GG5ubvjkk0+QlpZ22vu//PLLuOGGG/Cf//wNubmZJ3z+7rt/itLSWnR2dp71c+aGG27Ayy+/DAD45S9/ibvvvvukF8N+85vf4KWXXsKrr76KpKQk48ePBfTi4mL89re/xWWXfQGPPPJDhIZu/r2ADQYD9Hr9BW8fdzrXXfc9FBeX4be//S1uvPHGEy4u6fV6lJSUoL+/H//5z3+QkZGBH/7wh8b7HQvrg4OD0Ov1CAwMRFBQ0Bmb+5Fl0Ov1qK+v55akImppacH4+DgKCgrW9bVELOacBTY7BnQLZa5PSkEQUFVVBYPBgOzs7E0zGmcuxsfHUVtbi7CwMERFRfH3b+GOjZb39fVhenoaXl5eCA4OhoeHx6Z/bERERODIkSMAjq4f/cpXvoKLLroIu3fvPukWPQaDAXFxccjI2ILf/vbnJ3z+6qtvhbW1I957773jPq7T6YwhTiaTQaPRwN/fHyEhIZifn8ezzz6L2tpadHV1Qq/XIzc3DzfddBNycnIAAAMDAwgJCTF+/+bmZuNIrVqtxieffIJrrrkGjz76Q9x44zWb/u+ykZaXV/CTn/wcr776Fr785S/h+ef/CH9/f+Pnf/KTn+AXv/gFACAgwA+Dg8OoqKhAVlbWcccRBAGTk5Po6+vD+Pg43N3dERwczFF1giAI6OjoQHd3N9LS0uDl5SV2SRbFYDCgsrLSuDbd3F4fzTULmAMGdAtlrk/K9vZ2DA8Po6CgANbW1mKXY1G6u7vR3t6OpKSk405SyfJ8frQ8KCgIgYGBZrXUoaGhAQ8++CA+/PBD3HPPrSguLkNr62FERUXhwIEDcHNzO+Frvv3tb6OtrRl7975zwueuu+57KCmpwN13343+/v7//v76MTQ0DL1ef8L9j01rBwBfX29cfPE2yGQyFBUdRH//EO68805MT0+jtLQU09NT+OUv/z/cdtv9GBkZMTZr/OEPf4jc3FxMTvZg167L1vg3ZDk++GAP7rvvESwvq/DUU0/hlltuQWtrK1JTU3HHHTfijjtugLOzE4KCUnDffffj0UcfPeWx1Go1BgYG0N/fz1F1MhoaGkJjYyNiYmIQFhYmdjkWRaPR4MCBA/Dz80NMTIzY5awpc80C5oDdSchsDA8Po6enB/n5+QznG0gQBLS3t6O/vx85OTknDSZk/k42Wp6SkmIWo+Unk5ycjKCgINjb2+Gmm67Fww/fh/b2Llx66VW488478frrr5/wNbOzs3B3P3nDyssvvxgNDYfw17++DD8/HwQE+CI1NRYBAb7w9z960+v1sLaW4/DhLrS3dyE4OBDR0eHYsiXWONKq1WrxwAM/w6uv/hWhoUHIyUnBrbd+BwbD0ZA/NDQEHx8f7N+/H3/4wx+Qm5uLr3zl0vX7RVmAL33pIuTlZeKhh57EbbfdhldeeQWDg4OIjAzD/fffDjs7W3zySTFWVlTYvn37aY9la2uLyMhIREREGEfVi4qKOKpu4fz9/WFvb4+qqipoNBpER0eb5euqKbK2tkZGRgYOHjwIhULBLfBoQ3AE3UKZ21Wz+fl5HDx4EGlpafD29ha7HIshCAJaWlowMjKCnJwcODk5iV0SbTBLGC0/mbfeegvf/OY38dRTDxu7eh/9+Hu49db78Pbbb2PXrl3Hfc0Xv/hFyGR6vPbacxtdLmZmZhEWloG///3vuPzyyxEXF4egID98//v3Izc3GjIZe0WshYMHK/HAA49DLpfjtdeeQ0CALwRBwCWXXAWZzAalpWXnHKw4qk7HLC4uory8HL6+voiPj2dI30Cjo6Ooq6tDfn6+2exKY25ZwJwwoFsoc3pSrq6uoqSkBEFBQYiKihK7HIshCAKampowOTmJnJwcnixaEHNeW362IiIiEBUVgtde+8NxP7MgCPjWt25HY2Mbjhw5ctyFimuuuQaDgz3497//JkbJyM6+FHFxWxAXF4df/OIXKCv7ACMjKwzo6+w///kU3/rW7fjoo4/OaY/6wcFB+Pv7Gx9fn1+rrlQqERQUxFF1C7O8vIzy8nLjNmyW8pprCjo6OjAwMICCggKz6KxvTlnA3PAVnTY1g8GA2tpauLq6IjIyUuxyLIbBYEBdXR2mp6eRl5fHcG4hNBoNOjo68Omnn6K1tRVKpRIXXXSRca9YczpR1Ov1uO+++5CWlorvfe976OrqMn5udXUVR44cwSWXbDvhZ5ZIJHjkkfsxNjaGP/3pT8d9ztXVFbOz8xtS/8ncdddNePfdd/HYY4/hnntuQUhIoGi1WAqVSo2f/vQX+OIXLznrcC4IAh5++GEEBgbipptuwrFxFIlEAk9PT2RkZOCiiy6Cu7s7Wltb8emnn6KjowMajWY9fxQyEQ4ODsjLy8PU1BTq6+thMBjELsliREZGwsXFBbW1tfy907piQKdNraWlBRqNBsnJyWYVDkyZXq9HTU0NFhcXkZube9KO1WRe1Go1WltbsWfPHkxNTSE5ORk7d+5EZGSk2U5lf+qpp/DrX/8a/v6eeO+9f2LLli146qmnsLq6ioGBAQCAv//J1yKGh4fg6qu/iieeeALLy8sAgJWVFRQVFcHPz2fDfobPu/rqr+Hxxx/AD394B37847tFq8OSfPppMQYGhvDMM/93VvdXqVS45ppr8NhjjyEiIhQvvfQS9u/ff8L9jq1V37lzJ5KTkzE1NYU9e/agtbUVarV6jX8KMjV2dnbIy8vDwsICampqTtpIktaeRCJBcnIyNBoNWlpaxC6HzBinuFsoc5jW0t/fj7a2NhQWFsLe3l7sciyCTqdDdXU1tFotsrOz2YzPzK2srKCrqwsDAwPw9PRERESExTQB9Pf3x9atWfj973+JlRUVnnjiN3j++Vfg7++PSy65BC+++CKOHKmCm9vJm74NDAwhLe0L+PKXvwwrKyu8//77MBgM2Lv3HSQmxm3wT3NyOp0eZWWHOcV9Hb3yyhu4996HoNfrz3gRWaVSYefOHWhoaMDzzz+Fyy+/BFFRObjxxpuM27WdzszMDDo7OzE1NYWAgABERETwvdHMaTQaVFRUwNraGunp6ZDJ2Pt5IywvL+PAgQOIjY1FUFCQ2OWcN3PIAuaKI+i0Kc3MzODQoUNIT0/nCcgG0Wq1qKyshMFgQE5ODsO5GVtYWEB9fT327dsHrVaLgoICZGZmWkw4B4CsrCxUVdVDp9PB3t4OP/vZj1FR8SGUShe88MILyM5OP2U4B4DAQH/s3n0V/vnPf6KurgYPP3wfKis/MplwThtDpVLB1tb2rGZ43XPPPaivr8d7772KK674IiQSCbZuzcGHH35wVt/Lzc0NWVlZyM/Ph1arxb59+1BfX4/FxcUL/THIRFlbWyMnJwd6vR6VlZXQarVil2QRHBwckJaWhkOHDmFmZkbscsgMMaDTpqNWq1FdXY3Y2FgolUqxy7EIGo0G5eXlsLKyQlZWFuRyudgl0TqYnZ1FdXU1SkpKIJVKsW3bNqSlpZlNx9pz8eMf/xjd3X14/vlXjB+LjAzDv//9N/ztb8/htdd+f8Zj/PznP0ZjYxFqaj7B9753PcLCgtevYDJJrq4uUKlU2Lt3L043YfGNN97ACy+8gCeffAjp6cnGj2/blovm5kPGPe/PhkKhQFpaGrZt2wapVIr9+/ejuroas7OzF/SzkGmSy+XIysqCVCpFeXk5exFsEA8PD8TGxqK6uprLSmjNcYq7hdqs01oEQUBlZSXkcjlSU1O57nwDqNVqVFRUwMHBAampqbCy4lRYcyIIAqanp9HZ2YmZmRkEBwcjLCyMvQVwdETz2WefxaWX7sT3vnc9srPTIJFIMDk5DRcX501/oYpT3NffzMwsvv71G9DY2IKgoCDs2LEDN9xwA6Kjo+Hm5gaJRILBwUEkJCRgx448/PnPvza+rw0Pj+Kmm+7F4OAoBgcHT3i/W1paQnNzM7Kzs0/7XqhSqdDd3Y2+vj64ubkhMjIS7u7ufP80M3q9HrW1tVhZWUF2drbZ9gcxJYIgoK6uDlqtFllZWZvuObVZs4AlYEC3UJv1Sdnd3Y3u7m5s27Zt058cbwYqlQplZWVwdXVFcnIyt/IxI4IgYHx8HJ2dnVhaWkJoaChCQkLMYuuYtaLVavHKK6/g17/+Ndrb2xEUFICYmAh8/HER7rjjRjz++ANil3hBGNA3hsFgwIEDFfj00/34978/xdDQCADA2dkZISHBWFpahkq1jLKy/8DF5X+zVXbtuhGtrZ14/fXXsX379uOOqdPpcMkll2Dfvn34yleuwJtvvnXGZUerq6tobm7G8PAwnJycEBcXBy8vr00XKujUDAYDGhoaMDc3h5ycHF5o3QBarRbFxcUIDw9HaGio2OWck82aBSwBz7Zp01hYWEB7eztSU1MZzjfA8vIySktLoVQqkZKSwnBuJgwGA4aGhrB//340NjbCx8cHF110EaKjoxnOP0cul+Pmm29GS0sL9u7di4sv/iKmphYgkUjw+uvvnnbKMtExUqkUW7fm4oknfoq6uj0oKvoHXn75Wdx7761ITo5FVFQIXn752ePCOQAIggHe3t7Izc393McF3HPPPSgpKcGPf3wXPvjgQ/z85z8/bQ3d3d34zne+g5ycHFxzzTX461//irq6Ouzfvx9DQ0OiPpaHhoZw6623IjIyAj4+PggICMBjjz3Gtb3nQSqVIiUlBe7u7igtLTXuIkHr59iMzra2NiwsLIhdDpkJjqBbqM121Uyv16OkpAQ+Pj6IiYkRuxyzt7i4iPLycvj6+iI+Pp4jLGZAEASMjY2hra0NBoMB4eHhCAwM5JKF8/D666/juuuuQ19fHRQK03/9PBWOoJu2+vpmfOlL16CwsBD/+Mc/YW9vj4mJCeze/R189NHHeOaZR3HDDdfg2mtvgyDI8eGHH570OHq9HomJiZifn8Xtt1+PbdvykJX1Rbz88ssoLCzEkSNHIJVKERsbC29v7w19ve/r60NmZib0eh127foy3NxcMDY2ib///R9wdXXDu+++i+zs7A2rx1wIgoCWlhaMjIwgJycHTk5OYpdk9trb2zE2NoaCgoJN87662bKAJeF+DLQptLW1QSaTISoqSuxSzN78/DzKy8sRHByM6OhohnMzMDs7i9bWViwuLiI6OhpBQUGcEXEBOjs7oVS6w9mZJ720flJStuDNN1/E1Vffiq1btyI0NBQfffQRbGys8dZbf8ZFFxVCEAQMDY0iJCT8lMcpKytDa2srPvroDWRlpWJ2dg7A0ZG/kJAQBAUFob+/H42NjXB2dkZcXBxcXFzW/edbWFjAl7/8Zdjb22LPnregVLobP3f//bfj+uvvRmFhIV566SVcd911616POZFIJIiPj4dMJkNpaSlycnIsstnnRoqKisLExATa2tqQkJAgdjm0yfEMjUze+Pg4BgYGkJqaylCxzmZmZlBWVobw8HDExMQwnG9yKysrqKurQ1lZGdzc3LBz506EhITweXQWTrc1VXt7O2JjI/n8oHVXUJCNd999GTIZcOTIYdx223dQWvpvXHRRIQDg4MFKNDe34vbbbz/lMdra2gAA7u5HtwXs7OwBAGOIkEqlCAkJwc6dO+Hq6orS0lLU1dVBpVKt54+Ge+65B0NDg3jjjT8dF84BwMfHC++//yquvPJyfOtb38Irr7yyrrWYI4lEgpiYGISFhaGsrIxLBtaZVCpFamoq+vv7MT4+LnY5tMnxLI1M2urqKhoaGpCQkAAHBwexyzFrU1NTqKioQHR0NCIiIsQuhy6AVqtFW1sbioqKAADbt29HbGwsezecpT/+8Y/w9/fHd7/7Xeh0uhM+PzExAU9PbvFIGyMrKxUffvj/sHfvO3jggbuOe+zt2VMCPz8/7Ny585Rff+211yIyMhLXXnsbXn/9HRw4UA4ACA8/ftRdLpcjNjbW2JBu3759aGtrW5e9tQVBwIcffojrr78aUVEnH/23trbGrbd+B3K5HJ2dnWteg6WIjIxEdHQ0Kioqzmm7Pjp3jo6OSEhIQENDA1ZXV8UuhzYxTnEnkyUIAhoaGuDu7o6AgACxyzFrk5OTqKqqwpYtWxAYGCh2OXSeDAYD+vv7cfjwYTg5OSEvL29Dpqqam0OHDmFhYQF/+tOf4Orqil/84hfHfX5qahLR0UEiVUf0P+7urlheXj7tbA4nJye88847KCwsxB13/BgAcOWVV8Le3v6k97e3t0dqaqpxaczevXvXfGlMV1cXxsfHkZubccLnhoZGsX9/Kf7xjw9QXHx0Rte99967Jt/XUoWGhsLKygqVlZXIzMyEh4eH2CWZrcDAQExMTKChoQGZmZmcaUXnhSPoZLL6+vowPz+PxMREvsCto9nZWVRXVzOcb2LHGsAVFxejp6cHSUlJyM3NZTg/T9ddd52xyc8zzzxzQofryckpKJVuYpRGdJzg4EDMzc1hbGzstPdLSEjA8PAwuru78dJLL+HVV18947FdXV2Rm5uLpKQkdHd3o7i4GGNjY2vS8b2urg4AkJ6edNzHR0fHkZl5Me6666cwGGR45ZVX0NbWBqWSM1YuVFBQELZs2YLq6mrMzs6KXY7Zkkgk/23KOI++vj6xy6FNiiPoZJIWFhbQ2tqKrKysM+7tSudvcXERlZWViI6OZjjfpObm5tDa2oqFhQVERUUhODiYa8wvUHZ2Ng4ePIinn34a6enpx10gVKvVmJychLe3p4gVEh2VlZUKiUSCP//5z3jwwQdPe187OzuEhoae017NEokEPj4+8PLyQl9fHxoaGtakkVxfXx9cXV1O2AVhz54SrKyo8Morr+A73/nOeR+fTi4wMBBarRaVlZXIy8tjd/d1Ym1tjdTUVFRWVkKpVPL3TOeMZ3FkcvR6Perq6hAaGsqr5utoZWXF2K09LCxM7HLoHKlUKtTV1aG0tBQuLi7YuXMnQkNDGc7XSHZ2Nt5991088MADx3183759EAQBoaHB4hRG9Bne3p74/ve/i0ceeQSlpaXr9n2kUilCQ0Oxc+dOuLi4oLS0FPX19efdSO7gwQMnXXv+1a9eih07CrB7925ce+21GBwcvNDS6XPCwsIQHByMiooKrKysiF2O2VIqlQgNDUVtbS30er3Y5dAmwzM5Mjnt7e2QSqWIjo4WuxSztbq6ioqKCnh7e/P3vMkcawC3b98+AEcbwMXFxbEB3DoTBAGPPPIIvvzlLyMtLQnJydxGh0zDj398FzIyUrBz50488cQT69LU7Ri5XI64uDhs374dgiBg3759aG9vP6fv2dvbi48//gTXXvu1Ez7n5OSIN998Ac8++wT27t2DqKgoYxd6WjvR0dHw8vJCRUUFm5mto2Nb1ba3t4tdCm0yDOhkUiYmJtDX18ct1daRVqtFRUUFFAoFtmzZwvX9m8jY2BiKioowMzOD3NxcpKamnrLRE60dg8GA7373u3j00Ufxk5/cjY8/fgN2drZil0UEAJDJZHj33Zfw3e9+Bw899BC++tWvnHT3gbV0rJFcbm4upqenUVRUdMZ18Mf89Kc/hVLpjq9+9Usn/byVlRW+9a1voKLiA6hUKtTX169l6YSjSxe2bNkChUKBioqKdb2oY8mObb3W19eHiYkJscuhTYRr0MlkrK6uor6+HgkJCXB0dBS7HLOk1+tRXV0NGxsbpKSkMJxvEqurqzh06BAmJiYQFxeHwMBA/u02iCAIuOOOO/Diiy/id797Atdd9w2xSyI6gZ2dLR555H7k5WXiqqtuwSWXXILbbrsNX/ziF6FSqeDq6gqpVIrFxUUUFRWhq6sLcrkcQUFBCAoKgr+/P6ysrCAIAmZnZ1FaWoqSkhIcPHgAExOTAI6GuujoKFx33bfwzW9+E56ensZGcgMDA6ivr4enpycSEhJgY2NzQo2CIODRRx/F3//+dzz33JNwcDj9xUWtVvffn81u7X9hBIlEgpSUFFRWVqK6uhpZWVnG5pi0dpycnJCQkID6+nps27btpM8Nos+TCGvRjpM2nYWFBSgUCszPz8PZ2fnMX7DOBEFAdXU1JBLJCU2ZaG0YDAbU1NRgdXUVOTk5kMl4fc7UCYKAwcFBtLS0wMPDAwkJCbC15cjtRrrvvvvwzDPP4Le//Tm+/e0rxS5nTel0epSVHUZubjRkMp6Ym4sPP9yLZ555HvX1zcaPOTk5Qal0x/DwCDQaDZycHKHVaqFWn3x6s0QiQVxcNHJz0xEQ4Afg6HtIRUUt9uwpgSAIuOSSi7Fr1zdw+eWXw83NDWq1Gs3NzZiamkJ8fDwCAgKM7+WCIOCBBx7AU089hYceug/33HPLGd/nP/mkGFdddQt6e3sRHBy8Nr8cOoFOp0N5eTlsbGyQnp7O2YvrQBAE1NTUQBAEZGRkmMw5rqllAfofBnQLZWpPyr6+PnR0dGDbtm3s2r4OBEFAY2MjZmdnkZeXx9/xJrC8vIympiYsLCwgMTERPj4+YpdkcaqqqpCVlYXHH38Ad9xxo9jlrDkGdPPW0XEENTUNcHR0RH//IGZn5+Hj44kvfGErQkKCIAgCJienMTg4jNHRcRgMBkgkEtjZ2SEtLREuLoqTHnd6egb//OdHeOut91Bb2wgXFxc8+OCDSElJQVBQEGQyGVpbW+Hs7IykpCQYDAY8+uijePrpp/HEEz/Bbbddf1b1P/nk7/Dii69jcnLSZAKNudJoNCgtLYWrqyuSkpL4+14HGo0GxcXFxt1WTIGpZQH6HwZ0C2VKT8rFxUWUlJQgMzMTHh4eF3Ssnp4eFBQU4PHHH8f115/dSYC5EwQBra2tGB0dRV5eHqcLmjhBENDT04P29nYEBAQgNjaWDeDOkyAIuPLKb0ChcMFzzz13ThemBEFAQUE+ZmenUVLyL7Oc+smAThdqbGwCjz32NN5441/G/dGlUimCgoJwxRVXIDMzE++88w7+9a9/4ZFH7j+nC11XXXULADk+/viTdaqePkulUqG0tBS+vr6Ii4sTuxyzNDExgerqahQWFprE1mumlAXoeJzjSqIyGAyoq6tDSEjIBYdz4GjjmuHhYdxwww2QSqXcRxVAV1cXhoaGGM43gfn5eTQ2NkKr1SIrK4vbDF6gmZkZvPPOuwAAHx8fPP7446e8769+9St0d3dDKpXCzc0N5eXlKC0tw7vvvmSW4ZxoLXh7e+K5557C//3f4xgaGsHAwBAGB0cwNjYBGxsZBge78I1v7MJNN+1GfHzwWR/XYDCgsbEFN9548/oVT8exs7NDdnY2SktLYW1tjYiICLFLMjuenp4ICQlBXV0dCgoKuJyATokj6BbKVK6atba2YnJyEvn5+Wt2EvyFL1yEPXv24uKLv2DxV977+vrQ1taG3NxcKBQnn65I4tPr9ejs7ER3dzdCQ0MRFRXFULgGdDodfH19MTk5CSsrKzQ0NCAh4cTt0fR6vbEnQ3x8DKanZxAbG4lduy7DVVd9daPL3jAcQaeNoNcb0N8/ieHhafj7uyMoyOOMwaS4uBRf+9r1OHjwIPLy8jaoUgKOXiguLS1FXFycyUzFNid6vR4HDx6Eh4eH6DMVTCUL0Il46YZEMzk5id7eXqSmpl5QGDEYDNi/fz8MBgMA4K9/fRUvv/wynnvu+bUqdVMaGRlBS0sLMjMzGc5N2PT0NPbv34/x8XHk5+cjNjaW4XyNyGQy/PjHPwZw9KTo7bffPun9rKys8LOf/QwAcOedN6KtrRTvvPOSWYdzoo1iZSVFaKgXkpJCMDOzhLq6bszPL5/2a1599S0kJMQjNzd3g6qkYxQKBbKystDS0oKRkRGxyzE7VlZWSE1NRW9vLyYnJ8Uuh0wUAzqJQqPRoL6+HvHx8Re8Dmf37t3Ytm0bPv74YwBHp7Lu3r0boaGha1HqpjQxMYH6+nqkpaXB3d1d7HLoJLRaLZqamlBRUYGgoCAUFBTwQso6uPvuu/GHP/wBN9xwA2699dZT3u+nP/0prrzySjz44C8xNze/gRUSWQYnJzukpITC29sVzc396OoagU6nP+l9NRotZmfn8Nprr4ETPTeeu7s70tLSUF9fz/2714GTkxPi4uJQX18PjUYjdjlkghjQSRTNzc1wcXFBUFDQBR3nN7/5DV577TUAQGpq6lqUtunNzMygpqYGiYmJ8Pb2FrscOonx8XEUFRVhaWkJ27ZtQ3h4ONeirROpVIrvfe97+Mtf/gI/P7/T3vfXv/41Jien8O67/9mg6ogsi0QiQUCAEmlpYVhZ0aC29gimpxdPuN+DD96L2NhwfOc738GVV16J2dlZEaq1bN7e3khMTERNTQ1//+sgODgYLi4uaG5uPvOdyeKwSRxtuPHxcUxMTGD79u0XtJXHm2++ie9///sAgLvuugteXl5rVeKmtbCwgMrKSsTExCAgIEDscuhz9Ho92traMDAwgPj4eAQGBnI7GxHp9Xq8+eabmJmZgY+PDxYXjwaFY/s+E9H6sLOzwZYtQRgbm0N7+xC8vV0QGuplvFAZExOBN998Ee+//zHuuuunCA0NxR133IEf//jHsLe3F7l6yxEQEACNRoPKykrk5eWZROdxcyGRSJCYmIiioiKMj4/zHJaOw4BOG0qn06G5uRmxsbGwtbU97+McPnwYV111FXbuLMTevSXIyclZwyo3p5WVFVRUVCA0NNSip/ebqqWlJdTW1gIACgsL4ejoKHJFlq26uhrf+973UFdXB7lcDq1WCwAIDQ1GdnaayNURmT+JRAIfH1e4uNijrW0IDQ29iI31h52djfE+l19+CdLTk/Hccy/jmWeexrvvvouioiLODttAYWFh0Gq1KC8vR35+Pi+QrCFbW1vExMSgubkZ27ZtMzYrJeKcStpQnZ2dsLGxueCp7cemBO3bdwAAzml/Y3Ok1WpRWVkJb29vREVFiV0Ofc7Q0BBKSkqgVCqRn5/PcC6yuro65ObmQqNR4ZNP3sL4eCu6u6tRVvYBDh58H05O/PsQbRQ7OxskJ4dAobBHXV0Pxsfnjvu8j48XHn/8ARQX/xODgwP49a9/LU6hFiwqKgre3t6orKw0XsyktREcHAwbGxt0dnaKXQqZEF6qoQ2zsLCAnp4e5OfnX/C03osuuggvv/wyampqMD09jR07dqxRlZuPIAior6+Hra0tEhISOGXahOh0Ohw6dAhjY2NITU3lqI+JePjhhxAZGYZ9+96BXC4HALi5ucLNzVXkyogsk1QqRXi4D1xcHNHRMYy5uWWEh/vAyup/40hRUeHw9vaCTqdbs++7vLyMtrY2rKyswMfHB8HBwRZ/wf9kJBIJEhISUFFRgYaGBqSnp/NcY40cm+p+8OBB+Pv7c7szAsCAThtEEAQ0NTUhJCRkTTpVu7q6Yvfu3di9e/eFF7fJdXR0YGFhAYWFhWw0ZkLm5+dRW1sLGxsbbN26FXZ2dmKXRDi67vzAgYO4555bjOGciEyDUukEJ6cwtLcPob6+BzEx/nB0/N9yOB8fT7S3t2NoaAi+vr7n/Z43MDCAO+64HZ9+ugerq6vGj/v6+uL3v/89XF1d0dTUhLGxMfj6+iI3NxfJyckWHUqlUinS09NRUlKCjo4OREdHi12S2VAoFAgODkZTUxPy8vIs+nFGRzGg04YYGBiASqXi9Os1NjIygu7ubuTn5/Oqv4kQBAF9fX1obW1FeHg4oqKi+GZrQpqbm7G4uMh15kQmysZGjsTEYPT3T6KhoQdhYd7w8XGFRCJBSsoW/Pa3LyAgIADu7u548sknceONN57T8SsqKvCVr3wFtrZyPPzwD5CdnQ4HB3uMjIzh979/CV/72tf+W4cNPD2VGB+fhEajgZ+fHy6//HLcdNNNSElJOe6Yc3NzmJ6eRmhoqFm/3ltbWyMzMxMHDx6Es7MzfH19xS7JbERHR6OoqAgDAwMXvAyUNj8GdFp3q6uraG1tRUpKChtgrKGFhQXU19cjJSWFU6JMhFarRUNDA2ZnZ5GVlQWlUil2SfQ5e/bsga2tDZKTE8QuhYhOQSKRIDjYEwqFAw4fHsLs7DKionzxwAN34dJLd2J2dg7/+tdHuOmmmxAXF4esrKyzOu6//vUvfPOb30RKyha89trvoVS6Gz8XERGKgoJsVFXVw8XFGeHhIZDJZNBqtaioqMVHH+3De+/9E88//zwyMtKxa9c30NHRgYqKcrS1tQM42lDtxhtvxP3332+25zvOzs5ITk5GQ0MDHB0def6xRmQyGRISEtDQ0ABvb2/Y2Nic+YvIbEkEQRDELoI23sLCAhQKBebn59f9xbW+vh46nQ4ZGRnr+n0siUajQUlJCQICAjjNzETMzMygtrbWePLCN1fTs7KygrCwMOTlpePFF/9P7HJEp9PpUVZ2GLm50ZDJrMQuh+ikNBodOjqGsbKyipgYfzg7H+0ibjAYEBGRhdtvvwOPPfbYGY/z73//G1//+tfxpS/txB//+Kvzeo3W6XT49NP9eOml/4f9+8sRFRWOjIxkZGQkw8VFgQ8+2IM333wPOTk5+Pvf/27WI8yHDx/G4OAgCgsLOYNvDVVVVUEul58wS2M9bGQWoHNjnpf3yGRMTk5iZGTEopu4rTWDwYCamhooFAouGTABgiDgyJEjxjV5YWFhZj3FcTObn5/H2NgYvvKVL4pdChGdJWtrGeLjAzE0NI2mpj4EBXkiIMAdUqkUublH10SfyX/+8x/s2rULX/zidrzwwjPn3X9CJpPh0kt34tJLd8JgMJywBv6LX9yBa6/dheuvvwvh4eG4/fbb8aMf/cgsZ1NFRUVhfn4eNTU1yM7OZg+cNbJlyxbs27cPgYGBZvm4obPDZxOtG71ej6amJsTExLBB1hpqbW3F6uqqxTesMQWrq6uorKxEX18fcnNzER4ezr+JCfPy8oKNjQ0GBobELoWIzoFEIkFAgBKJiSEYHZ3BoUMD0Gh00Gp1p92Xu7GxEVdccQUuu+wy7NxZgBdf/L81aw55qkCanZ2GysqP8L3v7cYf//g8QkJC8POf/3xNu8+bgqM9AVKMyxhpbdjZ2SE6OhpNTU3Q6/Vil0MiYUCndXPkyBHIZDKEhISIXYrZGBgYwODgIDIzM9mBWmTT09MoLi6GXC7H1q1b4erKLbpMnVQqRXJyEv7xjw9QUlKOyclpsUsionPg7GyH1NQwyGRS1NV1Q63WIT4+/rj7rK6u4s0338TOnTuRnJyMlpZm/PGPT+PVV3+/YVOxXVwUePDBe9HYWITdu7+Jhx56CLGxMfjZz36Gv/zlL3jiiSfw5JNPoru7e0PqWS9yuRyZmZkYHBzEwMCA2OWYjdDQUFhZWeHIkSNil0Ii4Rp0C7Xe606Wlpawf/9+5ObmMriskZmZGZSXlyMzMxMeHh5il2PRBgYG0NzcjLi4OAQHB3PUfBN58803cf3110OlUsHBwR5vv/0XY0f3sbEJPPvsi2hr68Rbb71o9usquQadNitBENDbO4aurhEYDAZcffXVmJqawnPPPYff//73mJycRGZmKq6//mp8/etfEr1hW319M1544TX8+9+fQKVSw83NFWq1Gmr1Kt544w3s2rXrpF+n0WjQ1NQELy8vBAYGbnDVZ29iYgLV1dXIycmBm5ub2OWYhdnZWZSVlWHr1q1wdHRcl+8xMzMDd3d3rkE3QRxBt3DDw8NY62s0giCgubkZgYGBDOdrRKVSobq6GjExMQznIhIEAa2trWhpaUFmZiZCQkIYzjeZb37zmxgfH8c///lPLC+voLy8BlqtFo899gySk3fg9df/gZKScnzySbHYpRLRKUgkEqyuLuGJJ56Ara0tHn74Ifj5+eGXv/wFLrvsIlRUfIiPP34D3/zmFaKHcwBISdmCP/7xV+jtrcXERBuOHKlCZ2clrrjiElx77bV48skn0dDQYDwfEwQBDz/8MFxdXZGRkYGQkBD861//EveHOA1PT0/ExMSguroaKpVK7HLMgqurKwICAtDc3Lwu5+lDQ0PYv3//mh6X1g4DuoVra2tDaWkp5ubm1uyYw8PDWFhYQExMzJod05Lp9XrU1NTA09MToaGhYpdjsXQ6HaqrqzE6OoqCggJeKNnEnJyc8OqrrwIArKykuOKK7+B3v/szfvjDH6K5uRkSiQSLi0siV0lEpxMU5I+Wlhbccccd8PPzx1/+8ic0NhbjmWceRXR0hNjlnZS1tbXxgoG9vR2ef/4pfPWrl+KRRx5GSkoKvvrVr2J1dRWffvopHnvsMdxww9X49NO3cNllX8C1115r0lPiQ0ND4enpiZqaGq6dXiOxsbFYWFjA8PDwmh1zbm4OpaWlaG1t5S5AJowB3cJt27YNSqUSpaWlaGhogFqtvqDjaTQatLS0ICEhgWuk14AgCGhqagIAJCYmcrRWJCqVCgcPHoROp0NBQcG6TTejjVNYWAgAePTRpzE8PI79+/fj0Ucfxd69ewEA27bliVkeEZ2Bvb0dDAYDRkZGYGurRUCAPwYH56FWa8Uu7axZW1v/d2S9Dn/5y2/w8ccfIykpCQ899BBcXBR47LEfIT09Gc8++wRWVlZQUVFxxmM2NzcjNDQUGRnpmJqa2oCf4iiJRILExETjeQtX0F44uVyO+Ph4tLS0QKu9sMe1Wq1GQ0MDSktLoVQqsWPHDvj7+69RpbTWGNAtnEwmQ0xMDLZt2watVot9+/ahq6vrvK9+tre3Q6FQmPXenxupp6cHExMTSE9Ph5UV14iKYXZ2FiUlJXB1dUV2drbZr0s2de+99x7uu+8+GAyGCzrO3XffjZmZGaysrBi78APA3/72NxQW5sDHx2styiWidfS3vz2Hl19+FpdffjESEoLg5GSHhoYeLCysiF3aObG1tcHXvvYlfPTR3xEWFgCVagmvvfYH40V5Z2cnuLg449ChQ2c81rPPPove3l7U1NTixhtvvODXynNhZWWFjIwMTExMoKenZ8O+rznz8/ODs7Mz2trazuvr9Xo9urq6sG/fPuh0Omzfvh0xMTEmsfSDTo1N4izUqZrETU1N4dChQ9Dr9YiPj4eXl9dZj9oea2K2bds2ODg4rFfpFoNNV8Q3NDSExsZGxMTEIDQ0lDMYRDY/Pw8XFxcAwEsvvYTrr79+TY8/OTkJT09P/P73v8C11568aZM5YZM4MjeCIGB4eAa9vROIivKFp6dC7JIu2MLCIj78cB9uu+1+AEfP09zd3U95/66uLlx33bWorq4BADQ0NCApKWkjSjViU9u1tby8jOLi4nM6HxQEAWNjY2htbYWVlRUSEhJO2Fd9vRtG0/njCDodR6lUYuvWrQgPD0dDQwMqKiqwsLBwxq8zGAxoampCZGSk2YTzF154AQqFArm5OSgpKdnQ7728vIza2lps2bKF4VwEgiDg8OHDaGpqQnp6OsLCwhjOTUBXVxcAwM/PB88888yaT6E8tpwkMzN1TY9LRBtDIpHA398dsbH+6OwcQV/fxKaeat3XN4D4+ALcdtv9kMlkCA8PP2WQGh0dRUVFBQIDA3HgwEFcd9212LFjO6Kioja4asDNzQ0JCQmoqanB8vLyhn9/c+Pg4ICIiAg0NTWd1YyIhYUFVFRUoLGxEWFhYdi6desJ4ZxMGwM6nUAikSA4OBg7duyAk5MTSkpK0NzcDI1Gc8qv6enpgcFgQHh4+AZWuj5GRkbw85//HHfeeSfS05NQXl6Bn//8Zxv2/bVaLaqqqhAQEGDS26qYK71ej7q6OgwODiI/Px9eXpzqbCqOjcTs2JGP1tZWjI2NrenxS0tL4eTkiJAQPu+INjN3dyckJ4dgbGwO7e1D0Os3bpr3WqqpacTi4hKOHDkCjUaDw4cPn7S/jyAI+OpXv4KcnBwoFApceumleOyxx7F37z7Y2dmJUDkQFBSEgIAAVFVVQafTiVKDOYmIiIDBYDjt0gGNRoPm5maUlJTA2dkZO3fu5G4zmxQXINApWVtbIyEhAcHBwWhpacHevXsRExODoKAgSKX/u7azsrKCw4cPIysr67iPb0YrKytIS0vD6OgoLrvsYuzcWYB9+w7g8suv2JDvLwgCGhoaYGNjg7i4uA35nvQ/arUaVVVVkEqlKCgogI2Njdgl0Wf4+/vD2dkZs7NzAIC+vj74+Pic17FWVlawZ88edHR0wNvbGx4eHvjTn/6EL3/5IvZ7IDIDDg62SEkJRWvrAJqa+hAfHwBr683VvHZ8fBJOTk4ICwsDgFO+NhUVFaGqqhpPPfUw9Hod/vjHV3HZZZehvLxc1KnLcXFxqKioQENDA9LS0hgUL4BUKkViYiIqKyvh6+sLe3t74+cMBgP6+vpw+PBhuLq6YuvWrXBychKxWrpQDOh0Rk5OTsjOzsb4+DgOHTqE3t5eJCQkwMPDA4Ig4NChQ/Dz89u002cEQcD/+3//D6GhoaioqMDk5CTee+9VzM7O4dZb78fu3btx++23b0gt/f39mJmZwbZt2zb9xY7NZn5+HpWVlVAqlUhKSmJIM0FWVlbw8fGGt7cXXFyc8dFHHyE7O/ucjtHU1IT77vsBioqKYTAY4OTkaNxSTS6X49Zbv7Mepa8Zg8EAnc4AnU7/39tn///k/z7VFN9jH25s7MPnz5slEglkMilkMqvP3E73bylfs8jkWFvLkJgYjI6OEdTX9yI+PhCOjrZil3XWrKykWF1dRWNj42nXke/fvx8KhTO+/e1vwMbGBtu25eELX7gS99xzD1566aVTfl11dTXeeecdhIWFITc3F/Hx8Wtav1QqRVpaGoqLizEwMICgoKA1Pb6lUSqV8PX1xaFDh5CZmQngaO+UQ4cOwWAwIDU1lbP+zASbxFmo820McWx6TUdHB5RKJTw9PXH48GFs3759w0cbu7q6UFpaiu3bt1/Qi/5Pf/pTPPHEEwCOrpv68pd3wtvbE0899XtccsnF+Ne/3tuQn21xcRElJSXIyMiAp6fnun8/+p/R0VHU1dUhMjISERERvMpvoqqrq5GVlYU//OGXKC4uQ0dHL5qams/66w0GA8LCwmBtbYVbb/02cnMzEBUVDpVKjfHxCdjY2IjavV0QBGg0OqjVWqjVms/9VwuNRguD4ehbtlQqOWVQ/nyIPtXjWa834PDhYURH+8HK6vhwLQjCGcL///7/szVZW8tha3vsZn3cf62tZXxukSgEQcDAwBQGB6cQHe0HpXJzNMSamJjC179+A1pa2pGZmYFXX30NkZGRJ9xvz549+NKXvoSCgmy8/fafIZFIcMMN92B+XoV9+/adcP/R0VHcfPNN+OCDD6FUumN2dg56vR533nknnnzyyTWfFn+s6W1hYSFHdi/Q6uoqioqKEB0djYmJCUxNTSEqKgqhoaHnfJGUTeJMFwO6hbrQJ+Xq6ipaW1sxODgIT09PpKWlbei+5xqNBqGhoRgeHoanpyfGxsbO68TvxRdfxC233IL7778dTz/9HARBQHn5h/j2t+9AcHAoJJKjU/1fe+1vcHV1XYef5CiDwYADBw5AqVSu+RVsOr3e3l60trYiJSWF2wOasD179uCrX/0qoqLC8Pbbf0ZpaRW+85070dzcjISEhLM6xsjICPz8/PD668/j0kt3rnPFJ2cwGLC8vAq1WgOVSovV1f/9V60+GsCtrWUnDbg2NvI1Ha1eqy7unx3VX13VnvQCg0ajg1Qq+e/PYQ07u//919bWGg4ONhyBp3U3ObmAjo5hhIZ6wdd3czRgVanU+OCDPXjooSdxySWXGkfEh4aGoNVq4erqCmdnZ7z88su46aab8MYbL+Dii7fh29++HRqNBB9//PFxx1teXkZBQQGGhwfx+OMP4Gtf+xI0Gi1effVNPPzwr+Do6IjCwkLjLSEhYU2emy0tLZiamkJBQQGf6xdAq9WitrYWExMTCAgIQFxc3HkPIjGgmy5OcafzYmNjAycnJzg6OkKn02Hfvn2IiYlBYGDghoyQXHbZlzE8PAwAuOqqq877ez733B8QHR0BT8+j0/WlUikiIkIwMzOLqalazM3NAQA6OzuN04nWQ3t7OwAgJiZm3b4HnejIkSPo6OhAdnb2abetIXF1dHTgC1/4AgCgvr4ZYWEZ+MpXvojg4EBceeWVqK6uPqtRmcnJSQCAl9fGbPuj0+mxtKT+zE2FlZVVWFlJYWdnYxxpViqdjEHcxkZ+wmi2qZNKpbC2lsLaWgZ7+5OfKOr1hv+G9/8F96UlFaamFqBSrUKvN8De3gaOjnZwdLQ13rj9G60lDw9nWFvLcOhQP/R6AwICTH9pnp2dLXbtugxFRQdRUVEOQRDw9NNP40c/+pFx+YpUKjV29+7q6sHFF2+Dq6sL2tq6Tzjegw8+iI6Ow/joo78jISH2v9/DCrfe+h1s25aHt99+H2VlNbj//vuh0Wjg4uKCwsJC7Nq1C7t27YKt7fktEYiJicGBAwdw+PBhxMbGnudvw3IJgoDBwUG0tbXBwcEBjo6OcHJyYq8cM8WATudFo9Ggq6sLaWlp8PDwwMjICFpbW9HX14eEhIR13RpscHAQn366B7/73RP4wQ8euaDp7UlJyXjllVfwwAOPIykpCWNjI5DJZJDJZJiYmMTu3VfhlVfeOKut5s7X5OQkent7UVhYyHXPG0QQBHR0dKC3txe5ubnGvbXJNB3rWrt9+3ZcffXVWF5exgMPPIC0tEQ0N7fha1/7Kj79dM8ZL9RNTEwAAJTKtX990mh0xhB+LJCrVBpYW8uMYVOp9ISjoy1sbOQWN9XbykoKe3ubkwZ4QRCwuqrF0pIai4sqzM4uYXBwChqNDnZ21p8J7EfDu7U1T13o/CkU9khMDEZz89GQHhTkYfLPx8bGFnz44T7cfPMt+OEPf4inn34ad999C7Zty8Xc3DxmZ+fh4qJARkYyfH29AQDe3p7Yu/fgCccaGxtDamqiMZx/VmRkGH760+8DODpyX1fXhLKyahQVleJb3/oWnnnmGfzjH/9ASEjIOf8MVlZWSE1NxYEDB+Dp6blp+xaJYWZmBocOHcLq6iq2bNkCHx8fTE5Oora2FsHBwRs6g5U2Bt/l6Lx0dXVBoVAY10r7+fnB29sbR44cQXl5OXx8fBAbG7su23v85S9/gVQqRXNzOzQaDSIiIs77WL///e9x8803IzIyEiUlJdi1axfuvvunmJg4OtL2yitvICIiYt0am2g0GtTX1yMuLo7rsjaIIAhoa2vD4OAgcnNzOa1rE7jooovQ19d33PPQYDDgvvvuw09+cg9+9rP/Q1FREXbs2HHa4xwbQXd3v7CALggClpbUmJtbxvz8CpaWVFhd1cHWVm4Mkd7eLnB0tGOYPAsSieS/0/itj1sbrNFosbio/m9wV2N0dBZqtRY2NjI4OtpBobCHi4sDHB1tTT5gkWlxcrJDUtL/QnpoqJfJPobq65tx+eXfgq+vHwYHB/Hmm2/il7988IwNLb29PTE+PgGdTgeZ7Ojr0F//+le89957uOyyL5zx+9rZ2SIvLxN5eZn40Y/uRHNzK77znbuQlpaGN998Ezt3nvsyIWdnZ8TFxaGurg7btm2DtbX1OR/DkqhUKrS1tWF0dBQREREIDw83DuR4eHhAoVCgq6uLMxLMENegW6gLWXeiUh1tOpKbm3vSddmne0G5UKOjo/D19cWdd94EZ2dH/Pznv8Fll12G999//4KPLQgCbrjhBrzyyitwd3fHE088gbCwsHXrqC4IAmpqaiAIAjIyMkz25MCcCIKA5uZmjI+PIycnB46OjmKXROdJq9UiKSkJjo62OHSoDddeex1efPHF037Nb37zG/z4xw9gZOTQOT3fBEHAyooGc3NLmJtbxtzcCgRBgIuLAxQKezg52W3K6dhrtQZ9Ix1bNrC4qML8/Arm5pYhkUjg4nI0rLu4OMLe3pqvp3RWVlZW0dzcD3d3R4SH+5jk4+aSS65CVVXdfy9k2eDRR3+Em2++7oxf19BwCDt2fB333nsvnn76abz99tu48sorce21X8evfvUI7OzOfar67Owcbr75Xhw8WIUPPvjgvEK6IAioqqqClZUVt147BZ1Oh+7ubnR1dZ12wGt2dhZlZWXYsWPHeQ2IcQ266eKlfTpnHR0d8PLyOmXTNDs7O6Smphqn5PT39yMuLg6+vr4X/EI8MDAAALjyyitwzz0PAgC+9rWvXdAxj5FIJHj55Zfxi1/8Avb29uv+YjUwMGDcUo1vUOvPYDCgoaEBs7OzyMvLO24PUdp85HI5/vCHP2Dnzp3Q6/VndRFQIpEYb2eiVmswO7v830C+DJ1OD2dne7i6OiAgQAknJzs+b0Ugk1n9N4g7ICDg6Mn+4qIKc3PLmJpaRE/P+HH3cXV1gK0tR+no5OztbYwj6R0dw4iK8jO55/Vdd92EPXsi4O3tiRtvvAZK5dn1S0lOTsDPf/5j/OQnT8DDwwOPPvoovv71L+N3v/vFef+Mrq4u+Pvf/4RrrrkNX/nKV7Bv375z7s8jkUiQnJyM4uJiDA4OIjAw8LxqMUeCIBiXjNrY2CAnJ+e0S0ZdXV3h5eWFjo6O027DR5sPR9At1PleNVtcXMT+/fuxbdu2sxp9/GxTC0dHR8THx1/Qet9PPvkEl1xyCT7++E3ccsu9UCq9cODAATg4OJzX8Wpra3H99bshk8nwzW9ehYsvvhgRERHo7OxEUlLSunUaXVpawv79+5Gens49KzeAwWBAbW0tlpaWkJOTc95Nbsj0HD58GKOjo8jOzj7j3/X111/Hddddh6Ghpv+fvfsOj6rOGjj+nUnvvddJ7wkhCS2UkCgoooKiYhdd3LUr9l1dewXbWhAVCyK2xa50EiCUENJ7Jpn03utMpr1/5CUuUgNJJuV+nodn18zce8+kzNzzK+dgZnbiAI1SqaK9vZf29sFZcoVCiYWF6VCSZ2lpMukqD0/EGfSz0Wg0dHX1///gSg/d3f0YGRlgY2M+9LM0MBDmJgQnUiiU5ORUYmpqRHCw26T5W9dqtSQlXU1GRg4xMVH8/POm85o5/6u+vn6WL7+NkpJyfvrpJ+bOnTvsczQ2NpKens78+fOF1WxAR0cHeXl59PT0EBISgoeHxzkNpPT09LB3714WLFgw7K2Swgz6+CUk6FPU+f5RpqWlYWRkRGRk5LCup1QqKS0tpby8HHd3d4KDg8+r8mRfXx9eXl5cd90V1Nc38t///sqhQ4eYOXPmsM/V1tZGZGQkVlbm+Pl5s2NHMv398qHHX3nlFR577LFhn/dsNBoN+/fvx9bW9pzbQwnOn1qt5ujRo8jlcmbNmiVUPJ3CfvvtNy677DIKCg7g4uLEwICK1tYumpu76OjoxczMeGjm1crKdNIkraczGRP0v1Kp1ENL4Ts6euntlWNtbYaDgyV2dpZCjQDBEKVSRU5OJYaG+oSEeEy4bgqnI5XKOHQoncsvX4yV1cjVuuns7OL66//OkSMZvPLKK6xZs2bYM/O5ubm0tbUxd+7cSTMoMlwKhYLCwkJqamrw8fHB399/2EXfsrOzGRgYIDY2dljHCQn6+CV8MgnOWVtbG01NTee158jAwICQkBC8vLzIy8tj165dBAYG4uPjM6w3ZVNTUxYsWMC7734CwNKlS4mIiBh2PAA//vgjtbW1bNuWgpubC59+uoWHHnoaFxcn6usbyc3NPa/znk1xcTEajUYo6jEGVCoVR44cQaPRMGfOHKHS6RSnUCiwtramp0dJdnYFnZ29WFiYYG9vSUCAq7AUehLS19fDzs4CO7vBxEQuH6C5uYuGhg5KS+uxshpM1u3tLTA0FN4fpjIDA30iI73Jza0kL6+KsDCPSdFZxc9Pgp/f8Kuun42VlSU//fQFL7zwJo888gipqal89tlnWFlZnfM5QkJCSElJobi4eMq1mdVoNJSXl1NcXIy9vT0JCQnnvRo0ICCA3bt3097eftrtp4KJZWoOVwmGTavVUlhYiI+PzwUtDzYzM2PGjBnExcVRVVXFnj17aGhoYDgLOebNmweAoaEhRUVF510pPicnB19fCW5uLgCsX/85APX1jQC8+eab53XeM2lpaaGsrIzp06dPig/+8UypVHLw4EFEIhGzZs0SkvMprL+/n/LyclpbW/nkk0/o6RnAzs6CGTMCmDbNBw8PeyE5nyKMjQ3x8LBn2jQf4uICsLOzoLGxk0OHSsjKklFb24pCodR1mAId0dfXIyLCG4CcnEpUKrVuAxrn9PX1eeaZR9i8eT179+5h8eJFQ/3Yz8XxQnFlZWW0traOYqTjh1arpaGhgT179lBVVUVcXBwzZsw47+QcBms/+fj4UFBQMKz7acH4JSTognPS1NREZ2fnBbU0+18ODg4sWLAAHx8fMjIyOHz4MN3d3ed07B133IGnp8dQL/bzLXaSnZ1NaGgAADJZJSUlZfz444/88ssv/P7778BgSxK5XH6m05wzpVJJRkYGISEhwlKiUaZQKEhNTcXIyIgZM2YMtZgRTB19fX2UlZWxf/9+du7cSU1NDT/++CNSaQ7Tpvng7m6HkZEwaDOVGRsb4O5ux7RpEmbODMDBwZLm5i4OHy4hM1NGTU0rcvmArsMUjDE9PTHh4Z7o6+uRnV2BUqnSdUjj3qWXJrJ58wccPnyEzZs3D+tYS0tLgoODOXbsGErl5B4c6+7u5vDhw2RkZODr68uCBQtwcHAYkXP7+/vT2dk51E5UMLEJd62CszreNzogIGBEZyHFYjE+Pj64u7tTVFREcnIy3t7eBAYGnrE3pomJCb29fQDccMP153390tISrrvuCgBaWtoAkEgkREREIJfLcXBwoKenB2dnZxYtWnTe14HB72F2djaWlpZIJCO/1Ezwp/7+fg4ePIiVlRXR0dFTdl/bVKRWq6mvr6eyspLW1lbs7e3x8PAgNjaWzs5Ofv/9d264YamuwxSMQ0ZGBri52eHmZsfAgIqWlsHaBOXlDVhamuLqaou9vYXwfjJFiMViQkM9KSqqISurgogIL2FA7yzmzInjiisW88QTT7B8+fJhzQj7+PjQ1NREdnY206dPH3eV9C/UwMAAxcXFVFRU4OXlxfTp00e8B7yBgQEBAQEUFBTg4OAw6b6HU43wSSM4q9raWpRK5aglloaGhkRERDB//ny6u7vZvXs3MpnsjMt0vvrqK959910++WTjeV/Xzs6Ojo4uACSSwTYfhYWFaLVa5s2bS09PD8CI7IuqqamhubmZqKgo4U1zFPX395OamoqtrS3Tp08XbqaniO7ubvLy8tixYwdFRUU4OTmxaNEiZs+ejbe3N8bGxkPVbXt6enUcrWC8MzTUx9XVlshIb2bODMTOzoKKiiYOHSqhrKyBvj6FrkMUjAGxWERwsDsWFiZkZVUgl0/u2d2R8Oyzj9Lc3Mzrr78+rOOOt15rbm6mpqZmlKIbexqNBplMxu7du+nu7mb+/PlERESMeHJ+nEQiYWBggNra2lE5v2DsCDPogjPSaDQUFhYSFBQ06numLS0tmTVrFg0NDeTn51NRUUFYWNhJy3+6u7u56667KCsro7S0lLfeeuu8rufp6UV19eCbmL29HdbWVlRUVJCamsrRo+kA3HbbbdTW1vL+++9jZmbGE088gb6+Ph999BGFhYW88cYbZ71Ob28vOTk5TJ8+XWjvNYoUCgUHDx7E3t6eyMhIYSBkkvvf2fK2tjZcXFyIiYnB3t7+lD97ExMT3N3d+fLL77nqqsuEGhCCc2JoqI+Hhz3u7nZ0dPRRX99GenoZlpYmwqz6FCASiQgMdKW0tJ7c3AqioiRCm74z8PLy4K67buO1117j9ttvx8PD45yPNTY2Ztq0aRw7dgxbW9sL2pM9HjQ3N5OXl4darWbatGk4OTmN+n2Jnp4egYGBFBYW4urqKrw3TWDCT05wRhUVFejp6Q3rTfZCiEQiXFxcSEhIwN3dnbS0NNLS0ujt/XPW6/3336esrAxgWMVI/sre3p7W1vah/xaLxcjlcp5++mn09PS46qqr+PTTT5k9ezYffvgBTz/9NMbGxmRnZ7N69WrefPNNHn300TNeQ6PRcOzYMTw8PHB2dj7vWAVnplQqOXz4MJaWlkJyPsn19PSQn59/wmz5xRdfTExMzBmX9YlEIjZt2kRqahrx8Zdx5EjGGEcumMhEIhE2NmaEhHgwc2bA0Kz64cPCrPpkJxKJ8Pd3wczMmNxcoXDc2Tz44J1YWJjzxBNPDPtYZ2dnPDw8OHbs2AXd3+lSb2/v0L2rh4cHCxcuxNnZeczuSzw9PdHT06OiomJMricYHUKCLjgtpVI51PpirBMePT09/P39SUxMxMDAgL1791JQUIBKpWL27NlcddVVvPvuuxdUab24uAhfX++h/+7t7aOuro69e/eiVqv573//C8Dq1TdRUJDK+vVrUavV3HTTTfj6+gCwbt26oaXwp1JSUoJKpSI0NPS84xScmVqtJi0tDQMDg0m5d00w+DOuqakhNTWVvXv30t/fT0xMDImJifj5+Z1zb/t58+Zx7bXXUlQk5cMPPx/lqAWT1fFZ9dhYP4KDPVAolKSnl5GdXUFTU+eETSwEpycSiQgKckNfX4/8/GrhZ3wGlpYW/POfD7B582aOHDky7ONDQ0NRKpWUlJSMQnSjR6VSUVBQwN69ezEwMBj6fBrrWWyRSERwcPDQ/adgYhISdMFplZWVYW5urtOZ3+NLnuLj42ltbWXXrl14eXnx3Xffcffdd5/3MlW1Wk1OTi5hYUHA4GCEQqEYSu5+/nkTNjbWwGCvTxMTY1asWIpE4klubi7NzS3MmROHRqNBKpWe8hpdXV1IpVKhpdooOr5CQa1WExcXJyznmmSO36QNd7b8VAYGBrjxxhvZsmULixcv5I03nhvFyAVTwV9n1W1tzYdm1Ssrm4WZ1klmsHCcB2q1hsLCGqGd1RnccMNVBAcH8Oqrrw772OOt16RSKV1dXaMQ3cjSarVUVVWxa9cuWltbiY+PZ9q0aTrd0ujs7IyZmdnQalPBxCNspBGckkKhQCqVMmvWrHExI2ltbU18fDx1dXXk5+cjk8lwdnbmrrvuYvPmzcMeRCgoKKC3t5fw8MECcHp6ejg6OtDU1ASAj48Xhw//wRdffMMNN1wNwBNPvIBMVoWFhQVarZbU1DRgsLf5X2m1WrKyspBIJFhZWV3ISxecxvHK+D09PcTHxwut1CYRuVxOeXk5MpkMKysrpk+ffl5Vabu7uykqKqKgoIAvvviCAwcO8Omn73DllZeMUuSCqep/96q3t/dSVdVMdXULrq62uLvbYWgovD9NBnp6eoSHe5KVVUFJSR0BAa7j4h5pvNHT0+OWW67hqadepbW1FTs7u2Edb2VlhUQiITs7m/j4+HH7PW5rayM3NxeFQkF4eDiuruPj90EkEhESEsLhw4fx9vY+51VmgvFDmG4SnFJJSQkODg7DflMdTSKRCDc3NxYuXEh5eTlZWVmEh4dz8ODBYZ/r+++/x8rKklmzYoDBkfErrljMwYOp/79X9Tu2bNlKTU09WVl5bN36Gxs2bAJg69atvPvuu7i5uXHDDTcwf/78k85fWVmJQqEgMDDwwl604LQKCgpoaWlh1qxZo1YRVTC2+vr6yMnJYdeuXXR1dTFz5kzi4+NxdHQc9k3PLbfcjKWlJXFxcdx6663IZGV8993HQnIuGFUikQhbW3OioiSEh3vR2yvnyJESSkvrhZ7qk4SBgT4REV60t/cikzXqOpxx64orLkGpVJKcnHxexwcGBtLf309lZeXIBjYC+vv7OXbsGAcPHsTJyYmFCxfi5uY2LpLz4+zs7LCzs5twWwUEg4QhXcFJent7qaioOGXiOR7k5+ezatUqrr76Cjw9fRGJRBQXF+Pn53fOS8nd3Nzo6uqmqqoWf//B/eTLly/ho482cd1117Fu3QdDe3c+//ybE4719vYmKSmJm2+++ZTnlsvlFBQUMH36dGFWd5SUlpZSXV1NfHw8JiYmug5HcIG6u7spLS2ltrYWFxcX5s6de0ErT3p7e/n662+47baV3HTTCvz9fTA3n9gVgQUTj5WVKeHhXvT09FNV1UJamhRHRys8Pe0xNRVmtCYyIyMDIiK8yMqSoa+vj6enva5DGnecnBwwNjY677Zp+vr6REREkJGRgYuLy7iYBVar1UilUkpLS3F2diYxMXFc34OEhISQkpKCj4/PhK+KP9UIM+iCkxQVFeHm5oalpaWuQzmld955BwAnJzveeOMNpFIp9fX17Nmzh7q6unPaF3bzzTfj6OjIZ599PfS1GTOimTMnjszMjKGibp9//jlRUVFDz3nooYdwc3M747nz8/Oxt7fHycnpPF6d4GwqKyspKSlh5syZmJub6zocwQXo6OggLS2N5ORkxGIxCQkJxMTEXPC2kK+++oqBgQHuuus2pk0LF5JzgU6Zm5sQEuJBTIwvIhGkp5eRn19Nd3e/rkMTXABTUyPCw72oqmqmvr797AdMMXK5ArlcgbW19Xmfw9nZGXt7e/Ly8kYusPOg1Wqpq6tjz5491NfXM2vWLGJiYsZ1cg6D7Yvd3NwoKirSdSiCYRISdMEJOjs7qaurIygoSNehnOTAgQM88MADbNy4EYD33ttIeHgY8fHxzJ8/n4CAAHJycjh48CCdnZ1nPJexsTEODvYnVLgUiUS8/PI/KS2VsnLlSvLz87n55ptZvnw5AI8++ijr1q074xtyU1MTDQ0NhIeHj8ArFvxVXV0dubm5zJgx44I+9AW6o9VqaWlp4eDBgxw4cAATExOSkpKIiooakQGXP/74g3vvvZfrr1+On59kBCIWCEaGqakRgYFuzJjhj5GRPllZMnJyKuno6BUKjk1QFhYmhIV5IpU20Nw8/guajaXi4sECun5+fhd0nvDwcBoaGmhubh6JsIats7OT1NRUcnJyCAgIYP78+eNq++fZBAUFUVdXd9b7YsH4ItIKnwpTUldXF1ZWVnR2dp4wU37o0CEsLCwICwvTYXQn02q12NnZ0d4+OEptYmJCV1fXSUvIj1d9Li8vx9PTk6CgoNMui4qNjSE42Id33nnphK8/+uhzbN78XwoKCvDy8jrnGNVqNXv37kUikeDr6zvMVyg4m6amJtLS0oiJiRF6yk9QnZ2d5Ofn097ejo+PDz4+Phe8bFGr1VJaWkppaSlffPEF3333HYsXL+TTT98eF0sixzOVSk1qahFz5gShry90mhhrAwMqamtbqa1tw9LSBB8fZ8zNdVf5WXD+Wlq6KSysJizMExsbYWUXwFtvfcjatR/Q1tZ2wXViysrKkMlkJCQkjFlXHIVCQVFREVVVVfj4+BAQEICBgcGYXHuk5eXl0dPTw8yZM0/4+ulyAYHuCTPogiEtLS20tbUREBCg61BOIhKJePjhh4femB9++OGh5PyHH37gmWeeobu7GwMDA0JDQ0lISEAul7Nr1y7KyspO2bNUIvGhsvLkvVE333wNfX19LFu2jGXLrqSvr++cYiwtLUVfXx8fH58LeKWCU2lvb+fo0aNERkYKyfkE1N/fT2ZmJvv27cPS0pKLLrqI4ODgC06gOzo6WLx4EYGBgVx22WUcPpzKm28+zxdfvCsk54Jxz9BQH4nEiRkzAjAzMyYzs5zi4loUCqWuQxMMk729Bf7+ruTnV9PVJWxdANi37xDz5s0bkSKuPj4+6OvrU1paOgKRnZlGo6GsrIxdu3Yhl8tJSEggNDR0wibnAP7+/rS2tp6y65BgfBIqWAmGFBUV4efnN24rYhsbG6NWD/aVPb4P/L///S9XXz3YBq2pqYn3338fAHNzc2bMmEFTUxN5eXlUVFQQFhZ2wr5wOzs7CgpyT7pOe3sHAJmZmWRmZuLl5cWtt97KI488gqOj4ylj6+7uRiqVjut2IBNVd3c3hw8fJigoCA8PD12HIxgGlUqFVCpFKpUOVbodqUI1JSUlXH755TQ2NvDpp+8QExOFq6sTYrEw7iyYWAwM9PD1dcbV1RaZrJG0NCkeHnZ4eNijpyf8Pk8Uzs7WqFRqcnMriYqSYGY2dQcJtVotmZl5PPTQmhE5n0gkIjIyktTUVNzd3Uet/kxjYyN5eXmIRCJiY2NPe8830RgZGeHn50dRURHx8fG6DkdwDoQEXQAMzlB2dHQQFxen61BOa8+ePcBgYr1ixQqAE5agJyUlnXSMo6MjCxYsoKKigmPHjmFra0toaCgWFhbIZDK8vNxPOiY+fgbr16/F3d2FL7/8nq+//oG1a9fS39/Pu+++e9LztVotOTk5eHp6CvuiR1hfXx8HDx7E29tb2DYwgWi1WqqqqigsLMTU1JTZs2dja2s7IufWaDR88MEHPProo7i6OrFr1/f4+nqPyLkFAl0yMTEkJMSDzs4+yssbqK9vx9vbEWdna2Hgd4Jwd7dDqVSRm1tBVJQEY+PxOeEx2iorq+no6GT69Okjdk4bGxs8PT3Jzs5m9uzZI/o30d3dTX5+Pm1tbQQFBeHt7T3pBnslEgmlpaW0t7djY2Oj63AEZyEk6AIApFIpXl5e43b2HODrr79m//79xMTEDN3sx8TE0Nvbi1qtxsLC4pTHicVifHx8cHd3p7CwkOTkZCQSCVVVlVx00dyTni8Sibj22ivo7OyisrIGfX19/Px8h4rF/VVNTQ09PT3jenBjIlKpVBw5cgRnZ+dxWbRQcGpNTU3k5+ejUqmIiIjAxcVlxG6kqqqqWLVqFbt372bVqut59tlHhQrtgknHysqUqCgJLS1dlJc3Ulvbio+PM7a2wt7micDb2xGlUk1eXhXTpknGbM/0eJKXN1g1PDIyckTPGxwczO7du6mpqRmRFXVKpZLi4mJkMhmenp4kJSWN6/vgC2FoaIiXlxdSqZTY2FhdhyM4CyFBF9Db20tDQwOJiYm6DuWMzM3NueSSS076uqmp6Tkdb2hoSGRkJBKJhMzMTB5//AlUqsHquf+bQPT3y7n00pUUFpYiFovZs2cPc+eenMgDDAwMkJeXR2Rk5ITenzTeaLVaMjIyMDQ0JDw8XJg9mgC6urqGCsAFBgbi7e09ojemMpmMWbNmoa8vZuvWT0lIEJbpCSYvkUiEg4MVdnYW1Na2UVhYjYWFKb6+TpiZCYXkxjORSISfnwu5uZUUFdUREuI+6T/Durt7WLr0RpYsSeKRR+7B29sTGNwqeLbWtMNhYGBAeHg4OTk5ODk5nXcyrdVqqayspLCwEEtLS+bPnz8liqT5+vqye/duent7hb7o49zkWr8hOC9SqRRXV9dzTnQnouN712GwL+SRI0fYsGEDzs4eZGSU09HRO/R4R0cnWVl5KBQK8vLyTpucAxQUFGBjY4OLi8uoxj/VlJSU0NnZSWxs7KRbZjbZKBQKsrKySElJwcLCgqSkJHx9fUc0OW9paWHx4sWYmZmwd+8PQnIumDLEYjEeHvbExfljampIRkY5JSV1KJWqsx8s0BmxWERIiDs9Pf1UVU3+wlxbtmwlOzufl156m8bGZsLCgggJCWTz5s0jfi1XV1esra0pKCg4r+NbWlpITk6mtLSUqKgoZs+ePSWScxic0HJxcaGsrEzXoQjOQrjzneIUCgXV1dUX3KdyPGtvb8fR0RETE5OhPpo//LAVe3sLZs4MwMHBkry8KgoKqpHLB3BxcWLhwsEEYNq0aRQXF5/yvK2trdTU1BARETHpR8fHUn19PaWlpcyYMWPSLjWbDLRaLTU1NezZsweFQkFCQgJhYWEj/jPr6+vj8suX0tbWyvfff4yDw8TpPysQjBQDA338/FyIifFlYEDF0aNSGhs7hP7p45iBgT6hoZ5UV7fQ0jLxe6RrNBpUqlMPDO3YkYyJiQkAPT2DEx7Lll3CTz/9NOK/oyKRiIiICGpqamhrazvn4/r6+jh69CiHDx/Gzc2NhQsXjugWrInCz8+PqqoqBgYGdB2K4AyEBH2Kq6qqwtbWFisrK12HMmoaGhpoa2tDLpczZ84cdu7ciUKhwNbWBrFYjKenA7GxfojFYo4elbJt20FSU48Cg8t2v/nmm5POqdFoyM7OJjAwcFKvPBhrXV1dZGRkEB0dPWVGtCeivr4+jhw5MrS9Iy4ublSq6qpUKlauXEl2djbffLMBicTr7AcJBJOYiYkRoaEe+Pu7UFbWSF5eFXK5cKM9XpmbGxMY6EZRUS29vXJdh3NBbrvtPry9p3PFFTfz4otvsnNnCsXFUt57byMHDqRx3XXXAVBaWg5AZ2c3lpaWo5IAm5mZERAQQFZW1inb6P4vlUpFYWEhe/bsQU9Pj6SkJAICAqZkbQAAa2trbGxskMlkug5FcAbCHvQprqKi4oxLuCeD4OBg1qxZw7p16ygtLWXt2rVoNJoTlk4bGRkQFOSGq6ste/YcZf369Xh4eFBSUsJNN9100jmPLw8SKouPnIGBAdLS0vD19cXV1VXX4QhOQavVIpPJKCgoGJqBGK1VDlqtlnvuuYfffvuNr75aT3R0xKhcRyCYaI7vT7e2NqO8vJH09DIkEkdcXW2n3GzgRODgYElPj5y8vGqioyUYGEzMW289PX3MzMyxtXXiiy++Z+3awba2+vr63Hjjjbz//vv88ssvbN36G+7urnz++TfcfvsdoxaPn58fNTU1lJWV4e/vf9Ljx1d5FRQUYGJiwpw5c4Tq5f/P39+fY8eOTZo2cpORMIM+xRkZGeHg4KDrMEbd2rVrhxKJWbNmoVarT9lf1tLShN7eJj777DMGBgYIDQ1FqVSe8Jze3l6Ki4uJjIwU9kePEI1GQ3p6OhYWFgQGBuo6HMEpdHV1sX//fsrKypgxYwbTpk0b1S0ImzZt4sMPP+TNN5/n4osXjNp1BIKJysBAn8BAN0JDPaipaSUrSzbhZ2knK29vB8zMjCgsrJmw2xKCg/3o6elhwYIFfPfdd6SmprJjxw5aW1v59NNPMTY25sUXX+S7735m7tylgIh//vOfoxaPWCwmMjKS4uJi+vr6Tnisvb2d/fv3U1BQQGhoKHPnzhWS8//h4OCAsbExNTU1ug5FcBpCdjHF+fj4TJgR948++oj6+vrzPv6bb75hz549/Pvf/wYgMzOPvr7+k57n6upMSkoKtra2ODg4kJqaSkZGBnK5HK1WS25uLu7u7tjZCXthR0pBQQFyuZzo6OgJ8/s4VajVaoqKiti3bx92dnYkJCSM+qCeWq3mhReeZ8mSi7jpphWjei2BYKKzsTEnJsYPS0tTMjLKqahoOuuyX8HYEolEBAW5oVCoKC9v1HU452XVquu55JKFPPTQQ8yfP5/58+fz008/oa//54qA1atXU1lZyW+//caePXuwt7cf1Zjs7Oxwc3MjJycHrVaLXC4nIyOD1NRUHB0dSUxMxN198lfRHy6RSISvry/l5eW6DkVwGiLtRB3KE1yQrq4urKysaG9vx9raWtfhnFVbW9tQQqxUKk/4QDgfL7/8Mk8++STXXHMFH3649oTH8vKKmDt3KevWreOhhx6ir6+P/Px8mpqacHZ2pqmpicTERKGA2QipqqoiLy+P+fPnC20/xpm2tjaysrIQi8VERUWN2XvFt99+y7XXXsuuXd8zffrI9tEV/EmlUpOaWsScOUHo60/N/ZiTTXd3P8XFdWi1WgICXLGyEmqkjCf9/QoyMmT4+Tnj5GSt63DOS3d3D3V1DWzbtofXXnuXOXPmsG3bdp2tKBwYGGD37t04ODjQ0NCAk5MToaGhQn2gs9BoNPz4449cddVVdHZ2CnV/xhlhBn2KmyhLtP+3cujOnTsv+HxPPPEEH3/8Md9++xO7d+8/4bGwsCAWLUrgjz9+BwbbUsTGxhIbG0ttbS0wWMFdGNu6cO3t7eTk5BATEyMk5+OIUqkkJyeHgwcP4uHhwbx588YsOVer1Tz77LMkJs4VknOBYJgsLEyIjvbBycmKnJwKpNJ6VCr12Q8UjAkTEyOCg90pKamnq+vkFXwTgYWFOYGBftx//2o2bXqPnTt38eGHH+okFq1WS0vLYBu7uro64uLiiI2NFZLzcyAWi5FIJLoOQ3AaEyM7E0x5Dg4OXHLJYgBeeeWVETnnqlWrWLhwIf/618snJdvz5s1i//4DdHR0DH2tq6sLCwsLgoKCyMrK4uDBg3R1TfzWKboil8tJS0sjODhYKFQyjrS3t5OcnExXVxcLFizA399/TAfyNm/eTEFBAY8/ft+YXVMgmEzEYhGeng5Mn+5LT4+cY8fK6e6emMngZGRra463twP5+VUMDCjPfsA4tnDhXG699ToeeeQRUlJSxvTaXV1dHDx4kOzsbIKCgrCwsKC7u3tMY5joPD09dR2C4DSEBF0wIYhEIj777HMMDAywsBh+O6ft27fT09Nz0jnvv/9+iopKqa6uPeGx5cuXIBKJePPNN4HBGcWSkhJCQkKQSCQkJSVhZWVFSkoKOTk5Qj/JYVKr1aSlpeHg4ICPj4+uwxEwOBNRVlZGamoq3t7ezJkzZ1Rap51JQ0MDDz74IMuWLSEmJmpMry0QTDampkZERnrj4mJNVpaMmhph5dd44e5uh42NGfn51RO+XsDzzz9OdHQ4iYmJ/PHHH6N+vYGBAbKzs0lJScHKyoqkpCQkEgkhISEUFxefVNhXcHoGBga6DkFwGkKCLpgwHB0d6evr47vvvh/WcR0dHSxevJhFixad9Ji7uzsALS1tJ3zd2dmRv/3tRtatW0dTUxOlpaVYWVkNzfQaGBgQFhbGggUL6OvrY9euXZSXl0/4D9qxoNVqhwq6REZGCsVbxgGFQsGRI0coKytj9uzZ+Pv7j/nPpbu7m6uvvhqxWMRrrz01ptcWCCYrkWhwNj0iwpuamlby8qpQKlVnP1AwqkQiEf7+rmi1UFpaP6EHTszNzdi69VOCgwPYvHnzqF1Ho9FQXl7Orl276O/vZ8GCBYSFhQ0lmY6OjlhaWiKVSkctBoFgrAgJumBC0dfXx8TEZFjHHJ/dPnjw4EkVK/38/LCwsODddz85aRb8wQfvRF9fj7fffpvy8nKCg4NPSlosLCyYOXMm06dPRyaTkZycTFNT03m8sqlDJpPR2NhIXFwcenpCYSpda2lpITk5GbFYzIIFC7C1tR3zGLRaLddfv5KcnGw2b/4Ae3uhQ4JAMJKsrEyZPt0XsVhEenoZHR29ug5pytPTExMa6kFbWw91dW1nP2Ac09fXx8PDlba20XkdTU1N7N27F5lMxvTp05k5cyYWFhYnPEckEhESEkJZWRlyudBuUDCxCQm6YNLTarWsXr0aAwMDXn75Zfr7/9yLZ2lpyUcffcTPP29n06bvTjjOxsaa6667kv7+fhwdHc+YuDg5OZGQkICXlxdHjx7lyJEjJy2pFwzuby4oKCAuLm7YAy2CkaXVaikqKuLw4cMEBAQQGxurs84EW7Zs4ddff2P9+teJi5umkxgEgsnOwECPkBAPPD0dyM2tpKKiaULP3E4GRkYGhIR4UF7eOGGLxh3X0dE14gO8PT09HDlyhPT0dLy9vUlISMDJyem0z7e1tcXR0ZHi4uIRjUMgGGtCgi6Y1CorK/Hz82PDhg0YGBjw8ccfc/vtq064Kbn22msJDQ3lyJGMk4739vZm1qxZBAUFnfVaYrEYX19fkpKSMDY2Zu/eveTn5wv7of6fSqXi2LFjBAYG6mSWVvCn/v5+UlNTqa2tZe7cuUgkEp1tNWhpaeH+++9n2bJLufTSJJ3EIBBMFSKRCDc3W6ZNk9DU1El2dgUKhfAZpUtWVqZ4eTlQVFSDWj1xK+5bW1vS3t4+IudSKpXk5+ezd+9ejI2NSUxMxNfX95wKlgYHB1NVVSVMkggmNCFBF0xqe/fupaenh3XrniU19Rc+++wdtmz5mquvvnrog7C9vZ3c3FzmzIk74ViFQoGenin5+fnD6g9pZGREZGQk8+bNo6Ojg927d1NZWTnlZypyc3MxMTHBz89P16FMaQ0NDSQnJ2Nqasr8+fOxsrLSaTxvv/02AwMKXnlF2HcuEIwVc3MTpk/3wdjYkGPHymhtFapf65KHhz2GhvpIpQ26DuW8ubg4UVVVeUHn0Gq1VFZWsnv3bjo6Opg3bx6RkZEYGRmd8zksLCzw8PCgsLDwgmIRCHRJSNAFk9qcOXMwMDBg3boPuOSSlXR0dLFu3bNs3bqVo0ePAoOJuFarxcrqzyRcq9Xy6KMv4enpTURExHld28rKitmzZxMREUFJSQkpKSm0traOyOuaaOrq6qivryc6OlooCqcjGo2GvLw8jh07RlhYGNHR0ejr6+s6LP744w+Skubh6Giv61AEgilFT0+PoCA3fH2dKSysoaysQSh0qiMikYigIHdaWrpobp6Y7VuDgvwpKio+7642ra2tpKSkUFJSQkREBLNnzz7vAeTAwEAaGxtPaJUrEEwkQoIumNT8/f35/fffWbbsKqKjY3jooadxdnbCwMCATZs2AeDs7IxE4s2RI8eGjqura8DXN5DffvuNn3/+mbfffvucZ8ALCwu566672LlzJyKRCFdXVxYuXIirqyuHDh0iPT2dvr6+UXm941F/fz9ZWVlERkYK+851RKFQkJqaSktLC/Pnz8fDw0PXIQHQ3NxMRkYGiYlzdR2KQDBlOTlZEx3tQ0dHL9nZFQwMCFXedcHY2ICAAFdKSuom5LaDwEBfVCrVsKuo9/X1kZ6ezqFDh064X7qQwXwTExMkEgkFBQXnfQ6BQJeEBF0w6SUlJfHuu+/y888/s3BhAn/724MolUp+/fVXCgoKeOyxx+jt7aOmpm7oGBMTC8LCQunoaCI3N5MHHniAgwcPnvVaSqWS1atX88EHH3DllVdSXV0NDM5UBAQEkJiYiFgsZs+ePRQVFaFSTe4bIa1WS0ZGBi4uLri5uek6nCmpq6uLlJQUTExMmDt37pj3Nj+TnTt3otVqSUiI13UoAsGUZmpqRFSUBCMjAzIzy+ntFapg64KDgxV2dhYUFdVOuG1xx47lYGJics4DwCqViqKiIvbs2YNYLCYxMZGAgIAR6+7i7+9PR0eH0FlHMCEJCbpgytDT0+PLLzejUAwuv5o5cyaffvopr732Gt3dXdxyy3XAYFIpkzXi5+fGG288i6enGyKR6JyWWn399dccOHCAV199ir6+Pt5+++0THjcxMSE6OprZs2fT2NjInj17qKmpmXAfxOdKKpXS399PWFiYrkOZkhoaGti/fz+enp5Mnz593LW1++OPPwgJCcTF5fRVeQUCwdjQ0xMTHOyOk5M1mZkyYV+6jvj5OSOXD1BTM3G2xGm1Wr755keWLVt2UvuzUz23pqaGPXv20NjYyOzZs4mOjh7xFXaGhob4+/tTUFAwae+xBJOXkKALphQnJyeee+45fHx8uOSSS1i5ciUWFhY4ONiRlZULQHNzFwMDKtzcbMnLK+LHH//gpptuGkoye3t7T1up9Pjs5LPPrgWgvr7+hLZux9na2jJv3jyCgoLIy8vjwIEDk26vVEdHB8XFxURHR2NgYKDrcKYUrVaLVColPT2dqKgogoKCxt3e/56eHn744Qcuv3yRrkMRCAT/TyQS4e3tSECAKwUFNdTUtAjJzRjT19cjONidioomursnRuu1rKw8ioul3HzzzWd8XkdHBwcOHCAvL4/g4GDmzZs3ql1dJBIJCoWCurq6sz9ZIBhHhARdMKlptVrWrFmDm5srq1atYsuWLeTn51NeXs7HH39MdHQ0KSkpVFXVsmXLj2g0GmSyJry9HdHTExMfP4OgIH+ysrLYtGkTX3zxBebm5tja2lJTU3PS9X7++WcAHn74bvT19fnqq6+46KIk5PKTlwuKRCI8PT1JSkrCzs6OAwcOkJmZecrnTjTHW6r5+/sLLdXGmEajITs7G6lUypw5c8bt1oL8/Hx6e3tZvHihrkMRCAR/4ehoRWSkF9XVrZSW1gvF48aYpaUpnp4OFBbWoFaP/+/9N9/8iLOzM4mJiad8XC6Xk5mZyYEDB7CzsyMpKQkPD49RHzjW19cnKCiIwsJC4XdYMKEICbpgUtu3bx9vvPEGM2ZE8/XXW7j++uv56quvANBoBtus+fv7IxKJSEqaS319B2IxODtbA4Nv7hs2rKWvr5ubb76ZW265ZejcDg4OJ11v3rx5AFhYmDNjRjQAqakHefXVV08bo76+PiEhISQkJKBUKtm9ezelpaUTuh9qfn4+hoaGBAQE6DqUKWVgYIBDhw7R0dHB/PnzsbGx0XVIp6VQKAAwNj739jkCgWDsWFqaMm2aD93d/eTkVKJUTu6aKeONp6c9Bgb6lJWN/9Zr+vr6dHV1kZOTc8LX1Wo1paWl7N69G6VSSUJCAiEhIWPaQeT4QEBl5YW1gBMIxpKQoAsmNUNDQwAuu+wiamqySU7+ceixtLSj5OXlYWJigp6eHoGB/lRWNiOROJ0wqhseHsLRozuoqMggP38/a9c+g1gspri4+KTrHd979cgjz3D48DFWrFiBj4/POe3BNjMzIy4ujri4OGpqati7dy8NDQ0TbnlhfX09NTU1TJ8+fdwtq57Muru72bdvH/r6+sTHx4/7ivm5ubkYGBjg7u6q61AEAsFpGBsbEBXljb6+HpmZMvr6FLoOacoQiUQEB7vR1NRJS8v4br32z38+SFCQH0uWLOHrr79GrVbT0NDA3r17qampGbq3MTMzG/PYxGIxwcHBFBcXT/rCvILJQ/dNcAWCUTRz5kxCQ0O5/fYHMDY24tJLkygqOkhjYxPz519JeHg4v/76K66uLjQ2duLl1YtIdOo3cCsrC6ysLLj55mv48MMvWLVqFfv27cPU1HToOceXvUdGhiKXq/j222+HHbODgwPz58+nsrKSzMxMrKysCAsLw9LS8uwH69j/tlT73++LYHQ1NTWRnp6Ot7c3wcHBE2JgZO/evUyfHomZmfB7IhCMZ3p6eoSGeiCTNZGZWU5IiAc2NuOnG8RkZmxsiL+/C8XFdVhYmGBkND7ruZiYGPPVV+u5994neeSRR1CpVNjZ2REcHIyXl5fOP5NcXFyQSqWUlZURGBio01gEgnMhzKALJjWRSERKSgoAR45kAODk5MDu3QeGPjBWrlzJPffcy7RpMfz7388xb94VdHaevnqtgYEBH3/8BoWFBdxzzz0olYP9StVqNfv27SMkJJCLL15AdXU1R44cOa+4xWIxEomExMRELCwsSElJITc3l4GBgfM631jQarVkZmbi6OiIu7u7rsOZMmQyGWlpaYSFhRESEqLzG6FzodFoSElJIT4+TtehCASCcyASifDxccLX14W8vCrq6tp0HdKU4eRkja2tOcXF47v1mq2tDS+99Bxvv/02KSkpODg44O3tPS4+k0QiESEhIUil0nF9HyUQHCck6IJJ73gF8Xfe+Yienl5gMEE4/kHX3d3NvHnz6O/vJz8/H2NjI4yMDM94zoiIUF566Z98+umn2NnZ4eMjwcbGhh9++IEbbriKvr5++vr6mDlzJr///vt5x25oaEh4eDgLFiygp6eH3bt3I5PJxmWxk7KyMnp7e4mIiNB1KFOCVquluLiYwsJCZs2ahaenp65DOmcFBQW0tLQQHz9D16EIBIJhcHa2JiLCC5msicrK5nGdME4m/v4u9PcPUFs7/lqvabVaamvbSEuT0tc3QHS0D0eOHOS2224dqjUyHtjb22Nra0tJSYmuQxEIzkpY4i6Y9CwtLVm/fj1///vf6e7uwdzcbGjWe/ny5ZiamtDY2Mibb77JrbdexwsvPHFOhatuueVapk+PZNeuFLq6erCwMKezs4vnnluHRqPB3Nycnp4eNm3axKWXXnpBr8HCwoKZM2fS2NhIXl4eMpmM8PDwUxaq04XOzk6KioqYPXu20FJtDGi1WgoKCqiuriY+Pn5CbH/4X8nJyRgaGhIbO03XoQgEgmGysjIjMtKbnJxK1GoNEonjuJglncz09fUICnInJ6cCa2tzzM2NdR0SAO3tPZSVNaDRaAkKcsPObrAOz9tvv8DChcvZtWsXS5Ys0XGUfwoJCWHfvn34+PgI2/AE45qQoAumhKCgIAAOHDjCkSMZfPLJZlatWsVzzz1HaWkpO3bsoKeni0ceuXtYe2LDwoIICxs8t1arZdq0RBITE/n000+xtrYmKyuLqKioEXkNIpEIZ2dnHB0dKS8vJy0tDXt7e8LCwnRSeOU4rVZLVlYWPj4+Qku1MaDVasnJyaGxsZH4+HjMzSfeXtD8/HwCAnwxNR3fhewEAsGpmZsbExXlTU5OBWq1Bj8/ZyFJH2VWVqa4u9tRUlLHtGkSnX6/+/sHKCtroKOjFy8vB9zcbBGL/1yU6+Pj9f/PG1993K2srHBxcaG0tJTIyEhdhyMQnJawxF0wJcyePZuEhARWr17D99//yiuvvMLHH3+Mvb09HR0dbNmyhW++2YCrq/N5XyMvr5DKymruuusuHB0dMTQ0JC4ubqiS/EgRi8X4+fmRlJSEkZERe/fupaCgYGhVwFiTyWQolUqh8MoY0Gg0ZGZm0tzcPGGTc7VaTWNjI5aWEy92gUDwJ1NTI6KiJLS19VBcXCcsdx8Dnp4OKJVqndUAUKnUlJc3kp4uxdBQn7g4fzw87E9IzmGwsODg88df1XR/f3+qq6vH1fJ7geCvhARdMCUYGBjw888/869//YuMjAwee+wxRCIRMpkMKysrampq+OmnbRd0jZ079wGDs/W9vb0jEfYZGRkZERUVRXx8PG1tbezevZuqqqoxvUnq7++nsLCQiIiIoQ9kwejQaDQcO3aMjo4O4uPjJ+TyvIaGBiIiIvjhhx/w9BQKCQoEE52xsSFRUd50d/dTWFgzLuujTCZ6emL8/V2QyZpQKMZuUF6r1dLQ0M7Ro1K6uvqIipIQEOCKoeGpF+Ie73M+HguyWVlZYWtri0wm03UoAsFpCQm6YMowNzfn+eefx8fHBxgc2ZXJZISGhnL//ffz2mvvsm7dB/T29qFWq3n77Q1Dld/PRWLiXAwNDfHz88POzo7bbruN7u7uUZ/Ztra2Zs6cOYSHh1NUVMS+fftoaxub0fW8vDycnJxwdHQck+tNVWq1mrS0NHp7e5kzZw7GxuNj/+Fwffzxx8hk5fz88ybeeedFXYcjEAhGgJGRAZGR3vT3D5CfXy0k6aPM1tYcW1tzysoaxuR6nZ19ZGaWU1HRjJ+fM5GR3lhYnHl7krGxEfb2dpSXl49JjMPl5+eHTCYblzP8AgGASCusSZqSurq6sLKyorOzc8IVmBopMpmMyspK5s+fj1Kp5Omnn+b111/H3NwMNzdnCgtLASgrS8PW1uaczpmTk49MVkVFRTVr175PT08v+vr63HXXXbzxxhujPsusVquRSqWUlpbi4uJCSEgIJiajs8+3sbGR9PR0EhMTJ2zCOBGoVCqOHDmCWq1m1qxZE7oI3/Tp0/Hycmbjxrd1HYqAweWqqalFzJkThL6+sAJGcGFUKjW5uZWIxWLCwjyEVVWjaGBASVqalJAQd2xtLUblGgqFkvLyRlpauvH0tMPd3R49vXOf11u+/Fb09IzZuXPXqMR3IbRaLcnJyXh7eyORSHQdjs4IucD4JcygC6YkrVZLWVkZvr6+iEQiDA0NeeWVVygvL+eee+4lJCSC0NBQrK2tzmkP+S+/bOfxx5/nhx/+YMuWH/jxxz9Qq9XAYIL1wQcfjMl+Jz09PQIDA0lMTARg9+7dFBcXD8UyUlQqFTk5OYSEhAjJ+ShSKpUcOnQIYMJXyK+srCQjI4MlSy7SdSgCgWAU6OvrERExWBwsJ6cSlWpkP3cEfzI0NMDHx4nS0nrU6pFdsaBWa6isbCItTQpAXJwfXl6Ow0rOAa666jJ27dpNWVnZiMY3EkQiEX5+fpSVlQm1EwTjklDFXTAl1dfXo9FocHNzO+HrXl5evPji4NLbq666ira2lrNWSt2zZz+33HIvHh4eaLUaQkPDiIubzZw589HX18fIyIgVK1aM6Z5hExMTpk+fTltbG7m5uVRWVhIaGoqrq+uIVH4tKSnByMgIb2/vCw9WcEoKhYJDhw5hbGxMbGzshJ+N+vTTT7GwMOeii+brOhSBQDBK9PT0CAvzpKCgmuzsCiIivDAwEG41R4OLiw0NDR1UVTUjkThd8Pm0Wi0tLV2UlTViaDg42GJldf73LcuWLeFf/3qFDz/8kNdee+2C4xtpbm5uFBYWUl9fj6urq67DEQhOILxrCqYcrVZLaWkpvr6+J1Ue/V9Lly5l69at1NbWExDge9rnvfrqf5g3bx579uw54/l0wdbWlnnz5lFdXU1ubu5Q/3QrK6vzPmdXVxfl5eXMnTtXaKszSgYGBkhNTcXCwoLp06ePu9+r83Ho0EHmzp2JpeXoLMcUCATjg56emNBQDwoLa8nOriAy0ltI0keBSCQiIMCFzEwZjo5WmJmd/2q27u5+ysoa6O8fQCJxwsnJ6oI/301NTbjhhqvYuHEjzz333LhbbScWi/Hx8UEqleLi4iLczwjGlYl/1ycQDFNbWxs9PT14enqe8Xk5OTkArFnzb7q7e85wvg5SUlKYN2/umFRvHw6tVotIJMLT05PExERsbGzYv38/WVlZ57XkXqvVkp2djbe39wUl+YLTU6lUHD58GDMzs0mTnAPk5xcQFOSv6zAEAsEYEIvFhIS4Y2xsSF5e1YgvwxYMMjc3wdXVltLS+vNaqj0woKKkpI6sLBmWlqbExvrh7Gw9YsnqbbetpLW1le+//35EzjfSvLy86O7uHrPCugLBuZocd34CwTBIpVIkEslZ9/M+/fTTrFixggMHjrBzZ8ppn/fGG89xyy3Xkpp6kN9//32kwz0vUqmU6OhpiMVivvjiC2Cw1VxoaCgJCQkoFAp27dqFVCodVsXdqqoq+vv7CQoKGq3QpzSNRkNaWhp6enrExMRMmuQcBgcehFk0gWDqEIlEhIS4IxKJhOruo8jb2wG5XElDQ8c5H6PRaKiubiEtrZSBARUxMX74+DiNeLFIX19vQkICSU1NHdHzjhQDAwO8vb2RSqW6DkUgOMHkufsTCM5Bd3c3TU1NQ63WzsTa2nqoRdpzz60jJCSer7/+4aTnzZ07kzfffJ6LLprP3XffTVVV1YjHPVxvvvkmmZlZACfNdJuZmTFjxgxiY2Opqqpiz549NDY2nvWcCoWC/Px8wsPDh3qcCkaOVqslIyODgYEB4uLiJvye878KDAwgL69I12EIBIIxNFjR3ROlUkVRUa1QkGsU6Onp4efnTHl5IwMDZ24bptVqaW3tJj29jMbGDkJDPQgL88TE5OzFcM+Xn583UmnpqJ3/Qvn4+NDU1ER3d7euQxEIhggJumBKkUqluLu7n/NeqM8//5xHH32UiIgo6usbeeyx50/Z11wkEvHee69iYmLEsmXLOHLkCGvWrGHNmjVkZWWN8Ks4u2uuuYbrrruOjRs3ctlll53yOY6OjixYsABfX1+OHTvGoUOHzvgBlZ+fj52dHS4uLqMV9pSl1WrJycmho6NjwrdSO50lSy5j9+59Z9wuIhAIJh99fT3Cw73o6ZEjlZ7fUmzBmdnbW2JlZUp5+ekH23t7FeTmVlFUVIubmx3Tp/tiY2M+6rFJJF7k5AzWwBmPTExMcHd3H5fV5gVTl5CgC6YMuVxOTU0Nvr6nL/j2V5aWlrzyyisEBgYCcMst15529tjBwY533nmRjIwMZs6cyebNm/j888+Ii4ujurp6RF7DuZo/fz5btmzhtttuO+NMrFgsRiKRkJSUhJmZGcnJyeTm5p40CNHc3ExdXR0RERGjHfqUVFRURENDA7Nnz8bIyEjX4YyK6667Drlcwe+/79Z1KAKBYIwZGuoTEeFFa2s3FRVNug5nUvLzc6GlpYuOjhNr4ahUaqTSejIyyjA1NSQuzg83N9sxK4p21VWXoacnIjg4mH//+9/jcquDr68v1dXVyOVyXYciEABCgi6YQsrLy3FwcMDS0vKUjysUilOO7B85coS1a9fy7LOP8txzj53xQ23+/Nls3Pg2//3vRvLz9/PZZ++gVCqpqakZsdcxGgwNDYmIiGD+/Pl0d3eza9cuZDIZWq0WtVpNdnY2wcHBmJiY6DrUSaesrIyKigpmz549pq34xpqnpycxMTHs3XtA16EIBAIdMDY2JDzcm7q6dmpqWnUdzqRjbGyAl5cDJSV1aDQatFotdXVtHDlSSl+fguhoH/z8XMa8Fkh4eDBHj+7gnntW8fzzz3P77beP6fXPhaWlJQ4ODpSXl+s6FIEAENqsCaYIpVJJRUUFcXFxp3y8oaGB2NhYPDzc+fjjTwgJCRl67Pj+bHNzM3JzCwkPDz7jtZYtuxSAw4ePceedD+Ph4UFMTMwIvZLRZWlpyaxZs2hoaCA/P5+Kigqsra3R19dHIpHoOrxJp6qqiqKiImbPno2FxeRvP2ZnZ0dra7uuw5h0NBotKpUKpVKDSqVGpVKjVmtQKtUn/PdfZ640msEByZKSOsTiwYFHsViMnp4YfX099PX1MDDQ+8t/i9HX1x96vkAwHGZmRoSHe5KTU4m+vh7Ozta6DmlScXe3o7Gxk5KSenp6+tFotAQGumFnZ67TNmJmZqb8618P4ePjxd13P87ll1/OsmXLdBbPqfj5+ZGWlkZAQIBQZ0egc8JvoGBKqKqqwszMDDs7u1M+vm7dOrq7uzh2LIO///3v7Nu3b+ix0NBQJBIJa9b8G3d3V3JzT1/RHQZn4jdt+p7HH3+eWbNm8c0330yoPcUikQgXFxccHR0pLi6mtLQUOzs7+vv7MTMz03V4k0Z9fT05OTnMmDEDGxsbXYcz6qqrq9m+fTtPPbVG16FMOFqtFoVCiVx+/N/A//8b/G+FYnBLilgsGkqkB/+dmGiLxSe+Dx1P2E1MDIc6Bmg0GlQqDX19iqHkXqX6M/E/ntQbGRlgbGyAsbHhX/7XACMjA6GnsOC0LC1NCQ31IC+vCn19PeztJ//g5FiRy5Xo64tpbOzA09MeLy+HcdUNZOXK5fz883buuecekpKSxtXAtJ2dHWZmZlRWVg5rK6RAMBqEBF0w6Wk0GsrKyggNDT3tTaOXlxc9Pb34+Hixf/9+brnlFv7973/j4+ODn58fpaWlBAcHY2t76uXx/+vzz7/hsceex9XVlT179kyo5Px/6enpoVAocHZ2xtDQkL179+Lr64u/v78wunyBWlpaOHbsGNHR0Tg4OOg6nDFhZWWFSCTC2XlqvN7zpVSq6OmR/8+/fvr7lWi12r8kxYZYW5sPJcWGhvrDvhFXqdRUVbXg4WF/zu2VNBoNAwOqvwwWKOno6B0aLBCJRJiYGGBuboK5ufHQP6HNnuA4GxtzgoLcKSysITzcE2trYfD3QqjVg3/LNTWtODpaoa+vx8CAalwl5zA4AfDKK/9i2rREfvvtN6677jpdhzREJBLh5+dHfn4+Eolk3H3vBFOL8GkpmPTq6uoQiUS4urqe9jl/+9vf2Lt3L1u3bgXgq6++or29jZ9//gWAgwcPUlpayubNH5z1ejExUcDgTHplZSV+fn4X/iL+ori4mO7u7lFdOt/V1UVNTQ0LFy7EzMwMiURCbm4uVVVVhISE4O7uLsySnYeuri6OHDlCeHj4GX8nJxtLS0sCAwPIyMjl+uuv0nU448LAgIru7n66u/uHEnKFQomxscH/J7UmODpaYWpqhJHR8BPw0SAWi4cGCE5Fo9GgUKjo61PQ0yOnq6uPuro25HIlRkYGQ8m6hYUJFhYmGBoKtyFTlYODJSqVmry8KqZN88HMbHIWyBxNWq2WxsZOZLJGjI0NiYqSYGFhQn+/gvT0Mtzd7TAzO7euNWPF29uTgABfUlNTx1WCDuDi4kJBQQF1dXW4u7vrOhzBFCZ8MgomNa1Wi1QqxdfX94zJpJGREV988QUmJiZs3rwZlUqFlZX10ON+fn54e3vzxBMvEhUVhqur82nPFR0dQXb2Xq6++naWLl3Ks88+y/Tp00dsyVR+fj5hYWHA4ODDubQ9Ky0tpba2loqKCpqbm1m0aNFpK7JrtVpEIhGFhYV4eXkNLWu3trYmPj6e2tpa8vPzkclkhIWFYWtrOyKvayoYGBggLS0NHx8fvLy8dB3OmIuNjSM9PUPXYeiMSqWmo6N36F9vrwJTUyPMzY2xsjLFzc12ws80i8ViTEwMMTExxM7uz+Wrf10Z0NzcRV+fAjMzI6ytzYb+netMvmBycHGxQS4fID9/MEk3MBB+/ueqq6sPqbSBgQEVvr7OODhYDt3nmJgY4exsjUzWRFiYp44jPZmHhyt1dXW6DuMkYrEYX19fpFIpbm5uwiSEQGcm7l2AQHAOWlpa6O/vx9Pz7B9QZmZmbNy4EbFYzJYtW7jhhhuGHnNxcWHfvn3MmDGDuXMvx9jYiOXLl/Dww3djZXXyHipPT3c+++w/LFt2C9deey2urq58/PHHxMbGYm9vf0Gvad26dQAEBgaedk/9ce3t7Vx//Uq2bdsODH74GBkZ8uijj/LSSy/xxBNPnPD8J598ktdee40771zNJZdcSlJS0gmPi0Qi3N3dcXZ2RiqVcvDgQVxcXAgJCREqvJ+FRqMhPT0dCwsLgoKCdB2OTixatIhNmzZRW1uPm9vZB5YmOrVaQ1dXH+3tgwl5d3c/JiaG2NiY4eXliLW16YROxofDwEAfGxvzE/ouK5UqOjr66Ojooby8kf7+ASwsTLC2NsPGxgxLS1P09HS/akAwury9HenpkQ8tdxeSojNTKJTIZI00N3fh4WGPh4f9Kf9OvLwcOHJESmdnH1ZW46tDiKOjPRUV4y9Bh8GOI0VFRbS0tEyZLWiC8Uf45BNMalKpFIlEcs57pg0NDfniiy/o6+tj8eLFJzzm4eFBcnIyt956G8uXX83GjVuIibmI5OTUU54rJCSA/Pz93HvvHdTV1XHppZdy0UUXXfBrSklJBuDyyy/H0PDUy0yPe+yxx9i2bTtr1z5DevpOKiqOUVWVyeLFC3nyySfZsmXL0HO1Wi0bNmxArVbj7u6Bu7s7xsanXhq3e/dujhw5wrx589BqtezevZuSkhLUavUFv77JqrCwkP7+fqKjo6fsDeiSJUswMDDg11936DqUUaNUqqivbyc3t5LU1CKKi+sYGFDh5mbLzJkBxMX54+/vioOD5ZRJzk/HwEAfBwdL/P1diYvzZ+bMANzcbBkYUFFcXEdqahG5uZXU17ejVKp0Ha5glIhEIoKD3VEoBigvb9R1OOOWRqOhsrKZtDQpGo2W2Fg/vL0dTzuIZWhogLu7HTJZ4ylbyOqSo6MDDQ0Nug7jlI53rSkrK9N1KIIpbGrfHQgmtf7+fpqbm4mKihr2sacr7BYQEDA0g/3444+zcuVKbrvtfqTSI+jpnbw0T19fnwcfvJO6ugb27k294GrdtbW1lJfLAGht/bOPbHd39ymroYaGhgLw8MPPYGBggKGhAQYGBjg6Ds7iX3/99VRUVPDEE08gEonYuHEjP/zwA4GBgUPH/tVXX301tLrg66+38Pvvf9DW1kZubi6VlZWEhobi4uIyZZPQU6murqayspJ58+ZN2KKBI8Ha2pqkpER+/nk7d955i67DGTEDAypaWrpoaemio6MXc3MTHBws8fV1xsTEUPhbOEdGRgY4OVnj5GSNVqulv3+A1tZu6uvbKS2tw9raDHt7S+ztLYW965OMvr4eoaGeZGaWY25ujJOTta5DGje0Wi0tLd2Ulzegr683rKJ6Hh521Ne30dbWc8KWE13z9HSjurqGvr4+TE3H1+w+gLe3Nzt37qS/v19YHSjQCWEGXTBpVVVV4ejoeN5vrps3byYsLIyvv/6agYGBkx7v7e2ltbUVc3OzMxZvsrGxZs2au5DL5cyaNeu8YjkuPT0dgJkzY8jOzqa4uJiZM2dgaWnJ6tWrTxolv//++6moqOCrr77ilVde4YYbbmTJksswM/uzGv1LL7009P+XLl3KTTfdRGRk5GkTyTfffJMZM6azbt2zbNu2nba2Nuzs7Jg/fz4BAQHk5ORw8OBBOjs7L+i1Thbt7e1kZ2cTExODubn52Q+Y5K666moOHUqnqalF16FcEIVCSW1tG9nZFRw+XExjYwe2tubExfkTHe2Dh4c9pqZGQnJ+nkQiEaamRnh42BMd7UNcnD82NuY0NnZw+HAx2dkV1Na2DbWYE0x8pqZGBAe7U1JST3d3v67DGRd6euTk5FRSWlqHp6cD0dE+w6p4r6+vh6enw7ibRY+NjUKlUg3d04w3JiYmODg4UFVVpetQBFOUMAQtmJS0Wi1VVVWnnQU+F2lpaeTn57Ny5UruvPNO1q9fP/SYUqkkKSkJIyN9vv56w1lvwp9/fh19ff384x//OO94gKFZ8rlzZ/D66+8RFBSEn5+ERx+9h9deexe5XM59992HRqOhrq6OiooK5HI5O3fuJDk5eajvMYCzszOJiYlce+21Q1+rrq5GrVbj7e192hg8PT34+edfaG4eTLBaWlqwtbXl6NGjWFtbk5iYSElJCfv27cPT05OgoCCMjKZmdV65XE5aWhpBQUE4OjrqOpxx4YorruDOO+/k9993ceutF1bBd8eOZLZt20NISCC33379BSXDvb19KJVKrK2tTvscrVZLW1sPdXVttLf3YGlpir29JUFBbhgZTd2VEWPB2NhwaL+tQqGkubmL5uZOysrqsbW1wMXFBltbc2FAZIKztbXA29uB/PwqoqN9MDScmn9XAwMqKiqaaGzswNXVltBQj/MuoOjqakNNTStNTZ3jZmVCcHAA5uZmHDp0iHnz5uk6nFPy8vKioKCAgIAA4X1FMOZE2vE0pCYYM11dXVhZWdHZ2Yml5dl7e080LS0tHD16lEWLFp13a6LMzEyWLFlCfX09AOXl5UgkEgAaGxtxdnbm5Zf/yd//futZz/X559/wwAP/IjExkdtuu43Y2Fh8fHxOuTc+OTkZCwsLpk+fftJj/f392NnZcc01l7N06SIqKqq49torMTc348svv+Opp16ho6Nr6PkmJsaYmJjg4+PFjTdeTXz8DOzsbKioqObjj7/ku+9+QV9fn4iIcAICArn00kvZv38/O3ZsZ+XK63nqqaeGYiwoKKClpYUZM2bwn//8hwMHDhASEsKLL77Iyy+/zD//+U9MTU355z//yZNPPklPTw/5+fm0trYSGBg45fqKqtVqDh48iKmp6ZTed34qiYmJKBQ9/Prr5vM6XqvV8tpr7/LKK+/g7+9HaamUZ599lPvu+9uwz1VTU8+PP/7O66+/R19fP/7+PnR39/Cvfz3EtddeAQzOltfXt9PQ0I5WO1h52tnZ+rStxiYKlUpNamoRc+YETdjq6XL5AA0NHdTXtyMSiXB2tsbFxUYYMJnAtFotRUW1yOUDREZ6T6nPDY1GS11dG5WVTVhZmeHj44Sp6YUPcDc0dFBR0URcnN+4+X4uW3YrlpZ2/PTTT7oO5ZTUajU7duwYkeK+49VkzwUmMiFBn6Im+x9lRkYGBgYGhIeHX9B55HI5Tz31FGvXruXLL788obL7ypUr2bbtD5544n5mzYohNDTwjB98v/22kzff/JBjx7KBwaJzBw4cOKHCfHV19dB/b9iwgb/97eSE45lnnuHFF19EpVLh7OzI4cN/YGU1+DPs75eTm1uIiYkxjo72ODranzExbGpq4euvf6CwsBR7e2eCg8P48cfvcHKy58svv+cf//gH77//PiqVisDAQMrLy1m9ejUffvjhCeeZOzeetLQ0BgaUXHRREjt27PyfazSRm5sLQFhYGE5OTqeNZ7LQarVkZWXR1dVFfHz8KesTTGU//PADy5cv57vvPiEpafizJxs3fsWaNf/mxRdf5IknnuBf//oXL730Er/+upk5c+LOeKxGoyEzM5dt2/awbdte8vIKMTQ05JJLLmHmzJnU1dXx888/M2tWNC+88BT19e20tfVgY2OGi4sNdnYWk2awZTIk6Mdptdqh/ert7b3Y2poLs+oTmFqtIStLhrm5MQEBrlPiZ9jW1k1ZWQMgwtfXGVvbkdsSpdVqOXasDGdnG9zdz9z9Zay8/PLbbNz4NU1NTeP255ubm4tSqSQ6OlrXoYyKyZ4LTGRCgj5FTeY/SqVSyfbt25k7dy5WVqdfrnqu1Go1xcXFBAcHn/Ah0trayu23r+LXX39DrVYTHz+Djz9+EyenM7flaGxsJiengIcf/jfW1rbs3Zs81Eu8p6dnaBl7UlIiO3fuOuU5ioqKCA4OxsTEmMrKjAsuPKZSqUlLKyUw0A07Ows2bNjEY489x1133cV7773Hxo0buf3227n++uV8++3PZGZmEhYWxtatW0lOTsbOzo53332XsLAwPvroI/z8/E44v0ajQSaTUVxcjK2tLWFhYZN6P3Z5eTklJSXMnz9fKDBzClqtloSEBKqrK9i79wcsLc+9eFFaWiaXXXYDd955J//5z3+Awd+vmTNnoNEo2bnzu5Nu9np7+0hOTmXbtj3s2JFCU1MzNjY2XHrppSxdupTFixcPvVc0Nzfz2GOPkZSUiI2N9aSZLT+VyZSg/y+5fID6+g4aGgZn1V1dbXF1tZlUr3EqUCiUHDtWjpeXA25utroOZ9T09SkoK2ugq6sPb29HXFxsEYtHPmFtbe2muLiWuDj/cfG3sHv3fq6+ehUlJSX4+/vrOpxT6uzsZP/+/SxatGhSFnidzLnARCck6FPUZP6jrKiooKKiggULFozJ9fr6+ti1axerV6+mo6OD+PgZLFqUwFVXLcHW9vRV2wsKSliy5Ho0Gi1OTo74+fnx3nvvM2vWLBobG/H09GD79h289dZbXH/99UP7tFpaWliy5FIKCwvZtet7AgJ8L/g1yGRNdHb2EhnpjUgk4tChdC69dCWLFi2ivb2NtLSjLF16MRs2vMHMmZeQmHgR9913HzExMZiYGNPd3YNYLMbKygp7ezvmzZvPM888g7u7+wnXUSgUFBUVUVVVhUQiITAwcNJ96LW0tHD48GFmz549NPAiOFlpaSkxMTHMnTuDV199CldX57POohQVlbJ8+W34+PixZ8+eE9oM7tmzh8TERN5992VuuOFqamrq2b59cJZ8//7DKBQKgoICWbr0cpYuXcqsWbNO2GKiUCgoLy+nsLAQqVTK3LnTCAryHrczOyNhsiboxx2fVa+ubqGvT4Grqx3u7rZTvr3dRNLZ2UdOTgXh4V7DKo42EahUaiorm6mra8PZ2Rpvb8dR/d3UarVkZ1dgbW2Gt7fua6J0dnYhkcTw8ccfs2rVKl2Hc1rJyclIJBK8vLx0HcqIm8y5wEQnJOhT1GT+o9y3bx8eHh5D+8XHSmNjI5s3b2bbtj+GZr4/+ugNrr566RmOaeazz76mp6eXjRu/oq9vsHLt0qUX88svO/Dx8aG8vBxnZ2ekUil1dXUsXbqUtrZWvvvuYyIjz78I3nEDAyqOHCklMtILS8s/251s3fobb7yxHj8/by6/fDGXXpqEsbERixdfi62tE0FBQXz99VdkZe3h6NFMSkrK6erqpr6+kf/+9zeMjU2QSqWnLBDX1dVFbm4uXV1dhISE4OnpOSkSIYVCwd69ewkKCjpjoT3BoJ9//plly5ah0WhwcXFi+vQIZLJqenv7cHV1wtXVGbVaTX19I3V1jdTW1hMUFMTOnTtxcXE56Xy33XYbX3zxBT4+XkilMvT19Zk3bx5Lly7lsssuO2llBwzWdZBKpVRWVtLR0cFrr72Gt7crX3zx7lh8C3Rqsifox2m1Wjo7+6iqaqazsw8XFxs8POyFfeoTxOCe7GZiYnwnxeCKVquloaEDmawRMzNjfH2dMTc3HpNrd3b2kZtbSVyc/7hoVbhw4XKCg8PZvPn86pGMhfLycmpra5k7d66uQxlxkzkXmOiEBH2Kmqx/lN3d3SQnJ7No0aITZtdGmlarpaSkBHNzcwwNDbn++pV0dHRw9dUrSEpKIiYmBoAXX3ySu+667ZzOeehQOpdddgNRUWF8+OFaYmMvBuCTT97ivvuexNbWjra2NpydHfj224/x8RmZ0dzS0noUCiVhYZ5nfzKwdu17vPjiW4jFYmJiItm+/duTnvPDD7+zatX9HDp0iJkzZ57yPIM3KQ3k5eUN1Quwsxsfe+POh1arJS0tDZFIRGxs7KQYcBgL1dXVZGZmsn//ftLT0/H398fa2pra2lqqq6swMDDE3d0dNzc3vL29ueGGGzAzO/VMmkaj4cUXX6SsrIxLLrmERYsWYW1tfcrn9vT0UFpaSk1NDSYmJrz11lts27aNBx5YzSOP3D0lOg9MlQT9f3V391NV1UJrazdOTlZD7fAE45dWq6WgoBqtFkJDPSb0e2tHRy9lZQ2oVGp8fZ11UtMiL68KIyMD/P1PHuQca8888zpff/0T9fX14/bnOjAwwPbt21mwYMHQFsTJYrLmApOBkKBPUZP1jzI/P5/+/v6hBHm03HPPPbz33nuYmJhw1113sW7dOqKiwigultLfLwdgxozpbNv2NTBYKdrU1PiMS94B6uoasLW1wdjYiG3b9mBvb0tMTBQpKQd54IGnSEqax7///TDm5iOz1K+/X8HRo2VMn+6Lmdm536SmpBxk795UIiNDWbbs0pMeHxgYICFhGV5ePrz66mu8+OKLWFlZsWjRIpYuXXrCsna1Wk1ZWRklJSU4OTkRGhqKqanpSecc7yoqKiguLiYhIWFUB4cmM61Wy5133klGxjE6Ozvp6Oikr6+PgIAAVq9efUKbQpVKxfvvv4+xsTG33347enp6ODg4kJiYyPvvv4+pqSnGxifPSvX19VFYWEhdXR2urq6kpKTwxBNP4OPjxXvvvUJ0dMRYvmSdmooJ+nG9vQqqq1toaurEwcESicRxUtYZmCyUShXp6WV4ezvg4jLxtg7J5QOUlzfS1taDp6c97u52Oqum3tsrJyOjnJgYP0xMdPs7n5ycyrJlt5Kbm0tYWJhOYzmT9PR0TExMLqh173g0WXOByUBI0KeoyfhHqdFo2LFjB9HR0aPWc/qRRx6hsrISqVRKZmYmMNgySiqVYmpqxG+/bSYvr4jvv/+FWbNiue66K/n++1/4298ewtvbk/T0HeOqondRUS0iEQQGuo34ud94Yz1vvbWBSy65hG+//ZagIH+KikpZuvQyfvzxp5NuTuRyOQUFBdTV1eHn54efn98p29CNR93d3aSkpDBjxgwcHM5cJFBwen19fZiZmREU5M/FFy/A0tKC1tY2PvjgMzw9PamsrBx67k8//cSVV14JDHZEiIqK4pdffjnhfLNmzeSjjz4mNDQUpVJJSUkJMpkMV1dX9PX1+dvf7iA9/Rj33nsHjz9+H8bGU2smdSon6MfJ5QNUVDTR3NyFm5sdnp72U/Z7Md61t/eQn19NdLTPhFn1oFZrqK5uobq6BQcHKyQSx3GxtaKoqBaAoKCR/+wfjv5+ORJJDM899xyPPvqoTmM5k6amJjIyMrj44ovHTZu6kTAZc4HJYvL8lgmmvKamJsRi8aglSLW1taxdu5bvvvuOiooKFi9eDMB1113Hf/7zHwoLS6ipqWfu3Jm8/faLXHfdlVRV1XDXXY/h5+dHRUUVb765flRiOx8KhZKmpk48PEanv+eMGdPo7u6mubkZAwMDduz4lrVrn+GXX36lvLwcgE8++YRFiy5my5YtGBgYEB0dzZw5c2hqamL37t3U1NQw3scQNRoNx44dQyKRCMn5BUpNTQVg7dpn+Pvfb6GuroGPP96Mo6MjzzzzzAnPdXV1Hfr/1dXVJyTnzz77KK+99m8OHTrM3XffTXl5Obt27aKjo4PZs2ezZ88e4uLiaG9vZdu2r3nmmUemXHIuGGRsbEhQkDtRURK6uvpISyultrYVjWZ8v+9MRTY2g63zCgtr0Gg0ug7njLRaLY2NHaSlldLe3kNkpISgILdxkZwDeHra09TUiUKh1GkcJibGXHbZRXz00Ufj+mfq4OCAWCymqalJ16EIpgghQRdMGpWVlaNabMzJyQlbW1uuv345SuUArq6uZGdnc8cddxAdHY25uTnXXHMH333389AHzdatv2FoaMjWrVt56KGHeOmlt3nrrQ/HRdJZW9uKra35qM1EzJkzg8TEuezduxelUolUKqO2tgF7e3skEgkdHR2sXr2agwcPcv311xMZGck333yDhYUFc+fOJSQkhPz8fPbv3097e/uoxDgSCgsLAQgODtZxJBNbR0cHN998M35+En7/fRfR0Un88MMfPP/885SXl3PbbSfWcoiJiSEqKhInJyfMzMyIjY1i9eqbWLPmH/j6etPd3UNcXBwPPfQQMpmMadOmYW9vz2WXLeHRRx/ljjtuICXlJ2Jjp+noFQvGEwsLEyIjvQkIcKO2to30dCktLV3j4r1a8CeJZHB1XEVFs44jOb2urn6ysmSUlzfi4+NEVJQES8vx1W7T1NQIW1tzamvbdB0Kt99+A1KplJ07d+o6lNMSiUR4eHhQVVWl61AEU4SQoAsmBblcTmNjIx4eHqN2DX19fVasWMG+fYd58sn72bhxI9deey1PPfUUl1++lJ6eHjw8vFi9eg0JCcvZtm0PSqUSfX19IiIi2LBhA3fffTfPPruWe+55HKVSdyPXKpWaurr2UZs9P+6KKy4BIDY2isjIUHbuTGHx4sXo6elhamqKRqPhhReeYMeOb3F0tOa6665j7tx4ent78fDwIDExEQcHB1JTU8nMzEQul49qvMPV3NyMTCZj+vTpk2rZmy6IxeKhgZxNm77nscceQyaT8dhjj52yKJxIJOLw4SMUFxfz+++/U1RUxoYNm1i37gOeeup1jIxsuO+++wgPD2fBggV8++23TJs2jcbGBn777SteeOEJTEzGpnKyYGIQiUTY21sQE+OHu7sdJSV1ZGdX0NPTr+vQBP9PLBYTFORObW0b7e29ug7nBAqFkqKiWrKzZVhbmxMX54+Tk/W4LX7m4WFHXV0bKpVap3HMnDmd0NAg3nvvPZ3GcTaenp40NDSgUCh0HYpgCpgYGzwFgrOoqanBzs7utNWdR8qNN97Ihx9+SHh4CMnJP/L882/wwgsvsHjxQmCwMnRycjJPPfUUK1feCYChoSGhoUHU1NRy9GgamzZtYtWqVchk1TzwwGo6O7vIzy/m2LFsnnjifmbPjh3V1wBQX9+OmZkRVlajW4zt8ssXIZXKuPvuwR6nhYUl3HXXvchkMlauvA6A0NBAYmKi2Lr1Mw4cOMLSpTfyxx9/sGLFChoaGmhtbWXhwoXk5+eze/duuru7mTZtGoGBgaMa+9kMDAyQkZFBWFjYpKns2tzcTF5e3tBe7b6+PqysrIiIiCAhIQF7+9Eb0LG0tOT777/nyJEj3HHHHedU0d/IyAgjIyPmzZtHXl4e+/fvx8bGBpVKhb6+Pq6urkgkEjZs2MD999/P6tU38fTTD2NmNvGKEArGjlgswtXVFkdHK6qqWsjMlOHmZouXlyN6esJAnK6ZmRnh6+tEUVHNuGi9ptFoqKlppaqqBVtbc2Jj/SZEwUFLS1NMTY2orx/9wfozEYlEXH31Zbz++vs6i+FcmJmZYWdnR3V19SlbdgoEI0koEjdFTabCEFqtlr179+Lv7z+qM+gw+EEcFRWJWj3A779vwcrKkr6+fkxNTdi1ax8rVtzO77//zqxZsygoKCAlJYVPPvkEExMDLr00iXXrPqC/v5/Dhw9z6623Du3FdnZ2xtjYGKVSwU8/fYGvr/covgYtaWkl+Pm5YG8/dj/73t4+3N0j+fDDD9m3bx87d27no4/eYN68WUPPKS+vZPr0JH7//XemTZtGcHAwHR0dLF68iOeee56SkhKampowMTGhsrKSJ598UifJsVar5ejRo2i1WuLi4sbtDMm5UKvVbNy4kU8++ZgjR9IA0NPTw83NBXNzM9ra2mloaEJPT49LLlnM+vUf4uam28JCp9Lc3Ex2djaGhoZERUUNva8plUqioqJwd3fkm28+0nGU44tQJO7c9PbKKS6uQ6lUExDgio3N6A4EC85Oq9WSn1+NSCQiJMRdJ+/BWq2W1tZuysoa0NfXw9fXGWvrifW70dzcRVlZA3Fx/ojFuvsc++abn/j73x+mt7d3XHdxqa6uprS0lISEhAn9uX/cZMoFJhthBl0w4XV0dNDf34+Ly+j39BSLxWzZ8jVz585lxYo72Lr106GWZ4mJc5k+PZJLL730/3thx5CSso+WlhbeeOMN8vKKmD9/HgYGBsydO5f8/HxqampwdnbG3Nyc2tpaEhMTufTS6/nuu4+IiBiddh7NzZ2IxWLs7MY2sTUzM2X27Fheeukl6urqWLPmHyck5wCff/4NMLhlYcuWLXR0dHDvvXfw6687iYuLAwZ/BpdeegnXXHMtH374IUuWLBnz/d9VVVW0tbVN+A/pxsZGVq5cSXJyMosXL+T9918lNnYaXl7uJ7TCq69vZNu2Paxb9wHx8fHs378fd3d3HUb+p4GBAfLz86mtrSU4OBgfH58TfiYvvvgixcXFrF//sg6jFExkZmbGTJsmoba2jfz8KhwcLPH1dRYGNXRIJBIREODKsWNlNDZ24Ox85hamI623V45U2kBvrxyJxBFnZ5sJ+Vlgb2+BTNZIc3MnTk7WOovD3X3w/k0qlRIRMX5bXbq4uJCTk0NHRwc2NmP7OyeYWoS1WoIJr6qqCnd39zFryRUaGsr27dspKpKyYsUddHV1A4M3DMuXLwEGi56kpR3lnXfe4bnnnuPHH3/k9ddf57vvvh86j7GxMX5+fpibmwPg5ubG/v378fT04uKLr+Wddz4iN7dwRIsUabVaqqtbcHe308nNxE03XUNlZSW33349Dz5450mPr1hxOZGRoSxfvpyHHnqIiIhQ7rjjRo4c+YOffvqC++9fTUJCPA88cBuBgU7U1FSTn59PVlYWAwMDY/Iaenp6yM3NJTo6GiOjiVv5W61Ws2TJEvLzc/nll0189dV6Vq5cjp+f5ITkHMDFxYnbblvJtm3foNEoufLKK8fs+30mdXV17NmzB7lczsKFC/H19T3h93rLli08++yzPPro3YSHh+gwUsFEJxKJcHe3IybGF4VCxdGjUpqbu3Qd1pRmaKhPYKAbUmkDfX1jsy9YqVRRWlpPRkY55ubGxMX54+JiOyGTc/jz97q6ukWnBREjIkIQiUQcO3ZMZzGcC319fdzc3IRicYJRJyxxn6Imy7IWlUrF9u3bmTVrFra2tmN67cOHD7N48WLc3JzZuvVTnJwc0Gq1VFXV0NjYwqJF1/Dyyy/z+OOPD+u8crmcNWvW8MEHH6DValm8eCEbNqzDwsL8gmNua+uhqKiGGTMCdLKXcnCAoA5Pz9MvkdZoNKSkHMTb2wOJxOu0z1u//jP+/e/XmTdvLs8++xwdHR0EBQXh7e09agXbtFotqampWFlZER4ePirXGCvfffcd11xzDdu2fcOMGdHnfFxWVh4XX3wNTz755Emtz8aKXC4nJyeH1tZWwsLCcHc/9RLXv/3tb+zZs5P09J0T9gZ6NAlL3M+PVqulqakTqbQBa2tT/P1dMTQUFiTqilRaT0+PnMhI71H7O9dotNTXt1FR0YylpQm+vs4Tphf72ajVGo4cKSEoyB1b2wu/zzhfM2dewsKFF/H+++N7L3pbWxuHDh1i0aJFYzYxNFomSy4wGQkz6IIJrb6+HhMTE50sNZo5cyapqal0dHRz5ZW30NXVjUgkwsvLA1PTwZYqmzd/SVlZ2bDOa2xszHvvvUd7eztffvkl27bt4bPPvgagq6ub3bv309p6fq1RqqtbcHOz1VmhI5FIdMbkHAaXsCckxJ8xOQf44otvGRgY4Oeff2H27NlMnz4dmUxGcnLyqPUqraqqoq+vb1K0VPvoow3MmRM3rOQcICoqDAcHO9LS0kYpsjNrbm4mOTkZkUjEwoUL8fDwOO1NuY2NDeXllcjlQtVdwcgRiUQ4OVkTG+sHiDh2rIz29h5dhzVlSSSOyOUDNDZ2jMr529p6OHasjNraNoKC3AgP95o0yTmAnp4YV1dbqqtbdBpHSEjAUNvS8czGxgZjY2Pq6+t1HYpgEhMSdMGEVlVVNaq9z88mNDSU3bt3U1vbwP33/3NoiVhYWBD79/9CU1Mjy5cvO6+lY1ZWVixcuBBDQ0N+/303N954F5GRCVx99Sr8/Wdy3XWrh9Xuo7u7n66uPlxdx3alwWi5+eZrMDQ0HBrBdnJyIiEhAS8vL44ePcqRI0fo6Rm5m2aFQkF+fj7h4eETftQcIDs7h7lzZw77uJqaetra2omMjAQG+8BnZmaOdHgn0Wg0FBYWcuTIEYKCgoiJiTnjFoOtW7fy+uuv4+rqrNOWhoLJy9BQn5AQd7y8HMjLq0ImaxT6puuAnp4efn4ulJU1olSqRuy8/f0K8vKqKCysxsXFhpgYvzGv3TJW3Nxs6erqo7tbdy0FjY2N6Ojo0Nn1z9XgRIyXsMxdMKqEBF0wYQ0MDNDa2qrzitJBQUFs3LiRH3/8gw8//Hzo62FhQSQlzSMvLx+V6vxuGlxcXPjll1/o7OxBodBwzz33kpWVxfr169m7N5Vnn117zueqqWnF2dlG5y1pLoRWq+WLL75l5co7ef75N9DT00Ot/rOHq1gsxtfXl6SkJIyNjUlOTiY/P39EErT8/Hzs7OzGpBjhaFMoFDQ1NeHm5jzsY597bi1WVtY8+eSTvPLKK4SFhREdHc0111xDS8vozMD09fWRmppKfX098+bNw9v7zEtZpVIpK1as4MorL+Ho0R1YWk7Om2qB7olEgy3ZoqN9aGnpJiurArlcGBAaa/b2llhZmVJe3njB51Kp1JSXN5CeXoahoT6xsf64u9vptMr5aDMw0MfZ2ZqamladxXDppUlkZWWxa9cuncVwrtzc3GhtbR0XtVgEk5OwB32Kmgz7TqqqqpDJZMyfP1/XoQCwZs0a3njjDRIT5zFjxjSqq+vYtOk7fH19kUqlI369559/npdeepH8/P3Y2p55ib9cPkBampTYWD9MTMZ/f9ZT0Wq1PPjgU3z++TdDBcEWLFjANddcw6+//kp6ejqGhoYsWrSIGTNmANDZ2Ulubi49PT0EBwef92qLlpYWDh8+zMKFC8d1C5hzVV5ejq+vL1u3fkpCQvw5H9fT04uHRxSvvfYaXV1dvPDCCzz44N/x95fwr3+9gqGhEV999RUJCQkjFmt9fT2ZmZm4uroSFhZ21tUL3d3d3HTTTaSkJFNQcAATE+MRi2WyEfagjyy1WoNUWk9LSzeBga5j2sZSMPg5d/RoGeHhnufV7kyr1dLQ0IFM1oSpqSF+fi6Ym0+d94/+/gGOHpUSF6ebPu5arZZFi65FrRZx9OjRUaslM1KSk5Px8fHB09NT16Gct8mQC0xW4/u3XyA4g/r6epydhz8DOFrWrl3Lp59+ilIJH374Jfn5Um699VZ27NgxKtdbvXo1RkbGXHzxNdTWnnkvVE1NK/b2FhM2OQfYvPn7oTZss2fP5vHHHyc4OBhfX1+WLVvGxo0f8+ab65g5cyZr1qxBo9FgZWXFnDlziIiIoLi4mJSUFNrahrd/X61Wk52dTVBQ0KRIzgFqamoAcHMb3moAExNjvLw8eOaZZ3jhhRd4+umHefrpNaxcuZzU1F/x9/cmMTGRhx566ISVDedDrVaTk5NDRkYGkZGRREVFndPWgkcffZSffvqJl156UkjOBWNKT09MYKAb/v4uFBXVIpXWo9FodB3WlGFsbIi3twOlpcP/vnd29pGRUU5VVTP+/i5ERnpPqeQcwMTEEDs7C53NootEIp555hEyMjJ47bXXdBLDcLi4uNDQ0KDrMASTlJCgCyYklUpFc3PzuFpuLBKJuPXWW0lJSaGlpYVjxzL49NNP8fHxGZXrOTk5cd9991FWVkFDw+mLoimVaurrO3B3tx+VOMaKqakpZmamTJ8eydtvv4Wvry/R0dHU1dWxb9/PFBQcQCpN4+WX/8lbb73FrbfeChxfgupKYmIiLi4uHDx4kPT0dPr7z22vnVQqRSwWj9rPUReOJ+jOzo7DOk5PT4/XX/83BgZ63H33Kh54YPXQY87Ojvzww2c8//zjvPPOO6xYseK8awDI5XIOHDhAe3s7CxYsOOdtLCkpKXz44Yc8+ug9rFy5/LyuLRBcKEdHK6ZP96Wrq4+srAoGBoQl72PFzc0OkQiqq88tyZTLlRQW1pCTU4m9vSUxMX44OFhO2a4PHh521Nd3oFRe2ADr+Zo9O5Y1a/7BE088wT333ENrq+6W3J+Ni4sLTU1NFzwYLRCcirDEfYqa6Mta6uvrycvLIykpacp+kObm5hIbG8uqVSt56aV/nvZ5lZXNtLf3EBUlGcPoRldvbx87diSTnJyKh4crDz989wmPf/LJZh5++BkqKirw8jqxGnx/fz8FBQXU19fj7++Pr6/vaWdme3p6SE5OZvbs2WPexm80ZWRkEBMTw8sv/5M777xlxM//xx+7uf32B7C2tmHDhg1cdtll53xsZ2cnhw8fxt7enqioKPT0zm3pdXNzM9HR0Xh7u/Hjj5+f83FTmbDEfXRpNBqKi+vo7OwjLMxzys3I6kpXVx/Z2RXExJx+S5daraG6uoXq6hYcHCyRSJwwMjIY40jHp6wsGba25nh6Oujk+hqNhnff/YS1a98nJiaGPXv26iSOs9FqtezatYvw8PBxtZpzOCZ6LjCZCQn6FDXR/ygzMzMxMDAgLCxM16HohFwuJzY2Bo1Gye7dWzE2PnU1a41Gw5EjpQQEuE7a6rN/1dLSyhVX3ExBQQk33XQTLi4uLFmyBJFIxJ49e1i5ciUBAQG0tbWRm5uLQqEgNDQUV1fXEwZ7tFothw4dwszMbKhi+WSyevVqvv32G44e3YGDg92In7+qqoaHH36WnTuTeeSRR3j11VfPOphWX1/PsWPHCAgIwN/f/5wH31QqFRdffDG5uTkkJ/8w7KX7U5WQoI8+rVZLVdVgIhgU5CbsSx8jJSV1yOUDhId7nfS+3tzcRXl5I4aG+vj5OWNpOTm2Lo2U1tZuSkrqmDHDXyf7wLVaLdnZ+dx++wM4Ojpz6NDhMY/hXOXl5aFUKpk2bZquQzkvEz0XmMyEJe6CCWewkEvDuFrePtZ++eUX8vLyWb9+7WmTc4DW1h7EYhG2tuZjGJ1u/fHHHgoKSkhISGDTpk2sX/8Bl112Gc899xzPPPMMSUlJ9PT0YGtry7x58wgKCiI3N5cDBw6c0OKltraWrq4uQkJCdPdiRtFLL72ERqM9ofPASPL0dOebbzbw/POP8/rrr/PPf55+lYdWq6W0tJRjx44RHR1NQEDAsFbGvP/+++zbt4/PPntbSM4F48pgSyYHAgPdKCyspaqqRWjFNgYkEid6euQ0N3cNfa27u5+srArKyhqQSByZNk0iJOf/r6CghJ9++oO0tEzEYjVisYi2tpFrU3ou6uoauP32B/D3n0lCwjL09AzZtOnLMY1huJydnWloaBD+pgUjbuL2WxJMWceLfE2mJcfDVV9fj7GxEWFhQWd8XkNDO87ONlNqG0B0dARisZi9e/eSlDSfe++9nSuuuJns7GzEYjFtba3cc889fPbZZ4hEIjw9PXFxcaG0tJQDBw7g5uaGn58feXl5hIWFYWAwOZc92tvbc8stt/D551t4+OG7zzjQc75EIhH33HM7Wq2Wp59+GYlEwt/+9rcTnnO8CF9zczPx8fFYW1sP+zoGBgaIRCJCQ8/89yAQ6IqDgyXGxgbk5VXR36/A399l3FepnsgMDPTw9XVGKm3A3NyY6uoWmpo6cXe3w9PTU9gC8xcPP/wMhw4dHfrvu+++i7i4GCIivPDy8hj1e4jU1COsWvUg+voG/OMfdzFv3jzi4+MxMTEZ1eteqOP3oW1tbdjZjfxKNMHUJXw6CCac49Xbp1LS+VcGBgbI5Qp6enrp6OikrKzipH6cCoWS9vZenJysdROkjoSGBvLttx9jY2PNiy8+wccff4mdnR3Ozs7ExU3j+ecf5/PPP6ekpGToGAMDA0JCQkhISECpVLJ371709fUn7L6yc3XvvffS0tLKDz/8NqrXueee27n99hv4xz/+wc6dO4e+rlAoOHToEF1dXcybN++8knOAefPmoVKpyM8vHqGIBYKRZ2FhQnS0Dz09cnJyKlEqVboOaVKzt7dAX19MeroUlUpNTIwfEomTkJyfxlVXXUVWVhZffvklfX39mJlZsnDh1URGJvDOOx+NyjW1Wi0vvfQWS5feREhIKBkZGTz//PNcdNFF4z45BxCLxTg5OQnV3AUjTkjQBRPK8eXtkz1xOhtfX18APD2nIZHEEBNzEd7e07n88pt4772NtLa20djYgbW1KcbGk3MG+EwSE+dSVpZGQIAvAQG+tLa2UlhYyPPPPz7UKs3B4eQCOGZmZicsaU9OTp7Uy9cCAgJYvHgRH3zw+ai+RpFIxCuv/IsFC+Zwww030NTURH9/PwcOHMDQ0PCCZ0rc3d0RiURUVFSNYNQCwcgzMjIgKkqCgYEeWVkyFAqhwvtI02q1tLR0c+xYOTD4viaROE3oNqOjafC+qglbW1siIyO54YYb2LhxIw4ODnz66ae4uLjxn/98cspji4ulfPrpFsrKKk57fqVSydatv/Gvf73MV1/9l6KiUrRaLWq1mkcffY7XX3+P559/nl27duHk5DRKr3L0uLi4UF9fP2nvEwS6ISxxF0wo3d3dyOXyUyZXU0liYiK7d++msrISc3NzbGxsyM7OJiUlhWefXctzz63jo482UFFRypdfVqFUKpHLFXR2dtHZ2Y2lpTkSiScSiRc+Pl6EhgYOu+XWeHd8hcV99/0NmayK22+/AT8/CQ899G9mzIjDxsbmlMcVFhbi6elJREQElZWVZGZmYmVlRVhY2KQsovLYY4+TkJDA77/vYsmSi0btOvr6+rz//qvExl7MBx98wOzZs4cqtV/oahhLS0ucnJwoLi4boWgFgtGjpycmJMSDkpI6srJkREZ6Y2wsJI8jobdXTllZA93dciQSR1xcbCgpqaOioomQEA9dhzcu7dt3CJmskhtvvPGEr/v4+FBUVISZmRlxcScXQXv11f/wyivvAGBubkZKyk/4+Ax2TdFqtZSUlNHb28cddzyETFaJh4cH77//KVqtlunTI9FqtWRl5bFhw4aTtj5NJA4ODsjlcrq7uyflPYJAN4QEXTCh1NfX4+DgcNq2WFOFnp4eCxcuPOFrSUlJrFmzhubmZr799lsMDY34/vufEIlEGBgYYGJigrW1DRKJM+3t7ezenYpMthmlcnAGx9HRgZiYSOLj44iPn0FoaNCk2CNpaWnBJ5+8xf79h5k161IGBlRs3779lM9tb2+nsbGRxMRExGIxEokENzc3iouLSUlJwdvbm8DAQAwNJ8/N9IIFC7jooiQee+x5YmKicHIavcEvc3MzzM0t8PHxwdnZmbCwsBHZqlJaWkpDQwMzZ8aMQJQCwegTiUQEBLhSVtZAVpaMiAhvTE1Hvg7EVKFUqqisbKa+vh0XFxuCgz0wMBhcyu7t7UhaWind3f1YWIz/ZdNjrampBeCkwrsuLi7k5OQwbdo0du3aftIxr7zyDo899hhr1qwhLCyMd975iLfeeoHGxmYeeuhpfv99FzCY6GdnZxMREUFXVxd79+7lk08+QavV8uqr60hKShqbFzpK9PX1cXBwoKGhQUjQBSNGaLM2RU3U1gopKSlIJBI8PT11Hcq4lpmZiZ6eHhEREWd8nlqtprKykuzsbDIyMkhNTeXgwYMoFAr8/CTcffcqrrtu2agUEBtrS5Zcz8GDRxGJRMybNw93d3fi4+O5+eabh5a9p6amYm1tTWho6EnHd3V1kZeXR2dnJ0FBQXh5eU2KAQyA6upqZs6ciZOTHb/99hUmJqPTr7mgQEppaSPp6eksXryYJUuWjMh577vvPrZs+Ypjx3ZiaTk12gmOBKHNmu5ptVpksiYaGtqJiPAWeqUPk1arpb6+HZmsCQsLE3x9nTEzO/nzqrx8cFY9MtJ77IMc5+RyBRERC1i+/CrWr19/wmM5OTmUlJSwYsUKPvjgNTw93cnIyGHLlq2UlVVSWlqKh4cHb7zxBmvWrCEmJpL8/GIsLCx54403cHFxISoqatIX9a2srKSiooL58+frOpRhmai5wFQgJOhT1ET8o+zv72fnzp0sWrQII6OJnzD+lVKpZNeuXaSkpCCVSgkODmb+/PnMnj2bnp4eHnzwQXbv3o1CoUChUDAwMICBgQHu7m5ERkYRFRXFtGnT8PT0pKKigjlz5mBjY4NGoxn6d3w2/UyzlnK5nNTUVN5//31++OEH7O3tuOaay7nkkkRmzIiesKsXGhqa2Lz5v3R0dFJf30hVVS0ZGYOzA9u3b0elUpGenk5SUtJpZ8i1Wi2NjY3k5eWhp6dHWFjYpNlucezYMeLj47GxseKtt17g4osXjOj5u7r6yM2tpL6+mvXrN5CRkUNycjLz5s0b9rm+/fZbUlJSqKioQCwWk5+fj6WlGcnJP4xozJOdkKCPH5WVzdTUtBIe7oWlpTDLey7a23soK2tAo9Hi6+uMra35aT/blEo1aWklBAd7TKm2o+dq7dr3WLduPcnJycyYMWPo6x0dHRw4cIBNm77g22+/A8DY2JiFCxN48cWXiIqKAgY/G7/44gt27NhBcHAwd91116RPyv+XQqFg+/btE6a43XETMReYKoQEfYqaiH+UMpmM2tpa4uPjdR3KqEhKSmL37t04Ozvi7+9DQUEJra1tmJqa0tfXB8DDD9+FhYU5hoYGGBoaMjAwQFVVLXl5ReTmFtDR0cXChQtZunQpDz744CmvIxaLMTExwdLSAm9vb667biUmJibY2dlx0UUXYWHx5wxkaWkpb7/9Nv/9739paGjA1taG0NBAVCr10NJ4fX09enr6cHV1Ijo6gpiYKBIS5kyI2eWcnHyWLLmBNWseZsGCBbi5ueHv73/W4zQaDeXl5RQXF+Pg4EBoaChmZmZjEPHoOnr0KLfccgvNzU3k5qaM2MqJjo5e8vKq8PZ2xN3djvb2Dnx8Ylm/fj133nnnsM6lVqsxNTXFycmB0NBAALq6epg7dwaPP37fiMQ7VQgJ+vhSU9NKRUUTYWGeWFtP/PeT0dLfP0B5eQPt7b14eTng5mZ7Tp83VVXNNDd3ER3tM6W7wJxKZ2c3V1+9iuzsfDZv3syKFSuAwcQ7OTkZX19furu7EYvFeHt7T6gkdKwcb9MqkUh0Hco5m4i5wFQhJOhT1ET8ozx48CBOTk5DFcwnE61Wi7GxMY89di8PPngnIpEIrVZLcbGUX37ZzksvvQ1Ae3vpGc9RU1OPTNZKf38XDQ01iMVixGIRenp6iERitFoN/f1y+vvldHf3kJNTwI4dyUMz7EZGRixatIgVK1Zw5ZVXYm4+ONOg0WhIT0/np59+oqysDCMjIwwNDdFqtSiVSszMzCgvL+Po0XTa2tpYvHgh69e/jpXV+PvdSk5O5bvvfsbV1Zk5c+J4/fX3CA+PZtmyZSQlJQ2rBY9cLqeoqIiamhp8fHzw9/ef8H3Ts7OziYqK4pprruCdd1684NUqnZ295OZW4evrjIvLYGG+r7/+gX/841Fqampwc3Mb1vlqamrw8PDg6683sGhRwgXFNtUJCfr4U1/fTllZA+HhnlhZCUn6/1Kp1FRVtVBb24qTkzXe3o4YGp77ii61WkNaWim+vs44OlqNYqQT08DAAKtWPcBvv+2kuroad3d3AMrKyqivr5+0kyMjRSqV0tTUxOzZs3UdyjmbiLnAVDEx16oKphylUklLSwuRkZG6DmVUtLS0MDAwQEDAnyP7IpGIoCB/goL8uffev9HY2HTGc4hEIuzs7JDJOli4cAYGBnPO6drt7R1oNBp6enr59ded/PTTNm666SZMTEy44ooruOmmm7j44ouJi4sjLi7ujOfSarX8+uuv3HzzzSQkLOfzz/9DeHjwuX0TxsDBg0dZtuxWfH196ezcx9q176Ovr8+99z5EUFDQsPvjGhsbExUVhbe3N7m5uVRVVRESEoKHh8eEnaGJjIzkiy++4I477qC1tY3Nmz847yS9p0dObm4VPj5OQ8k5wE8/bWP27FnDTs5hcK8fgKen+3nFJBCMZy4uNmi1WvLyqoiMlAh70jm+tagTmawRY2NDoqIk51XsTU9PjLe3IxUVTdjbWyIWT6z36P5+OdnZ+dTVNdDc3EJzcystLW309fWjUChobW2nrq6RpqZmIiJCWb58CddfvxxT07N/rxoamkhNTUMmqzppi5e7uzsFBQX09PQMDdoLTubi4kJBQQFKpXLCD9QLdE9I0AUTQmNjIxYWFpNiGfGp1NbWAuDicuoeoMbGRnh5nb1FTENDB/b2FhgYnPufto2NjeiL0QABAABJREFUNQB2drbcffcq7r57FVVVNXz//a98//0vfP3117i4uHDzzTdz6623EhQUdNpziUQili5dyrFjx7jqqqtYtOga3nrrBa655opzjmc0Ha9W293dza233sr111+PSqWiq6sLD4/zb8FjbW1NfHw8dXV15OfnI5PJCA8Pn7B78G666Sbc3Ny49NJLeeSRZ3n11acxNjYa1qBDf7+CnJxKPD3tcXX98/vQ1dXNnj0HeOWVV84rtqamwYEqB4eJ+b0VCM7G1dUWpVJNTk4l06ZJpnT/7s7OPsrKGhgYUOHr64yDg+UFDX46O1tTU9NCQ0P7Ce9L41Fvbx8HDhzh4MGjHDqUTlZW3tDWMiMjI5ycHHFwcMDc3BxjYxM8PHyYPXs+dnZ2pKQk8/jjz7N27XssWXIRAQE++Pn5YGpqQnd3z9C/lpY2tm/fS3p6FgDh4WHs27dvaPb8+LWcnZ2HBqAFp2ZmZoa5uTmNjY0nfP8EgvMhJOiCCaG+vh5nZ2ddhzFqzpagn4vBWYYOAgJch76WnZ3Piy++ycGDR9m9+78EBvqd07k8Pd156KG/8+CDd5Kdnc9XX21lw4YPefXVV5k5cwa33baKG2+8caj6+V/5+Phw8OBB/vGPf3DnnQ9TWlrOE0/cr/N96VdeeQlBQb/zn/98zNq1a9FoNFx00UVERERccGwikQg3NzecnJyQSqUcPHgQFxcXQkJCJuR+vYULF/LBBx+watUqNm36joiIUNate4aYmKizHqtQKMnJqcTJyQoPD/sTHtu+fS8DAwNcddVV5xXX8dkdpVJ1XscLBBOBp6c9KpWanJwKoqIkGBlNrRk5hUJJeXkjLS1deHjY4+Fhj57ehX9+iEQivL2dKC2tx8nJatirpkZTb28fmZm5HD58jAMHjnDoUDoDAwO4uroyd+5cbr55FXPmzOH/2LvPwCartoHj/+y06d57l1VGWQUFREQRBAEVRBFQxImK4gRRQXEPEFBURAVRnKACKogsZcmGsimddO90pG3W+6Fv+4g0bYGmScr5fXke0zv3ObnJuK9zrnOd6OhoXF1dGx2oeO655zhz5gwffPAB69f/ztdfr6K6uvq8YyQSCW5ubgwcOJCvv36G6667zuJ9VlhYGIcOHaJjx44Omx3WGgIDA8nJyREBunDZRIAu2D2j0UheXl6zinc5qszMTKRSKX5+Pk0fbEFRUTkAXl4u7NjxD1988S2rVq2r//ulFPySSCTEx3cmPr4zc+c+x/r1m1m5cjUPP/wwzz//PJ9++im33HJLg891cnLiiy++oFOnTsyYMYOzZ1P56KO3bV6Bv0OHWG68cRArV66mZ8+eZGVl8fnnnzNjxgx69Ohx2eeXy+X127AdO3aMTZs2ERsbS0xMjF3dDDbHPffcQ35+PgqFgpUrVzJq1CT+/HMVHTta/izq9QYSE9Nwd9cQFeV/wc3cL7+sp0+fhEveKjE9PR2oXU8qCG2VRCIhKsofvd5IYmIa3bpF1u/r3ZYZjSbOnSskPb0AHx9XeveORa1u2cEJHx9XMjIKOHeuiPDw1tuFY8eOf5g372Pc3d2JigqjW7c4UlLSOXLkOEePnuTMmWRMJhNubm7063c177zzDkOHDiU2NvaSguLY2FgWLFgALMBkMpGSkoJer8fNzQ03Nzc0Gk2zz1u3W0leXh7+/pc+kdDWBQYGsmPHDoxGo8P93gv2xf7LLAtXvIKCAhQKBe7ubbeoS92WaZezhVlOTgkBAR588MFnjBgxgX37EpHL5Xh6evDPP+ublSLfGJVKxahRw/juu085cOBP+vXrxa233srs2bMxGBqezZRIJDz77LOsWrWK337bxCOPzMBksn1gFRERiotL7ZY8S5d+yg8//MCrr77aom04OTnRq1cvrrrqKrKzs9m0aRNZWVk4Ul3Oun+/6dOns23bNoKDg3nxRcup6UajiaNH01GrlbRvH3TBzV9ZWTl//vkXY8aMveQ+vfjiiwwffgPBwW03o0YQoPbz1759EGq1kqNH09r0oJTZbCY/v5S9e5MoKNDStWs4HTuGtHhwDv8b/MjIKGi1TJz09ExGjbqbM2fSKC6uYMWKVUya9Chvv/0h2dmFXH/9jXzyySccPnyYoqIifvvtd6ZNm0a7du1aZMZaKpUSHR1Nhw4dCAoKqv/9u5jnh4aG1g+QCg1zd3dHLpdTWFho664IDk4E6ILdy83Nxd//wpm4tkSj0VBdXY3RaLyk5+v1BgoLy1Aq4Z13PuThhx8mJSWFjh07MHLkjbRrd2Hl+9JSLa++Oo8lS1aQm5t/Ue2Fh4eybNkiZs16grlz59K3b19OnTpl8fhbbrmFr776itWrf+WVV9676NfX0rp06cSwYcNISkpi5sxHCAjwo0OHDhw7dozbb7+dJUuWtFhb3t7eDBw4kPbt23PkyBF27NhBaWlpi52/tTg7O/P662+wadNf7Ny594K/m0wmjh3LQCKR0KlTSIOf140bt1FdXc2YMWMuuR9OTmpiY8U2ScKV4d+fp2PHMuxigLOllZfrOHw4lTNncoiI8KVHjyjc3RtePtVSPDw0uLioycoqtmo7dXx8vDCZTDz33HNs2bKF7OxsMjIy0Gq17Nixkw8++ID77ruPrl272u3Ma1hYGDk5ORekygv/I5FICAgIIDc319ZdERycCNAFu1dYWIiPz6WnfjuCur3Hi4tLLun5ubmluLk5sWnTNsrKynnxxReRSCS4urqi01U1+Jz58z/hvfc+4rnnXiEubgBTpjyBVlvW7DYlEglPP/0If/zxPWVlJVx11VUcO3bM4vFjxozhvffeY8GCJXz//S8X/RpbktlsZsKE8fTo0Z4BA/pSXFyKq6srw4cP54cffuDBBx9k165dLdaeRCIhPDycwYMH4+npyd9//82hQ4cc7kbntttuo2vXLsyb9/EFf0tKykGvN9C5c5jF9fxr1qynV69eREREXHIfevXqza5d+y75+YLgaKRSKZ07h6HXG0hKyrF1d1pMTY2B06ezOHgwBTc3JxISYggI8Gy1wbfQUB8yM4taZdDD2dkJX1+f+iKXUqmUkJCQ874r9Xo9ZWVl1NTUnPfc/Px8xo4dy4gRI3jooYd4//33bTLI6+LigoeHR33NHKFhPj4+YgZduGwiQBfsWk1NDVqtFm9vb1t3xar69u2LTCbj5ZffpaKisv7x1NR05s//hPnzP2Hv3oMW06MLCrT4+rrTuXNthfWzZ88CkJDQh7/+2nXBDcjKlatYsGAJwcHB3HfffRiNRlav/pW1azdcdN979Yrnjz++JzDQlzvuGHfBzcW/TZ8+nVGjRjFv3sc2TfXOySnB2VnN1Vd3B2qL8z3//PNkZmZy4MCfuLq68Pfff7d4uwqFgri4OK699lqqq6v5888/OXv2rMPMikkkEmbMmMmmTX+RmHi8/vGsrCIKCrTExYVa3E+7oqKSP/7Yelmz51A7SPDPP/tJSUm7rPMIgiORy2XExYVSUKAlK6vI1t25LCaTiXPnCtiz5ww1NQZ69YomKirA4neHtXh5uaBQyMjNLbF6W0VFxeTl5VNTU1Nfib1OcXExs2fPxsfHp35t+FVX9WXmzJkUFxej1Wr58ccf+fXXX/nkk0+YPn06hw4dsnqfGxIcHEx2drZN2nYU3t7elJaWXvDvLAgXQwTogl0rKipCo9GgVrftvWBDQkL4+OOP+eGHtXTpMpC7736UiROnctVVw5k//xPmzfuYIUNuZ8iQ29m06fzAUa83UFpaibu7mhUrfgCo395r7Nix5OTksXv3/vrjKyoqefnl9xg8eDD5+fn89NNqbr99FB9++Ca33XbzJfXf3d2Njz9+l5MnT/HWW281euz06dM5dSqJnTv3XFJbl8tsNnPuXCEhIT71MzUdOtRWt3/qqYeJjAynY8dYEhMTrdYHFxcX+vTpQ+/evUlLS2PLli0OkxI3duxYIiMjWbhwKQAlJRWcPZtDp06hqNWWt4P6889t6HRVlx2g33rrrXh7e7No0WeXdR5BcDRqtZJOnUI5ezaHkpIKW3fnkhQWlrFv31mys0uIiwulc+cwnJxsUzhUIpEQGupNRkah1QeMFQoFvXt358033yQ0NJTHH3+cpUuXMnbsWEJDQ3nnnbeZMOE2PvvsfV577XkCA31YvPhDbrxxCD4+Pvz000+EhYXh6enJvHnzGDhwoFX7a0lgYCCFhYWNDsRf6dRqNRqNRsyiC5dFYnakikVCi9Fqtbi7u1NaWoqbm5utu2PRsWPH0Ov1xMfH27orrSIlJYVPP/2Uf/75B4PBwNChQ5k2bRoqlYqNGzcyZ84c9uzZw3XX9WfOnGfp0qUjOTklpKXlMnfuK/zzzwFmzJiBm5sbkydPxsvLi/DwcHr0iOOzz95HJpPx6KMzWLXqV37++WeGDRvGb799w1VX9WqR/s+dO48PPvisfjuWhpjNZnx9fZky5U5mzny8Rdq9GAUFWs6cyaZPn9j69ML09HOcOZPC4MEDAHjiiRc4ePA4hw8fsXp/TCYTqampnDx5Ei8vL+Li4uqXPNir+fPn89xzz3Hw4BbS0oqJiPBrck/he+99gtTUTA4cOHjZ7b/zzjs8//zz7Nv3x2UXP7ySGQxGduw4Sb9+HVp99lK4dFlZRaSm5tGjR1Sjg2L2pLKymrNnc9BqdURE+BIU5GUXdSRMJhP//HOG2NhAfHysfy+UmHiCr7/+kV9//ZNz57Lo3r0Lw4ffwIQJY/D3P7+i/JEjxxg1ahKdOsWxfv0GXFxcAM67bmazGYPBgELRetvwbd26laioqEveieNKcPDgQZRKJXFxcbbuSqMcJRa4EokA/QrlKB/Kv/76i8jISEJDr9yb8H379vHdd9+xffvf7N9/AJlMSlBQMMnJyfTu3Z277prIgQOHWL9+PatWrWLMmDHk5ubSsWNHdu7cydq1a5k8eTK9e3fHy8uD3377kxUrVtCxY0d69erVogF6VVU1AwbcjEQi55NPPmHQoEENHjdq1ChKSwv4+eflLdLuxTh4MAVvb1fCwizXNfjmm9U88sgM8vLyWq3+QU1NDSdPniQtLY3IyEjat2/fqjddF6O4uJjIyEgWL/6AmJgw2rULavR4na6K2Ng+PP/8LJ5//vnLbr+yspKoqCiGDx/Me++9fNnnu1KJAN1xnT6dRVmZjvj4yBbZH9xaDAYjqan5ZGcXERjoSXi4LwqFfe3wm56eT2FhOd27R7Zam2azGa22HHf3xgdj9+8/zC233MM111zD2rXrzgvON23axPXXXw/A4cOH6dq1q1X7XOfUqVOUlpaSkJDQKu05ovT0dFJTU7nmmmts3ZVGOUoscCWy32914YpnMBgoKSlp8+vPG7NkyRISEhL4+usVBAX5EBMTSVVV7drllStXEhPTgeDgUMLDw9m/fz9yubw+VfrEiRNs3ryZiRMnsmnTJgwGyMjI4euvv2bChAmsWLECb28vevTo0mL9VatVfP31R3h4uHDjjTdSXNxwhdx+/fqxb98hi9uzWUtpaSUVFVUEBXk2ety11/bDbDbz559/tlLPQKlU0rVrVwYOHIhWq+XPP/8kNTXVLrdl8/Dw4LXXXiMnJ4/o6Ka3O9u06S8qKiovO729jrOzMxMnTmTduo2XvPOBIDiymJgApFIpp05l2uV3hNlsJiuriD17zlBRUUWPHlHExATaXXAOEBTkRUVFFVptZdMHtxCJRNJkcA7Qs2c3Pv10Hr/++hu33347S5cuZevWrSQnJ/P222/XH/fDDz+0aP/MZjPr1q3j1ltvRa1WI5FIOHKkNqMsMDCQvLw88d3bCB8fH0pKSlr9HkdoO0SALtitoqIi1Go1zs7W3W7FXiUmJjJ16lTuuecOEhO3cf/9E0lKSuGuu+4iMjKSO++8k/feew8PDw9efvllQkJCCA8PP2/WtaSkBICBAweyd+9ejhxJZPz48QCsWfMLQ4cOQqVq2fV/7dpF89RTD6PX66mqariCfP/+/amoqOTo0ZMt2nZTzp0rIDDQs8nZwsBAfzp1aseGDRdfNO9yubm5cdVVVxEfH09SUhJbt26loKCg1fvRmDNnzuDn58crr7zCiROnmzx+06a/6dChPe3atWuxPtxyyy3k5eWzZ8/lp8wLgqORSqXExYWi1erIyLCv74eSkgr2708mI6OQdu2C6No1HI3GfuvIyOUyAgM97e461rnxxkF8+OGb7Nu3hwceeIBBgwYRHR3NqVMn+eKLL8jIyOCVV15psfbMZjNPPvkkN998Mz/99FP9biN1FehdXV1RqVTk51/c9qxXEicnJ9RqNUVFjl3QUbAd+xvKFIT/V1hYeEXPnmdlZWE0GunQIYbPPvuad9/9iL59+/L555/XH5OTk0NAQEB92ltgYCA1NTWYTCaqq6txcnKyeP5+/fqzbt1ann46nYiIS1tLVlhYxPLl3zNw4FX07Nmt/vG6kXW5vOGvmNjYWAAyM7OJj+98SW1frMrKagoLy0lIiG3W8QMG9L2gIF9rkUgkBAYG4ufnR3JyMv/88w9+fn7ExcXZfMCqoKCA06dP89Zbb1FaWsr27bvrdw+wRCKRoNcbMBqNLbbHb9++fQkPD2f58u9abImGIDgSpVJOXFwohw6l4ObmjIeHxqb9qaqq4ezZXIqLywkP9yU42Mvilov2JjjYmz17zlBZWY2zs22K1jVm/PjbGD/+NqqqqklPP0dGRhbz5n3E5MmT6dq1C4MHX09paSnXXnstEydObPRclZWVZGRkUFpailarpby8HIPBgMlkIigoiN27d/P+++8zfvytrFu3kX79+rNw4UJiYmqLqdb9PmVnZxMQ0HQG1ZVIIpHg7e1NYWEhfn5+tu6O4IBEgC7YrcLCQkJCQmzdDZu57rrruPHGITz33FwUCgX9+/fju+++R6msLQpkNpvJyclpcB2YVCptNDgHWLhwIdu3b2fu3Hl89tn7TfbHaDSyfPl3XHPNVcTERFJZqWPQoFvJyMhk6VJ/du36DXf32jVMdduLWFpD7elZm2JeVFTSZLst5dy5Qvz83FCrm7euOzo6kk8//Qqz2WyzYkYymYzY2FhCQ0PrlyxER0cTGxtrcfDDmvR6PQcOHCAyMrL+pmPs2JFNPu+WW27iiy++Yd26dYwaNapF+iKVSpk2bRrPPfccL730FEFB4kZRuPK4ujoRGenPyZOZ9OoVbZNaAkajkfT0gv//jnUnISEGpdI+62dYolYr8PV149y5wiZratiSWq2iXbto2rWLZtCgfqxZs4ENG7bw44/fYzIZ+fzzz/nll1946aWXiI2NxcnJiczMTNavX8/vv//O7t27m9zH3MPDA4BvvvmJnj17snLlyvrH6gQEBLB3716b/j7aO29vb86dO2frbggOSgTogl0yGo0UFxdfMdXbG6JQKFi/fgOpqakEBgZekIpelzpVt6XaxfLw8CAmJobMzJwmjzWbzcyc+RqffroClUrF+vXfUlFRSUZGJt999x133303X331I488ci9QO5MC1A8mNHQ+AKm0dX7Ya2oM5OaW0L17VLOfU3eDWV5ebvOq6mq1mu7duxMREcHRo0dJT0+nU6dOhISEtNrNkdls5vDhw7i6uvLUU0+xYcMG+vTpgbd30++/f/7Zj0wmo3379i3apylTpjBnzhyWLv2al156qkXPLQiOIjjYi6Kick6fzqJjx9b9TsjLKyU5ORe1WkF8fCSuro0PDNuz0FAfDh5MJiLCD6XS/m+PpVIpo0cPY/ToYfWP/fzz7zz99BxWrVqFk5MTCoUCrVaLRCKhV694xo4dQWxsJOHhIbi7u+Pm5oKzsxMKhRIwc/JkEnfc8QCBgYGMGzeOOXPm4O7uDtQO0O7YsYPk5GTy8/OJi4ujqKjois50bIy3tzeJiYktmjkmXDns/xtIuCKVlJSgUCjQaGybsmcPIiIiGny8Lr3sUm/Gli1bxp9//snSpfObPHbJki/59NMVzJs3j08//ZR58z7ijTdeAGrT2IOCAsnN/d96tMLC2v3rLaVj162pbk5w1xIyM4twd9fg4tL8dZDXXNMXk8nEpk2bGD16tPU6dxE8PT3p378/mZmZHDt2jJSUFLp06VKfkWBN586dIz8/n0GDBvHkk0+yYcMGOndueCu9f0tPP8d7733E9OnT6dCh8VT4i+Xu7s6UKVP44ovPefzx++szOAThSiKRSOjQIYh9+86Sl1eKv7+H1dvUaitJSsqhpkZPdHQAvr5uDj+T6uKixt3dmaysIiIiHDMtefToYQwa1J+jR09w8GAiJpOJiIhQ+vfvg5dX078Tffr04Ntvl/DYYzN5//33WbhwIZ07x9GpUxwbN26s39vbyUnNfffdz549e3BxqS0K261btybOfmVxcXFBoVBc8cWOhUvjGIuDhCtOQUEB3t7eDv+Dby116e2Xuv7r1KlTPProo0ycOJbbbhvR5PELFnzKpEmTmD59On379iUnJ5/g4ED8/X3Ztm0bGRnnCA+vXY6QnZ3LrFmvc8MN11s8X11xGW9v6weWJpOZ7OxiQkIu7gcyMjKc2Ngo1q1bZ6WeXRqJREJISAiDBw/G19eXHTt2cODAAXQ6ndXarKio4MiRI3Tv3h21Ws2QIUOYO3cuX3zxDTt37m30uTNmvIq3tw+zZ8+2St+effZZamoMzJ//iVXOLwiOQKlU0L59MGfOZKPT1VitnepqPSdPnuPw4VS8vFzo3TsWPz/3NvNbHRLiTVZWMSaT/VXGby53d1f69Uvg0UenMG3a/YwcObRZwXmdPn16sHv37/z11y/Mnz+Xzp1jOXXqGBMnjmHbtp/JzT1Gaup+unfvQExMNC+/PIf4+Pjz6uMI569DF4SLJQJ0wS5d6QXimlJWVkZVVdUlFx+ZP38+np7uvPHGC+zatY/Y2L68/PK7FxxXUlLKq6/OIzs7t37tsE6nQ62uTbf38fHmww8/xGg0ctNNtQH5q6/Ow9/fnzlzLO9PXXcz1xq7AxUVlSGVSvD0vPhsjAED+rJ79y4r9OryyeVyOnbsyHXXXYfRaGTTpk2cPn26xbe+MZlM7N+/n9DQ0PMGhGbMmMGAAQO4777pFBQ0fAOyfv1mfv99E/Pnz8fFxaVF+1UnMDCQJ598kk8++ZJz57Kt0oYgOAJvb1f8/d05efJci2+9ZjKZSE/PZ+/eJEwmM717xxAR4WfXe7BfCk9PF6RSCUVF5bbuik1JpVK6dOnEpEm38+GHb7F582pmz36arl3jUCqVKJVKRo68Hk9PT44e3c7o0cOYPXu23e04YmsiQBcuVdv6ZhXaBJPJJNY1NSE7OxtfX99LXte0du1aRo8eRmZmNrfdNpmCgkK2b99d//cdO/7hzjsfpGPH/ixa9BmzZs3i1ltvBWoDdIVCzq+/biQpKQWj0cjgwQMIDPQHYNeu/dx1112NprvV9bu83Po3QTk5JQQEeFzSDE90dARnzybb5T7DdZydnenduzdXXXUVWVlZbN68maysrBbr8+nTpzEYDMTFxZ33uFwuZ+XKlRgMJh566NkL2tPpqpgx41Wuv35wi+1/npOTw4YNGy5o65lnnsHV1ZX33lvcIu0IgqOKigrAYDCRltYyW2CZzWYKCrTs3ZtEfr6Wzp3D6NQpFLW64foijk4ikeDv70FOTrGtu2L3ZDIpnp4uaLXVvPDCk1RUlNOxY0f++OMPW3fNbtQF6CaTydZdERyMCNAFu1NaWopUKsXNTawntSQnJ4fAwMBLfr5MJuX06bNMmTKdsLBwRo4ciUTyv6+Dp59+mfXrNzN37lzS09N59dVX6/+m1+vZvHk7EyZMra8RMH78bf/frzxSUtLo2bNno+1/9dVXuLm50qdP48ddrpoaA0VF5Ze8JrNudsgR0je9vb0ZOHAg7dq148iRI+zcuROtVntZ5ywuLiYpKYmePXs2OBgUFBTE0qVL2bTpL3bu3HPe3xYsWEJWVg4ffPBhi12/N954g6FDh3LjjUPq9+SF2r3jAwICOHr0ZIu0IwiOSiaT0rFjCBkZBWi1lZd1rvLyKo4cSeP06SzCwnzp0SPK5lu5tYaAAA+KisqpqTHYuit2z8fHlcLCMqKjI9i9+3cMBj2//PKLrbtlN9zc3JBKpZSWltq6K4KDEQG6YHfq0tsdISiyBZ1OR2lpaaPrz81mM3v37uXtt9/m4MGDF/y9U6dObNy4jfT0TBYtWsS2bdu4+ure9X9/+umpQG01fX9///Oe++qrr/LGG2+wb98+EhJ6ExsbxYgRNwCwdetOAK6/3vL68+rqapYuXcodd4xGo7Hunt65uSW4uzvj5HRpsz3FxaWtVsiuJUgkEsLDwxk8eDAeHh5s27aNw4cPU11dfdHnMplMHD58mNjY2Poqvg0ZMWIEnTp14t57p/PHH1sBSElJ4/33l/DUU09dduV2s9lMYmIi69evZ/Xq1fj4eHH48GF69erF6dOn649LSUkhM1OkuAuCi4uasDAfzpzJvqRMGr3ewJkzWRw8mIyLi5qEhFgCAz2vmN9kJyclbm5O5OaW2Lords/b25WyMh3V1XokEgklJaVcddVVtu6W3ZBIJHh5eYk0d+GiiSrugt0R688blpWVxY4dO/Dy8sLLy8viFmYZGRncfffdbNmyBYlEwnvvvcehQ4fOm3H/8ssVnDlzhs6dO3PPPfcgkZjrt0gDuO22EZw6lcSMGTOIjY2tT28H6N69O927d+frr79m/foNfP75gvo9uf/+exfx8d0aXRufl5dHfn4+ffv2utxL0qjaQnolhIX5XPI5iopKLnkbO1tSKBTExcURHh7O0aNH2bRpE+3btycyMhKptHnjssnJyRiNRmJiYho9TiqVsnnzZu6+exLjxt3PrbcO58yZZPz8/HjhhRcu63UYjUZuuOF6tmzZCoC7uxvr13+Lq6sLo0ffzbhx49i9ezcqlYp27WLp2rVlt3ETBEcVGupDbm4pmZmFhIQ07zvQZDKTlVVEWloebm7O9OwZjbOzqukntkGBgZ6kpxcQEiImCxqjUMhxd3emsLCMzZs3I5FIGDJkiK27ZVfq0tyb+i0VhH8TM+iCXTGbzSJA/4+kpCQmTpxIWFgYt99+O9u3b6eqqsri8Y8/Po0tW7Ywb94rHDv2NzpdJR9//PF5x/j5+dGvXz++//57fv75Zz788G28vDzOKzA2Y8Y0brnlJiZMmMChQ4fOe35iYiKTJ0/mzjtvOW8P1jNnUoiP797o6wkNDaVdu1i2bt1xEVfh4tWN6vv4XPpSieLiEry8HPe96OLiQt++fenZsyepqals2bLlvNRwSyorKzl58iTdunVrVp0Df39/fv99PUuXLmX//qMkJp5gwYIFl71N4rp169iyZStLlrzHwYObSEzcRocOsQQHB/LZZ/M5cuQIK1asAGoHfsQ2a4JQSyqV0q5dEKmp+VRV6Zs8vqionP37k8jOLqZjx1C6dAm/YoNzAB8fN6qr9ZSVWW93jLbCx8eVggItW7fuJD4+/pKL17ZVdQG6PdeyEeyPCNAFu6LVajGZTI2m1F5JiouLGThwIFu2bOK112Zy6NBm4uLimDJlCs8884yFL/za0f4ff1xLYKA/t946nC+++KLB6t5nzpwBaovCdezYn2HD7qSmpnaLHqlUygsvPIlOp+Pnn38+73nvvvsuQUEBzJ8/F4lEgtFo5NdfN3LwYKLFfdv/rUuXrhw/frrJ4y5HTk4Jfn7ul1VlWCaTUVNz8enh9sbf359BgwYRERHBvn372L17d6MF+hITEwkKCsLHp/nZBxKJhClTppCUlERaWhq33HLLZfd70aJF9O7dnbFjRxIREYar6/8qwXftGsfgwdcwZ84ctmzZwrlzmSQk9LjsNgWhrfDw0ODj40pSkuWlH5WV1SQmpnHiRAaBgV707BmNl5d1dlxwJDKZFD8/d3JySmzdFbvn5eVKaWkl8fGdOXbsmKjk/h8eHh6YTCbKysps3RXBgYgAXbArhYWFeHl5NTsNt63btm0bWVlZ/PTTMh588G48PLxwdlZzxx0jeffdd9m/f/8Fz6l77JprrqKqqpoJE8aQkZHBrl0Xbhc2depUrr9+MIsXf0F+fgF79x4kJ6e2+u/Zs6mMHDmR4OBgHnnkkfOe5+HhQVlZOUVFJQD88st6JkyYilwuZ+jQoU2+rr1799C3r/UKxBmNJvLySgkI8Lis80REhJKSktoifbI1qVRKdHQ0gwcPxsnJiS1btnD06FEqKyupqKioPy47O5vCwsILqrY3l1wuJyws7LL7W5eaf//9Eywes3Dha8hkEq677jpcXDQMGNDnstsVhLYkKiqA0tJKCgrOLxhpMBg5ezaH/fvPolYrSEiIJSTEG6lUpHPXCQjwIC+vFKNRVOBujJOTEplMysiRwwH48ssvbdwj+yKVSvHy8hIDF8JFEVGQYFdEevv56lLZly37FrPZTElJJR4eGgYN6g/Q4N7SL774IgBvvrmQa68dRc+e3XBx0TS49YmLi0v9zUf37l1Yt+4rwsKCAZgx41XMZgkzZ85k27Zt520TMmvWLJycnLnuulvp3/9m7rtvOn36JFBRUUGfPk0HSTU1elxcrFcNuKBAi0qlwNXV6bLOExERSk5ODpWVl1cN2Z6oVCq6devGNddcQ05ODqtXr+bWW29l4MBrOHbsGImJicTFxaFS2S691Ww28+CDDxAREcaoUZYHfAIC/Pjjj+9ZvPgtfvjhs/Nm2AVBAKVSTlSUP0lJORiNRsxmM9nZRezZc4by8iq6d48iNjYIhUKUJPovV1cnVCrFBYMbwvkkEgnu7hrMZhkDBvQR26w1QOyHLlws8Y0s2JXi4uJmpUhfKcaMGcOePXuYP38+48aNAjR4ebny4osfEBcXR7t27c47fufOnUybNq3+v6VSKSaTiV694jl27NgF53/88cfZs+cfvvvuU264YeB5xXBOnDhNVlY2jz76KAAffPBB/Uy6n58f69at46233sLV1ZXnnnue22+/vdmZDxER4aSkpF/s5Wi2y9n7/N8iImpngpOTk+ncuXNLdM1uaDQa7r//frp168L9908hLy+fFStW0K1bN06ePMmmTZu44447cHa2bqX9hpw4cYKdO3excuXHFosh1vH39+XOO29t9BihdtDDaDRhMBjrB+Xq/reyshqlUo5cLkMmk4qiWG1MQIAHOTklnDqVhU5Xg8FgpF27ILy9XcW/dSMkEkn9tbvUrTqvFB4ezhQWlqPTVeHi4oTZbBbvrX/x8vIiLS3N1t0QHIgI0AW7odfr0el0Yv35v8jlcp544gnmz59PZmYOLi5BpKUlsXnzdn766acLAuJz586h0+nw8vLkxx8/o3v3LgCEhARy+vSFPw6urq4AbN78N2fPpnDTTdcTHh4KwGuvzeT48dOMHTuSDz74jJkzZzJq1ChCQkIAiI+P55tvvrmk1xUeHsG5cymX9Nym6HQ1lJZW0rFjyGWfKyKi9lq0xQDdbDaTlZXFAw+M57rr4jl1KpOgoGAOHDjARx99REFBAenp6cyZM6fV+3b48GGA87b+ExpnMpmprKymsrIana6Gqqoaqqr0VFfr0esNGAz/y4D5b12Gw4fTzsuQkculKBRyVCoFarUCtVqJk5MSZ2cVzs4qkQbtYKqr9chkEvLztQQFeREd7S+WkTWTv78HKSl56HQ1l7xd55XA3V1DSkoet9wynGeemUPPnj245pqBSKVSioqKGDhwIBMnTqzf8eVK4+bmhk6nQ6/Xo1AobN0dwQFcmZ8UwS5ptVpUKlWTM2ZXmqCgIKKionj//c945plnmD59FrfeeiujR4++4NixY8eiVCqZNWsWEyZM5ciRrchkMlxdXRosCvb666+j1+vZsuVvTp8+w1dfrWLHjnUAjBo1jFGjaiu0v/zys3z11Y98+umnvPzyy5f9mk6dOknHjlGXfZ6G5OaW4OXlglJ5+V9v/v6+qNUqkpOTW6Bn9kWhUNCv39V8+OEXTJo0DpPJjL+/B1df3YuePZeyb98/vP/++8THxzf4XrOm7OxsNBpnUZXdArPZjE5XQ0lJBWVlOsrLq6ioqEYqleDsrMLJSYlarcDNzRm1WoFCIUcul14wQ24wGNmx4yRXXdUOmUxaP8NuMJjQ6w1UVempqqqhsrKawsIyKiurMZnMaDQqXFzUuLo64eGhwclJKWbL7JDRaCIjo4CMjAJ8fd3x83OnpsYggvOLoFTK8fJyITe3hIgIUZ3cEo1GhUQC48bdSkCAL+vWbWTNmp9RKOQ4OzuxfPlyliz5hJ07d12R3xUqlQqVSoVWqxXLOIVmEQG6YDe0Wi1ubuKG/L/kcjlbt25l2bJlnDx5iujoaD744IMGj5VIJIwePZrKykruuusuKioqcXOrTWNsqOK7l5cX8+bNY8qUKZw+fYabbhp8wTHLl3/Hq6/Ox2g00r1741uoNUdBQQGHDh3mnnvGXva5GpKfryU83LdFziWRSIiICKuvdt/WvPrqa/Tr14+HHprBffc9SN++7VCpQtBqK3FxUdGhQxzz5s3jl19+4Z133rmoqu6Xw2g0ilmG/9DrDRQWllNSUk5JSQU1NUbc3Jxwc3MmNNQHFxf1ZQXKEokEuVyGXG55W726gYHy8irKy6vIyyslKSkHpVKOh4cGDw8N3t4uYj2zjZnNZvLztSQn56BUKujWLQI3N2eqq/Xs2XMGrbYSN7fWX7riqPz83ElLyxcBeiPq1qGXlFQwYsQQRow4fy/0H39cy/33P8nff//NNddcY6Ne2pabm5sI0IVmE8Oogt3QarUivd2C0NBQhgwZwh133ME//+whMDCw0eMNBgMAanVtoS9LATrAypUr+fnnn/noo3d4/vknLvj7W28tIi6uM5s2bbromdTvvvuO6Ohofv311/rHvL296dixI1u2bL+oczVHXXpvS24T1L9/H7755huKiopa7Jz24uqrr+azzz6jT5+rOX36OCpVbVDs5uZMjx7R9OzZjscfn0anTp248cYbWbp0aYPb9bW0pKQk3NxEwbeaGgNZWUUcPpzKrl2nyMoqQqVS0L59MP36dSA+PpKoKH/8/NxxdlZZfWZKIqmdoffzcycqyp/4+Ej69etA+/ZBqFRysrKK2LXrFIcPp5KVVURNjcGq/REuVFam49ChFM6ezSEy0p/u3SPrg3GVSkFwsDcpKXliT+aL4OXlgk5Xm0kiWObu7kxpacMFVYcNG0xcXAcGDRrE448/jlZ75RXeqwvQBaE5RIAu2A2tVlu/Jlo4n9lsvqgK99XVtTcSdbOQjQXoBkNtymO/fgnn3eAbjUa+//4XsrNzmTJlCtddd91F9/vDDz8kOTmZm2++mfHjx1NSUoJEImHq1KmsW7eRrKyciz5nYwoLy/D01DQ6C3ixnnnmEfT6mhZJ7bdHw4cPJyYmhjlzXuWxx2bywgtvMHz4eIqLSwgI8OTaa7tw1VXdef755zl8+DA33TSMrKwsq/Vnw4YNLFmyhHvuudNqbdgzk8lEfn4pR47UBuW5uaV4e7uSkNCOHj2iiIz0x9PT5YJ15LYik0nx9HQhMtKfHj2iSEiIxdvbldzcUnbtOsWRI6nk55eet8ZdaHk1NXpOncrk0KEUPDw0JCTE4O9/YaHMsDAfysurKC6usHAm4b/kchkeHhoKC8U+1o2pC9AbutfQaJzZsmU1s2c/zdKlnxIXF8fff/9tg17ajgjQhYthH7/wwhXPbDaLFPdGlJWVYTKZmp1hUF1djUp1/oyapQD9nnvuwdvbm+uvH8OECVPZuXMvW7fuYMSICTz44NPccsstjB3bvHR0o9HI22+/zW233cbSpUsZP348AC4uGn79dR0PP/wwAJMmTcLJyYlly75t1nmbq6CgDG/vlh3k8fPz4YknHmTx4sWsW7euRc9tSXl5OXv37rX69m5ms5njx4/TuXNnnn32WfbsOcyHH37Ozp17+fLL7wGQyWR07hzB1Vd35IYbrmXy5Ht544030Ol0VunTvn37cHJS88QTD1jl/PZKp6shOTmX3btPk5yci4eHhr5929G9eyQhId6o1Y6R8q9WKwkJ8aZ790j69m2Hh4fm/1/XGZKTc9HpamzdxTbFZDKRnl7Anj1JGAwmeveOITLSH5ms4UFKuVxGWJgPycm5Yhb9Ivj4uFJQIAL0xri4ONUXq2yIQqFg2rT72bXrd0JDA7n22mt55ZVXrpj3YV2AfqW8XuHyiABdsAs6nQ6j0Shm0C0oKCjAy8ur2cV9nJ2dqampqZ9Jb2wG3dXVlR07dnDXXRNISkpn+PDx3HLLPVRUVLFp0yZWr16NWq1uVrvPP/88M2fOJCXlDPfffz9//vknr7zyCmVl5Wi1Zfz5559A7Q/VhAkTWL78e2pqWuaGvabGgFZb2eIBOsAjj9zLDTcM5Oabb2bevHktfv5/Kysro127diQkJBAXF0d+fr7V2jp37hx6vZ6OHTsye/ZsTp06jcFgwM/Pj4qK8wcHnJyUXHNNN3x81MTExLB27Vqys7Nb/GbDaDSiVCrrl2m0deXlVZw4cY69e5PQ6Wro0CGEhIRYwsJ865ccOCqVSkFYmC8JCbF06BCMTlfD3r1JnDhxjvLyKlt3z6GZzWYKCrTs3XuWvLxSOncOIy4uFLW66SKrwcFeGAxG8vJKW6GnbYO3tytabaVYttEIqVSCu7sTJSWNDyyHhQWzZs2XPPXUw8yePbvVBr5tzdXVFYPBQFWV+O4TmiYCdMEuaLVaNBqNxVH/K93FpLcDdO/eHbPZzLp1GzGbzRcEW/8VFRXFvHnzOHr0KDt27GD79u0cPnzkotLaT58+zfz583nuuUfZvHk1y5cvYsuWzSxcuJDXX3+dp556isWLF9fvxz516lTy8vL588+WSXMrLCzD1dXJKkGNWq3iq68WM27caN5+++0WP/+/GQwGsrOzefDBSZSXl3HHHXfUD7S0JJPJxMmTJ+nQocN5n7sTJ06Ql5dHQkKPBp/Xq1dnkpIS+frrrzl48CC7du1q0bS9m2++mdJSLX//vbvFzmmPtNpKjh5N5+DBZORyKb17xxAXF4qXl0ubq3IskUjw8nIhLi6U3r1jkMulHDyYzNGj6Wi11s0SaYsqKqo4ciSN06ezCA31pmfPKDw8NM1+vlQqJSLCl9TUPLH0oJlUKgWurk4izb0J7u4aSkubXj4hl8uZOfNxrrqqNzNnzrwi9giXyWS4uLiINHehWUSALtgFkd5uWd3684upoB0fH8+IEcO5777p+PvH8fnnK7nuugsrtP+XXC7n6quvpl+/fhcdJDz55HQCA/157LH7ARg5cii7dv1GaGggzz//PPPnz+f222+nc+fOTJo0iZMnTwLg798ylcELCrT4+FgvA0MqlTJkyLXk5uZSXFxstXY8PDzw9PREo9GwbNkCduzYwYMPPtjiM9Xp6enIZDJCQ0PPe/yjjz7C29uLAQP6WnyuQqFgzZo1+Pr64urqyrZt2zhy5EiLZEPEx8fTvn07vv561WWfyx7pdNUcO5bB4cNpODsr6dMnltjYoCtmj2UnJyWxsUEkJMTi5KTk8OE0jh3LEKnvzaDXGzhzJpsDB5LRaFQkJMQSFOR1SQM6/v4eSKVScnJKWr6jbZSPj6sI0JvQ2Dr0/5JIJLzxxiyKigro1KkT06ZNY/ny5Rw+fLjNDhyJdehCc4m9UAS7UFZWJgJ0CyoqKtDr9Xh4eDT7ORKJhO+++55Vq1ah1WoJCQlh+PDhVuvj/v37+fXX31i+fBEHDhwGoF+/Pvj5+bB48Vv8/PPv+Ph4Exjox969h1iwYAmZmZl4eXnSs2e3y27faDRSXFxBdHTAZZ+rMXU3DdbM9JBIJIwaNYpffvmdF16YzoIFr/HQQ09z1VVX8eCDD7ZIG2azmaSkJNq1a3fezX1BQQFffPEFjz9+f/0OAP/10UdfMH/+x7zxxhv07t0bgIiICI4ePcqff/5Jhw4diIiIuOS9liUSCQ8/PJWnn36a7OxcAgP9L+k89kavN5CWlk92djF+fu4kJMQ4fAr75VCpFERHBxAS4k1qah779iURGOhJeLiv2KbtP8xmM1lZRaSm5uPm5kTPntE4Ozf8+WwuiURCaKgP6en5BAZ6trmsDWvw9nYjLS0fo9FkN0Ua7Y2bmxN6vRGdrqZZ79Fu3eLYvft33nnnQ9au/YVFixYBEBQUxJgxY3jggQeIi4uzdrdbjQjQheYSv4KCXdBqtQQFBdm6G3apsLAQT0/Piw4KnZ2dmThxopV6db6UlBQAPDzcGTFiAgB79mwgNjaKDh1imTEjFoDdu/ezcuVqfH192bt3D+3bx7RI+0VFFajVisu+aW3KoUNHCQ4OtnqthHHjxrFs2TKOHj3JuHGj2LVrL0899RTDhg0jLCys2eepG1CoqqoiLy+PiIgIAHJycjAajYSEhJx3/OLFiwEz9913FyUlpSxd+jVdu3biuuv6Yzabee+9j3jrrUU8++yzzJgxo/55rq6uXHXVVeTm5nL06FFSU1Pp3Lkzfn6Xtm/wuHHjeOKJJ9i4cRuTJt1+SeewF2azmdzcUs6ezcHV1Ynu3aNwcWleTYcrQd22ccHB3iQn57BnTxLR0QH4+7uLoBEoLi4nKSkHs9lMhw7BLVpjw8/PjZSUXAoLy/DxEQPkTXF2VqJSKSguLhfXywKpVIqbmxOlpZXN/j12c3Nl7twZzJ07g7Kyco4cOcbatX/w3XffsHDhQkaOHEm3bt3Iz8+noKAAFxcXhg8fzvDhw3FycrLyK2pZbm5uVt0FRWg7RIAu2JzJZBIz6I0oKCi4qPXnttChQwcARo2aVP/YggVL+OCDN+v/+6uvfuDJJ2fTt29fSkqKUalk/Pjj5y3SfmGhddPb62zZsoMbbrjB6oHD4MGD8fT05Oeff6dLl468/PJzbNy4jYcffoh16369oP2NGzdSXV3NiBEj6h8rKCigX7+rycnJRa1Wk5eXR9euXbjvvvvp1q0b0dHR581yV1ZWsmjRIsaPvw1vby+WLFnBa6/NB8DDww2QUFZWzuzZs5k9e3aD/fb398fX15eUlBT27t2Lj48PcXFxuLhc3J7mdTcwTk6OHcjqdDWcOZNFRUU17doF4esrvuMscXFR07VrBPn5WpKSssnLK6Fdu6BmFT1ri3S6as6ezaWkpIKICF+CgryRSlv2e0cqlRIS4k1GRqEIOJtBIpHg7V1bzV1cL8tq09wrCAz0vOjnurq60K9fH/r168MrrzzHjz+uZfHiZRw4sA8vL0+8vT04fjyfZcuW0bFjR1avXl1//+EI3Nzc6nfludQsM+HKIN4dgs2Vl5cjlUpxdna2dVfs0sUWiLOFuLg4vvzyS1avXs2wYUPx9PTg4YcnA7VFz2bOfJXHHnueyZMn89lnn5GYeJQHH7wbd/fLD6pr1+iX4+1t3RumlJQ0jh8/xfXXX2/VdqB2jXddmrvZbMbd3ZV33pnDb7/9ztdff33esW+++SZDhgzh5ptv5pNPPqGyshK9Xs+ECRNIS0tn8uQ7GD36RpYunU94eCAff/wxBQUFhIeHn3ee5cuXU1RUxCOP1P67HT16gh49unPw4EGmT3+Kp556mj179jBnzpxGByikUinR0dFcf/31qFQqtm7dyrFjx9Dr9c1+/d27d+fGG4cwZ847TRY4tEdms5nMzEL27TuLWq2kd+8YEZw3k6+vG717x6BWK9m79yyZmYVX1LZEBoOR5OQc9u07i1IpJyEhlpAQnxYPzusEBnpSUVFFaanjfc5swcfHjcLCsivqPXmxagvFXf77SalUMn78bWzfvpbExG1s2/Yzq1cvY8eOX9m+fR0mk56EhASH2k/d2dkZqVRKeXm5rbsi2Dkxgy7YXF2BOJHOeCGdTkdVVRVeXl627kqjJBJJfTr9N998g1KpYOfOvRw5coyvv17F7t37Wbx4MQ8//DB6vZ7w8HDWr9/MmDE3X3bbJSWVSCQS3Nysl+pmMpl47LHnCQsLY+TIkVZr59/+nebepUtHbrppMGPHjuSRRx5hwIABhIeHU1ZWxgsvvMCDD05Cqy3joYce4uWXX2bAgAFs2LCBTz55l9tvH1V/zptvHsKqVVvYsGEDQ4cORaGoXQNtNBp59913GTnyRiIjawN3T08PEhOPUl5ezksvvXTR/VepVMTHxxMZGUliYiKbNm2iY8eOhIWFNflZl0gkfPTRx3To0IElS1YwfXrLrL1vDXq9gVOnsigvr6Jz5zA8PZtfXVuoJZfL/j/jwJ1TpzIpLq6gffugNr02vXYpRAnJyXk4Oyvp3j0SFxfrp+/K5TICAz05d64Ad/fmL5+5Urm5OSGRQGlp5UVVzr+SuLs7UVWlp7pab7U6G3Fx7dm48QfGj3+I0aNHs2fPHqKjo63SVkuSSCS4urqKwshCk8QMumBz4ovKstLSUjQaDXK549yYzps3j/j47jz//GtMnfocWm0lGzdu5OGHHwZqZ4fHjRvHnj0HW6S9uvR2aw7wLFnyJTt27OGLL76w+vrzOnVp7qtX/1r/2DvvzMbd3YW77roLvV5PZWVttVxPTw8WL36bjz56m+zsbL7//nvGjRtNSko6I0bcxT33PMabby7kuuvG4uPjx6pVqzh8+HD9eVevXk1ycjKPPXYfAEePnuTcuSz0ej0zZ868rNfh7u5Ov3796NKlC6dOnWLbtm0UFRU1+bzIyEgmTpzIkiVfWmWbOWsoKalg//6zAPTsGSWC88vk6amhZ88oAPbvP0tJSdPbNzmi0tJKDh5MJjU1n9jYALp1i2iV4LxOcLA3hYXlVFY6xufMlv6X5i4KfVkik8lwdlZSXm7d/b5dXV1YseJDXF013HfffQ6T1SAKxQnNIQJ0wea0Wm2rBT2OxhEHL0JCQli/fgOVlZWUl5dz5EgigwYNOu8YLy8vSkpKLyrt2ZKSkgo8PS9ujfPF0GrLePXV+UydOvWi9oW/XAqFgkmTJvHZZ1+Tl1cAgLu7G59+Op89e/bw5JNP4u/vz7Rp03jzzYV8++1PfPLJl/Xrvb/77mc++mg5/v4hZGTk8e67i5ky5T4qKyuZMGECVVVVRERE0K/f1UyfPp0OHWLZu/cg1147mgEDbmbnzv3MmjWLb775ptl9TktLY8qUKTzwwAMUFBTUPy6RSAgODmbw4MEEBgayc+dO9u/fj06na/R8Tz31FDk5eaxate4SrmDrMZvNZGQUkJiYRmioD3FxoW16trc1KRRy4uJCCQ31ITExjYyMAoe5EW9KdbWeEyfOceRIGt7erv+/FKL1i+Op1Qr8/Nw4d66wVdt1VF5erm12sKilaDRqKiqsG6BDbWHa99+fy9atW/n885apaWNtIkAXmkME6ILNabVa3N3dbd0Nu+SIAXodhUKBRtPwDOLQoUMpKytny5Ydl9WGXm+goqIad3fr1S9YvfpXdLqqy55JvhQvvfQSUqmMDz/8341Hnz49eP31WXzwwQd8+eWXvPbaa0yePJmHH36WxMQTrFmzhl9++YUtW7aQn5/PqlWr2L9/P2VlZcTExHDLLbfw/vvvc+zYMdLS0ti5cxeZmZmcPHmGF198i6iodvz000+kp6fz6quvXlDpvTEPPvgAP/zwPZ9++im///77BX+XyWS0b98ehUJRn/Z+6tQpjEZjg+fr2LEjI0YMZ8GCT1tkMMcaTCYTp09nce5cId26RRIc7C2W67Sw2gEeb7p1i+TcuUJOn85y6H2SjUYTqal57NmTBEBCQgzh4X423borJMSH3NwS9HqDzfrgKNzdnamoqBbXqhG1AXrrZGRce20/xo+/9f+35sxulTYvhwjQheYQAbpgU3q9Hp1O57BBqLU5coBex2g0snz5chYuXMju3bsBCAio3a88P7+gsac2qW4rF6XSerOV33zzE0OH3nhRgWpL8fLyYty4cfz668bzHp8yZTwTJozh3nvv5csvv+Szzz5j8+bNHDlyhEGDBjFy5Eiuvfba+jXmUFsZ3dPTs/79NHnyZK6/fjD+/v6MHDmSjz76iOzsbFavXs3o0aPPe25z/PHHH2zY8Ad33z0OoNH37ejRo5k8eTKlpaXk5OSwadMmMjMzG5wZnTv3VZKSUliwYMlF9ac16PUGjhxJo7y8ih49oqxaB0GoXf/bo0cU5eVVHDmS5nABktlsJi+vlL17kygqKqdr13A6dgyx2jrdi+HiosbFxYnc3FJbd8XuKZVynJ2VlJY2ngF0JdNoVK0yg15n7twZKBRypk2b1mptXio3Nzd0Op3dDjoL9kHk4Ak2pdVqUalUKJVX5lY6jTGZTJSXlzt8gJ6WlsY999xTv4/7+++/Xx+I3XTT5VVELy2ttOrsOUBqagbDh49q+sB/MZvNLTaLOnjwYJYsWUJmZjbBwYFA7Yzi+++/ipOTEw8//DAHDx5k/vz5FndCMJvNpKenn1dER6PRsHHjny3Sx+LiYqZMmULfvr345Zf19OmTwE033WTxeE9PD7Kzc3j33Xc4cOAgGRkZJCYmkpKSQufOnfHw8Kg/Nj4+nhkzZvDmm29x1VW96dcvoUX6fLmqqmo4ciQNjUZFly7hNp39vJKoVAri4yM5efIcBw+m0LVruENsxVZWpuPs2Rx0uhoiI/3tcp/3wEAPzp0rJDjYy+76Zm9qK5VXtMr2no5Io1FTWVmDyWS22g4E/+bl5ckbb8zivvum8/PPPzN69Girt3mpVCoVKpWKsrIyuy8ALNiOuKMQbKotzBBbS1vZfs7HxweA+fPn8sADE3nsscfqR7m12rLLOndpaYVVA/S1azeQl5dP165dm/2csrIyunePp127WN555x0Mhsub5bvhhhvw8PDg1Vfnn/e4TCbj7bdfYsGC1/jiiy/w8PBg4sSJ9XuI/1tpaSkVFRUEBQVdVl8aYjQaeeCBBygv19KlS0cyMjJZuHCRxRn42sELKe3bR3Po0GGOHz9OWFgYgwcPxsvLi+3bt3Po0KHzCsPVVaa/997HycnJa/HXcLF0umoOHUrFw0NDp06hIjhvZTKZlE6dQvHw0HDoUCo6nf0WN6upMXDqVCaHDqXg5uZM794xBAR42GUA7Ovrhk6nt3pxr7agdq9vsTWdJWq1AolE0qqfzVtvHc4NNwxk2rRpTdY3sTWR5i40RdxVCDYlAnTL2sr2c3V7lF51VS9ef30WH330DhpNbVBdWnrpP1AGg5Gysirc3a1TKTsnJ48nnniRW265hVGjmjeDbjabueeee0hOTqZ79zhmzpzJTTcNa1bVcks8PT2ZN28e3377Exs2bLng75Mm3c6uXb/x4otPsn7974wefWFf09LSCA4ObvHdAAoKChg+/CZWr17Nc889xrJl3zJ27FhefXUukydPJicn54LnfPXVV2RlZTF37kw8PNzr93VXKBR06tSJQYMGUVNTw59//klSUhImkwm5XM63336LVCrn4Yeften644qKKg4dSsXX143Y2ECH/3w6KolEQmxsIL6+bhw6lNqq6bTNYTKZyMgoYM+eMxgMRnr1iiEqyh+5XGbrrlkkk8nw83MjJ6fE1l2xe+7uGsrKdBgMDdfPuNJJJJL/T3NvvQBdIpHw+uuzyM7OZuHCha3W7qUQAbrQFBGgCzZVXl4uKrhb0FYGL0pLa9c0Bgb6A3DHHaM5dWoXJ0/upGvXuEs+r1arQ61WoFa3/PpNs9nMo4/ORKlUsWTJkmYHYd9//z2rV69m8eK3+OSTd1m16nP2799P7969OXPmzCX355577mHo0Bt5/PFZpKefu+Dv0dERPPbYfcyd+xx79+6rv+ZQO8OdmZlJWFjL7XGcn5/PzJkziYyMZM+ePfz442eMGHFj/dZva9euY9myZWzduvWC5/7666/06dOTG24YyIgRN7B27Zrz/q7RaEhISCAhIYH09HQ2b95MTk4Ofn5+rFixgm3bdrJo0dIWey0Xoy44Dwz0JCrKXwTnNiaRSIiK8icw0NNugnSz2UxhYRn79p0lN7eEuLhQ4uLCcHKy/zR8gIAAD/LySh26CF9rqPvt0Wrte6bWljQaVatnY8TERHLvvXfy+uuvn7eTiL1xdXWlrOzyMgiFtk0E6IJN6XQ6h0/htpa2EqCr1WqA81LONBpn/P19L+u8tent1pk9/+KLb9i06S8+//zz+hT9plRVVTFjxgyGDRvMiBFDABg48Go2b16FTAbDhg2juLj4kvojkUj44otlaDSuDB16B7t377fQh2okEsl5gWN2djZKpbJF1rrl5OTw1FNPERERwQcfLGLKlPH88896Bg3qj5eXB1AbgNfp06fPBec4c+YMoaG1qfZRUREcPXqMZcuWkZ+ff95xlZWVdOnShejoaA4ePMju3bvp06cPTz/9NK++Op8DB45c9uu5GDpd7Zrz4GAvIiL8RHBuJyQSCRERfgQHe3HkSBpVVTU260tFRTWJiemcPJlJSIg3PXtGW3ULSGtwc3NGoZBRUCCCh6bUprmL7dYscXFpna3W/uvZZx8FzLz88sut3nZzOTs7230avmBbIkAXbMZsNqPT6XByEpWPG9JWAvTw8HAA0tMzW/S8JSWVeHhYZ3Dnq69+5JZbbmHYsGHNfs7ChQs5d+4cL7/87HmPh4eH8v33n1JQkM/06dMvuU8BAQFs376dmJh23HTTnUya9Ah79x6s/7tWW8aHH37OsGFDz3vfpKenEx4efkkB5ZkzZ8jJySE7O5tp06YRGRnJ0qWfMnXqPRw+vIU5c57B19cbAKVSwfXXD2TQoH707t2dhITeREZGnnc+g8HA4cOHad++tljd7bePpH//Ptx77734+fkRGRlB//79mD17NhEREfj5+fHaa6/RuXNnXFxc2Lp1K+PHj6dv375MmTKdsrLyS7mUF62mxkBiYhq+vm6Eh1/ewJJgHeHhvvj4uHHkSBo1Na1b3V2vN5KUlM2BA2dxdlaSkBBLUJBjFlqTSCQEBHiQk3Npg4lXktpCcWIduiWtudXav3l7ezF9+oN8/PHHHD9+vNXbbw4nJyd0Ol2DO5cIAogAXbChmpoaTCZT/Qyr8D9tafu5vLzaol4t+e9sNJooK9NZbQbdaDRdVGaHyWTivffeY9Kk24mNjbrg7xERYbz22kyWL19+3gzzxQoMDGTTpk18/PHHnDqVwpAht3PNNaN46KFnuOGGseTnF/H22+/UH19ZWUlBQQGhoaEX3dbnn39Ou3btCAwMJCgoiBUrvmT69Ac4cmQrs2ZNx8vL87zj5XI5P/ywlG+++YS9ew9y6NBh3nzzzfPW38vlcjp27EBKSjoAwcGBrF37FSdO7OCjj95h9Oih+Pl58P77/yuI9/PPP9GjRw+KiooYOHAglZWVPPHEE3To0IlNm/6+6Nd1sQwGI0eOpOHq6kR0dIBDBl1XAolEQkxMAK6uTiQmprXK2mCz2UxWVhF79pyhsrKGHj2iiIkJRKGw33XmzeHv70FJSaVNsxEcgYeHM1qtTiwHsECjUVFdrbfJOv2HHrqH8PAQHn74YbsMgtVqNSaTiZoa8RkTGiYCdMFmdDodSqWyxQtXtQVarRa1Wu2Q288ZjUb+/PNPli1bxvz583nsscfo3r0L7dpdGLheqrIyHQqFzCrrz/fsOciRI8e44YYbmv2cffv2kZeXx5gxN1s8Zvz42+jZsxufffbZZfVPoVDwwAMPcOLESX7++We6du3OuXN5xMf3ZNOmTcTF/W9df1ZWFr6+vpc0OLJnzx58fb1ZunQ+Cxa8xoEDf/Lss4/h7t74oJFSqWTIkEFoNM7MnfsK7du3Z+HChTz99NNERUVy9Ogxunc/vyq+v78vd9wxmtmzn+bzzxdw+vQufv55Of/8s55//vmdjh1juOmmm9i0aROenp4sXryYO++8g+DgWIqLrZdiajabOXHiHEqljPbtg0VwbuckEgnt2wejUMg4eTLTqjfmxcXl7N9/lnPnCunQIZguXcLQaNrGYLNKpcDDQ0N+vihi1Ri1WolCIRPr0C1QKOQolXKbzKKr1Sree+9l/vrrL5YtW9bq7TdFLpejUChEmrtgkYiMBJvR6XRi9twCR0xv1+v1rFy5kjfeeINTp04BtWvNw8JC+PTTeS06EFO3vZo1AqbNm//Gx8eHiRMnNuv4goICXnnlFTw83OjdO97icRKJhK5dO3HgwLEW6adUKmXUqFGNVpjPzs5ucvZcq9Vy8OBBnJ2diYiIwM3NjR9//JEvv/ySm24azG23jbiofkkkEr799hOMRiOFhcW8+OKbPP744wC4u7uxdOl8Ro9ufOmASqVi4MCr6//722+X8OCDT3HrrbcCtYWArr66IzqdiWPH0vH01BAVFdDihbhSU/PQ6Wro3j2qVfbyFS6fVCqhY8dQDh5MJjU1j8hI/xY9v05XQ3JyDsXFFYSH+xIc7IVU2vbmOnx8XMnNLSU0tHk1OK5EEomkfrs1Dw/rZHM5utpK7lVW3Q7VkoEDr2bs2JE888wz3Hzzzc2uJ9Na6tLcPTw8bN0VwQ6JAF2wGbH+3DJHC9DXrFnD448/TmpqKsOGDWbRorl06xZntQyAkpJKfH2tc30qKirx9m76pruoqIinnnqK7777DpVKybx5c5schPDx8SIj48Iq7NZQVVVFcXExvXv3tniMwWDgqquuanCd3pAhg1i06I1LalsikSCXy/H392XJkveYN+8VMjKyiI4Ov6T3hLOzE19++SFbt+4gOzuXUaOG1W/V5+/vQUpKLvv2JREc7E1YmE+LbGWVl1dKZmYR3btHOXzK8pVGoZARFxfKwYMpuLio8fV1v+xzGgxG0tMLyMwsxN/fg4SEWJTKtnsL5e3typkz2dTUGNr067xc7u4aCgq0ojaFBbXr0G23u8Krr86kT58beemll1i8eLHN+tEQJycnqqpsv/OEYJ/Et65gMyJAt0yr1dYXV7N33333HePHj2fw4AGsWLGIzp07WLU9s9lMWZmOqKiWnRmro9NVXfC+NJvNpKamsm/fPvbv38/+/fvYs2cvUqmEp5+eysSJY+uLpVliNBpZvfpXrrvuOqv0+79yc3Px8PBoNEslOzub48ePM23a/dx663DS0jIoKdHSrVscXbt2arEMBRcXDR07xl7WOSQSCYMG9b/gcaVSTvv2wQQFeZGUlMPevUlERvrj7+9+yf2vqKjm1KksOnYMQaNRXVa/BdvQaNR06BDMyZOZODurL/nf0Ww2k5tbSkpKLk5OSuLjI3F1bfu/WyqVAldXJwoLywgM9Gz6CVcoNzcnUlJyMZvNYglMAzQaNdnZtis46Ofnwy23DGfHju0264MldTPogtAQEaALNlNVVSX2QG+A2WxGq9Xi7n75sz7WptPpmDZtGjffPITPPnsfmcz6M43V1XqMRpPVAie5XEZycgpPP/00SqWSM2fOsH37dnJycoDawmbdusXx6KOTueuuMQQFBTR5TrPZzMyZr5GSks4333xvlX7/V3Z2NoGBgY0eExoayvXXD2bTpr95+eVn6dbt0veltzVXVyfi4yPIz9eSnJxLVlYR0dEBF51aaTKZOHnyHMHBnvj4iO8nR+bj40ZgYCUnT56je/fIi05FLy2t5OzZHGpqDERHB+Dr63ZFBWE+Pq4iQG+CRqPCaDRRXW2wSk0UR1eX4m7LAYxu3eJYvvw7Nm7ceFG1ZaxNrVZTXt46O5EIjkcE6ILN6HQ6fH1FWth/6XQ6jEYjLi72vX+u2WzmiSeeoLCwkNmzn26V4BxqZzednVVWW/c5ffpDFBQU8dNPqzAYDAQFBXDnnaPp06cHPXp0bXKmvCELF37Kp5+u4OOPP2405bylGAwG8vPzzysYZ8mkSXczadIkCguL8Pa+/L3SbUkikeDn5463tysZGQUcOZKKj48bUVH+qFTNu3lOSanddSAiws+aXRVaSWSkHwcPppCSkkd0dNODaVA7CJicnEtBgZbQUB9CQ32QydreOvOmeHu7kZaWj9FouiJff3NIpVKcnZVUVFSJAL0B9jCAMWHCGNau3cAdd9zB8ePH8fe3TvbdxXJyciI/P9/W3RDslAjQBZsRKe4NKy8vR6PRtFrAe6l27tzJkiVLGDr0Oqqqali1ah3JyalUVdVQXV3N2LEjrTIjW1FRZdW0Y39/X5Yund/0gc20Zs165sx5h1mzZvHggw+22Hkbk5eXh7Ozc7MyVAYNGoREIuGzz77m2Wcfa4XeWZ9MJiUiwo+AAE9SUnLZsyeJsDAfQkK8Gw00iovLycoqpmfPqDZZ+OtKJJVK6dgxhP37k/HycsHT0/LAp9Fo4ty5QtLTC/DxcaV379grOuhydlaiUikoLi7Hx8dxaqK0trp11t7eIuPmv6RSKU5OSiorq232WZLJZCxY8BqdO1/Djh076ouN2ppIcRcaIwJ0wSbMZjNVVReu9RVq9652hOvSs2dPunXryvr1m1m/fjMAvr6+9SPCEonESgF6tcNsZ5SXV8D06S8xZswY5s6d22rtZmdnExDQvNnCkJAQXnjhBV599VVuuOFaunfvYuXetR61WkHHjiGUllaQlJRDTk4xUVEB+Pi4XpBuaTSaOHUqi+hof5ydxbrztsTZWUV0tD+nTmXRu3fMBYM0ZrOZgoLapRFyuYyuXcNtUnXa3kgkEnx8XCko0IoAvRG1adytv5WYo1CrFVRX623ah6CgAFxcNJw9e9am/fi3uiJxon6B0BAxRSDYRHV1NSaTySEC0dbmKAMXarWagwcPcfLkSbZs2UJmZiYjRtRuyTV16mRmz37aKu1aewa9pZjNZp566iVkMjmLFy9utR9gk8lEbm5uk+vP/2327NlERkayZMkKK/bMdtzdNfToEUVYmC9nzmRz+HAq5eXnV89NTc1DpVKI9bZtVGCgJyqVgtTUvPMeLy+v4vDhVM6cySEszJcePaJEcP4v3t5uFBaWW3VPeUdn60rl9k6lsn2ALpFIiIgIIykpyab9+De1Wo3JZKKmpsbWXRHskJhBF2yiqqoKpVJp92nctuBIqf8SiYT27dvTvn17Zs2axRdffMHixW9x553WSSEzmUxUVjrGDPpPP/3GunUb+eGHH1q11oJWq8VsNuPp2bxA02g0smjRIrKysvDwGGDl3tmORCIhMNATX1830tPzOXgwGX9/DyIi/KipMZCVVUSPHlFiJqONkkgktGsXyIEDtf/uSqWc1NQ8cnNLCA72pnPnsBbZnq+tcXNzwmw2U15edUVUr78UGo2aysoaTCaTWBrTAHsI0AHi4trz888/ExkZydixY4mOjrZpf+RyOUqlEp1Oh0pl/5MOQusSAbpgE44UhLY2nU6Hl5fjFeuqC0Lfffcjvv32Z7y9vVCplLi4aJgyZTwdOlzeNlsAlZU1SKVSu18XWlNTw4svvsltt93GmDFjzvub2Wxm0aJFHD9+nEGDBjF8+PBmFQQ8evQozz33LIcOHUKj0dChQ0e6d+/Oo48+et4AQGFhId7e3s0ONN977z1mzJjBffdNYPbsZy7uhToguVxGVFQAAQGeJCfn8s8/p1Eo5AQHeznEwI9w6TQaNUFBXhw9mo5eb8DT04VevaJxchI3x5ZIJBLc3Z0pLa0UAboFarUCiURCZWUNLi7iO+S/VCo5Wm2lrbvBc889SlVVFa+88jIzZ87kjTfe4LnnnrPpoKxarUan0+Hh4WGzPgj2SQz1CTYhAnTLHPXaPP7446xZs4ZRo24hICCU0lId587l8fvvW+jf/2aWL//ustuoqKjC2Vll97Ocq1atIysrh1deeeW8x7Oysujbtw+PP/44Gzb8zh133EFwcDBvv/12k+e8++5JHD9+jLvuupUbbhhAZWUp778/n9jYWObNm1efJldQUIC3d/MrzScnJ9OpU3vefvsl1OorJ1BxdlbRuXMYwcHe1NToKSjQUlhYZutuCVZUWFhGQYGWmhp9/ay5CM6bVhugV9i6G3ZLIpHUbycmXKh2Bt1g624QGRnOsmWLOHPmH5555hFmzpzJ1KlTMRqNNuuTKBQnWCJm0AWb0Ol0qNVipPm/zGazw14biUTCzTffzM0333ze49XV1dx77728/PK73HbbCFxcNJfcRkVFtd3PUNTOkH/GiBHD6dSpU/3jZWVlDB8+nLy8HNasWcGAAX1JT8/kgw8+47nnnsPX15fJkyc3eM6ioiIOHjzEBx+8wfjxt9U/XlhYxOuvL+CZZ55h5cqVrFq1iqKiIqKiojh79izZ2dlkZGSwbds2SktL8fHxISAggPDwcJycnHBycuLkyZMcO3aSM2eSiY2Nsvr1sScmk4n8/FJiY4P+f//zTNzcnIiODhCF4tqQyspqzp7NQavVERHhi1QqJT09v/7/C43z8NCQkVEoilk1QhSKs6wuxd1e3j8ajTPPP/8EoaHBTJ/+InK5nEWLFtmkLyJAFywRAbpgE1VVVc3aAupKYzAYMBqNDjmDbolKpeKVV15h5cqVbN26gxEjhlzyuSoqqvDysu/94Tdu3MaJE6f55JOl9Y/p9XrGjLmN5OSz/PbbN8TFtQcgLCyYt956kUOHEvnll18sBuh//fUXZrOZ/v37nve4t7cX7733MhMnjmXixEeYNu0x7r//Aa6++urziuG0axeNn58PR44cJDs7l+LikvPO07dvL4KCmlf1vS3Jzi5GJpMSEOBRv4d6amo++/efJTDQi4gIX7Eu2YEZDEZSU/PJzi4iIMCTDh2CUSjkmM1mzp0rJDu7mODg5mebXKlcXNQOVf/DFjQaNcXF5bbuhl1SqRQYjSaMRpNdfZ9OnDgWrbaMl156izFjxjBw4MBW74OTkxNlZSJzS7iQCNAFm9DpdPj5+dm6G3ZHp9Mhl8tRKOx7jfXFio6OJjg4mH37Dl9mgF5NaKhPC/as5S1c+Cl9+iTQv39/oHZG/YEHHmDLlq38+ONn9cF5HYlEQm5uAYMGWb4uW7ZsITw8lLCw4Ab/Hh/fmXffncOyZauRSCQolUp8fb1Zs2YF/v6+eHp6nHd8RUUlNTU16HRVyOVyfH2bv2a9rTAYjKSl5dOuXXD9a1co5MTGBhIU5ElSUg579pwhIsKPwEDPK+76ODKz2Ux2djGpqXloNGp69Ig6L7CUSCRERvpx+nQW/v4edhU02COpVIqbW+06dBGgN0yjUXPuXKGtu2GXZDIpMpmU6mq93X3WHnhgIr/99idDhgxh6dKlTJw4sVXbV6vV5OXlNX2gcMURAbpgE466ztra2up1qampwcPDg9OnL30PUr3eSHW13q63WNu+/R927NjDqlWr6gO6OXPmsGzZMj755F2uueaqC55jMpnIyMgkMjLS4nm3bNlM//4JjbZ9ww0DOXw4mYyMDDp37kxOjrvFwnwajTMajTPNLPTeJmVnF6NWK/H2vjAjQ6NR07VrOIWFZZw9m0NWVjExMQF4eFz68gyhdZSU1O55bzSaaNcuCG/vC/e8B/D2dkWtVpKdXWz3g372oK5QXFCQ4xUwbQ0uLiqqq/UYDEa7C0JtTSKRoFIpqKrS290Aj0KhYPXqL3jqqdlMmjQJLy8vhg8f3mrtixR3wRKx+EpodY68ztra2uJ1MZlM3HvvvZw5c4aHHrr7ks9TWVmNUilHobDPccXi4hIefPBp+vfvz6hRowBYtGgRr7zyCi+99DS33z6qwedJpVJ8fX3Izc1t8O/5+fkkJh69IL39v4xGI7Gx7TAYDOTk5ODrK1J3LTGZTJw7V0hYmI/FmXGJRIKPjxu9e8fg5+fG0aPpHD+eQVWV2LPWHlVV1XD8eAZHj6bj5+dO797R+Pi4NfrvGxrqQ2ZmISaT2OO7KR4eGkpKKsR+6BYoFHKUSrlYh26BSiWnpsb2W601RKVSsWjRG0RFRfDHH3+0attOTk5UVVWJz5VwARGgC62uuroas9ncJmeKL1dbnEF/6aWXWLlypcUZ5OaqrtajUtlv6v/s2W9TUaHjm2++QSaT8eWXXzJt2jQefXQKTzzxQKPPjYgIITk5ucG/bdu2DYABA/o0eo49ew7j6upKz549SUpKIjIy7NJeyBUgP1+LTCbF27vpOhhSqZSwMF96945BKpWyd28SKSm5GI2mVuip0BSj0URKSi579yYhk0lJSIghLMynWcXffHxckUql5OeXtkJPHZurqxN6vZGqKvsMsuyBvez3bY9qZ9BtX8ndEolEQnh4MJmZmQ3+vbS0lPXr15Ofn9+i7To5OWEymaiuFgM7wvnscypKaNN0Oh1KpRKZTKSB/ZdOp8PZ2dnW3WgxOTk5vP322zz33GOMHj3sss5l7wH6mjUbuOOOOwkJCeGXX37h3nvvZdKk23nllab3WQ0M9OfcuXMN/m3z5s1ERUUQHBzY6DkOHTqBm5sPO3bsICsri/79Gw/or1Rms5mMjAJCQi5u3b1KpaBDh2CCgrw4ezabnJwSoqL88fNzF+vTbcBsNpOXV0pyci5qtYL4+MiL3qdbIpEQEuJNRkaB+Hdsgkwmxdm5disxJyelrbtjl0SAbpkjXButtpyoKI8LHq8t0NqPo0ePoVKpqKioaLH7V5lMhlKpbJPZk8LlEQG60Or0ej1KpfiBb4hOp7uoPaztXWJiInq9nnHjGk7vvhj2HqDfdddtLFu2goSEBB5++GFuvnkI8+a90uRNv9lsJiUlg27delzwt+LiYr766ismT76jyfZLSysoKirn/fff5623XmTgwKsv+bW0ZaWllVRXG/D397ik57u5OREfH1kfHGZlFREdHYibW9vKfLFnWm0lSUk5VFfriY4OwNfXcip7U/z9PUhJyaO0tFLUGGiCRqOivLwKHx83W3fFLqlUcrsPQm1FpVJQWlpp6240Kjs7lxtv9K//77/++ouvvvqK+Ph4jh49BsDHH3/c4pNLCoUCvV68b4TziQBdaHUGg0HMnltQVVXVplLcd+/ejVQqbXL2tzmqq/W4udlvdsHUqZNZvPgLpkyZwuDBA/jkk3ebfJ+bzWZeeuktjhw5xiuvvHbB37/++msqKiqYOrXh7df+fR6lUs2xY8eYM+cZHnhg0mW9lrYsJ6cYf393ZLJLX+ElkUjw9/fAx8eN9PQCDh9OwdfXnchIP7seRHJ01dV6UlLyyM8vJTTUh9BQn8v6d4TamWF/f3dyckpEgN4EjUZNWZkoaGWJSqVAqxXXpyEqlcJu16ADFBQUkpWVQ3x8PABbt27l+uuvR6Nx5tNPP2X+/Pm4u7tzzz33tHjbcrkco9HY4ucVHJtYgy60OoPBgFwuxob+q60Vz1u2bBkvvfQS99xzR4tsG1ddbUCttv/gJzQ0mOXLP2gyS6S6upqHH36WDz74jIULF9YXlvu3qKgoTCYTQ4fewaRJj/Dttz81WEzGZDIRHh7O4MFX8/jjja93v5IZDEby87UEBLRM+XqZTEpkpB+9e8dgMpnYuzeJ9PR8TCaxPr0lmUwm0tPz2bs3CZPJRO/eMURE+F12cF4nIMCT/PxSDAZxk9wYjaY2xV1omCOkcduKSiWnqspgt8XQiopKAPD392f//v2MGjWKq6/uzU8/LQMgPj6eyZMbHyi/VHK5HIPBftfnC7YhoiSh1RmNRhGgN0Cv12M0GtvEDHpiYiIPP/wwEyaM4d1357TIOaur9SiV9hugBwcHcvjwVkJCApssUJWfX8iECVM5fPgYK1eu5M4772zwuKFDh/L555+zY8cOPvvsM9au/YP+/fsSEvLfjAQJfn5+9O3bv4VeTduUn1+Ks7MKF5eWHQRTq5V06hRKSUkFZ8/mkJ1dTHR0gMUtvoTmMZvN9VvdyeUyOncOs8ost4uLGmdnFfn5WgIDr+C9B5vg4qJGp6vBaDS12OBIWyICdMtUKgUmkwmDwYRCYX8ZlD4+tdsHHjlyBLPZjFarZcKEMcyd+x4+Pj7069fPam2LAF1oiIiShFYnZtAbptPpkMvlLTLbbGuvvvoqISGBvP327BYJUEwmEzU19j+DHhYW3OQxBw4cYfLkaVRXG9i2bRt9+pxfzC0vL4/ly5ezadOf7N79D6Wl/6swff31AwkK8v/vKamsrEYul6FUis9VY3JySgkI8LDa+T08NPToEUVOTjGnT2eh0aiJjg5o8QGBK0F5eRVnz+ZQUVFFZKQ/AQEeVh3sCAjwICenRATojVAq5cjlUiorqy+6IN+VoDaN24DJZEYqFQNz/yaXy5DJpFRX6+0yQPfy8mTcuNHMmDGDrVu30r59ex588GkCAwP59NNPrXpfJgJ0oSHibk5odSJAb1h1dXWbSG/X6XRs2rSJu+++HSenlnk9NTW1P16OHIAajUbef38Jb765kO7d41m1ajWhoaHnHbNhwwYmTZpEWZmWfv368Oij9xIZGYZer6d37+5ER0c0eO6Kiio0GpWYrW1ETY0BrbaSuLgQq7YjkUgIDPTC19edtLR8Dh5MJiDAg4gIPxQKx33/tha93kBqah45OSUEBXkRFxeKXG79G3ofHzeSknKoqTE49PeMNUkkEjQaNRUVVSJAb4BKVfu+qanRo1aLQrj/pVTK63/L7dG7787h4MFEHnjgfvbv38/WrVu59tpr+euvv9i7dy+9e/e2SrsymUysQRcuIH6FhFZnNBpFkbgGtJWBi3feeQetVstdd93WYuesreAud8gAtLy8gu+++5lPP/2K06fPMnPmTObMmXPeiLxer2fWrFm88847DB48gI8+egdf3+ZX8y8vr0ajcfzBHWsqLCzDzc2p1ZZJyOUyoqMDCAz05OzZHPbsSSIiwpfAQC8xu9YAk8lMVlYRaWl5uLk507NnNM7OqlZrX6VS4OrqRGFhmZhFb0RtgC72bG6IRCJBqZT/f70UEaD/l1wuw2i03/ocLi4ann56Kg888BQ1NTUMHz6cL7/8krvvvhuAc+fOERzcdJbcxRIz6EJDHD8aEByOwWBApWq9Gy9HodfrHTpANxgMvPHGG8yZM4fHH3+AqKjwFjt3dbXBoapjm81m9u07xMqVq1m9+le02jI8PDzYtm0bAwYMOO/YDRs28MQTT5CUlMTLLz/Lo49OaXIN+39VVoqtj5pSUKDF29u11dt1dlbRpUs4RUW1a6mzsmrXp3t5ubR6X+xVUVE5Z8/mAGY6dgzBy6v1/50AfHxcRYDeBI1GRUGB1tbdsFtiHbplMpnU7meK67LUUlJS8PT05ODBg/V/O3LkiNUC9OpqMeglnE9U+RBaXVuZKW5pjlo8z2Aw8OWXX9KxY0dmz57Nc889xgsvTG/RNux9D/R/W7r0a7y82jFkyO0sW/YtWm0ZACUlJZw+fRqoDeCPHTvG7NmzGTp0KD4+7mzevIpp0+6/6OAcoKpKpFQ2xmg0UVxcYdNBDC8vV3r2jCEw0JMTJzI4ejSdysor+6assrKao0fTOXEig8BAT3r2jLFZcA61ae5FReV2Pctna2q1kqoqEYBaIgJ0y2oDdPv+bEVE1C47S05OBuCJJ56o/9vVV19tlTbFDLrQEMeLBgSHJwL0hjnidSkqKuLWW29l27Zt3HTT9Xz++Xt06dKpxdtxlADdYDDwzDNz6v/bzc2VAQP6sn37P5SWavnwww/57rvvOHbsGFlZWahUKh555F7mzp1xyen7ZrO5fgmA0LDS0kqUSnmrpkw3RCqVEBLijb+/O6mpeezff5agIC/Cw31bZZ21vTAYjKSl5ZOVVURAgAcJCbF2sT7f2VmFUimntLRSZDhYoFLVpnCbzWaHXHJkbSJAt8wRAnRPTw98fLxZvXo1Y8aMITw8nPz8fAoKCnB3d7dKm2INutAQ2/8iClccsQa9YY4YoH/++eds27aNtWu/on//Pk0/4RJVV+txd3e22vlbilwuJzPzCKWlWpRKBZ6eHkilUqqqqlm4cAk7d+5DpYKxY0fQv38frr66N87Ol1dsyWAwYjKZHWIAw1ZKSyvw8LCf949CISc2NojAQK//X59+plUqldua2WwmJ6eElJRcNBo13btH2V2Few8PZ0pLK0SAboG9b5dlayqVHK220tbdsEuOEKBLJBJefXUmDz30NFdddRWPPfYYPj4++Pj4WK1NMYMuNMSxogGhTXDEQLQ1OOLARc+ePQFITU23aoCu1xvtYoatOZydnS4IutVqFc8++5hV2quuNiCTSa+oGdiLVVpaib+/h627cQEXFzVdu4ZTUFBGcnIOWVlFxMQE4O7e8nt921rdHvEGg5F27YLsdo94d3cNubkltu6G3bL37bJsTamUo9eL2dCGOEKADjBu3CgOHjzC008/zW233UZQUJBV2xMButAQsQZdaHUiQG+YI16XQYMGcc899zBz5mukpqZbrR2j0YRMJr6uGuIo6f+2YjKZ0Gp1dpuBIZFI8PV1o3fvGHx93UhMTOf48Qyqqmps3bUWUVVVw/HjtWvu616nj4+bXQbnAO7uzmi1Okwm+w8kbEWkcVvmKEGoLTjStZk58wnUahULFiywelsiQBcaIu54hVbniIFoa3DU67JgwQJ8fHx54okXrdaGCNAtEwF648rKqpDLpTg52XcRPalUSliYL717xyCVSti7N4nU1DyHuaH9L6PRRGpqHnv3JiGVSujdO4awMN9LKoLYmpyclMjlUsrKqmzdFbslAnTLHCkIbW2OdG3c3V255547+PjjjyktLbVqWyJAFxpi37+UQpvkqIGotTnqdXFzc2PatGns2rXPam2IAN0yUSCucRUVVWg0arudsf0vlUpBhw4hdOsWQVFROXv3niEvrxSz2WzrrjWL2WwmL6+UvXvPUFRUTrduEXToEOIwg0gSieT/9/oWAboltYXiRIDeEEcKQlubo12bhx++h6qqKj7++GOrtiOKxAkNEXe8Qqsym80Ouda6NTjqdTlx4gTffPMNwcGBVmtDBOiWOdoe8a2toqIajca+CpE1h5ubM927RxIZ6c/ZszkcOpRKWZnO1t1qVFmZjkOHUjl7NofISH+6d4/Ezc0+lxY0RqNRUVFxZW+B15jaGXQx49cQRwtCW5OjXZuAAD/uvPMW5s+fT1WV9Qbs6mbQHWUQVmgd4o5XaFUmkwmz2eyQM8XW5ogz6G+++SZdu3aloCCPRYtes0obtYM6IkC3RKS4N66iogoXF9tur3apJBIJ/v4eJCTE4OHhzKFDKZw6lUlNjX3NXtbU6Dl1KpNDh1Lw8HAmISEGf3/HrUjv4iJm0BsjUtwtqwtCRbB1IUcL0AHGjRtNbm4uR44csVobcrkcs9ks6l4I53GsaEBweHXrbBwtEG0Njhigv/7664wePYxFi95ArbZOEGQy1d7oiAC9YUajUVRwb4SjzqD/m0wm+/9t2DxJTs5hz54kwsN9CQ72sumabpPJxLlzRaSn5+Pp6UKvXjF2v9a/OWpT3MUMuiVyuczhAq3WUvc7ZTKZkckcc4DKWhwxQM/MzAYgJibGam3U3fc5ahalYB2OFQ0IDs9gMCCRSOy+UJAtOGKA3qlTRwoLi6wWnAP1P+giQG+YyC6wzGAwYjAY20TQCLUFzOLiwigpqSApKZvs7GKiogLw9nZp1dlqs9lMYWEZZ8/mIpNJ6Nw5DA+PtrM1nFqtrH/viMGvCzlioNVa6r6LxffyhRzxfZOfX4BKpcLT09NqbdTdDxsMBpTKtvFbJVw+8e0htKq6EUJHTX20JnsePd2xYwcffvghR48ePe/xm28eyfbte6yazmc0GsWgTiPEjaBl1dV6pFJpm7s+Hh4aevaMJiTEm1OnMklMTGu1lOyKiioSE9M4fTqL0FBvevaMblPBOYBcLkUqlYh11hY4YqDVWiQSCRIJ4vo0wBHfN5GR4VRXV5OZmWm1NiQSiajkLlzAsabrBIfniLPErcFsNtvttdmwYQMjRozAbDZjNpu56667ePDBB7n66qs5evQo8fGdrTrgIgLQxonrY1l1tQG1Wt4mBwQlEglBQV74+rqTlpbHgQPJBAR4EhHhi0LR8t8jer2B1NR8cnKKCQz0olOn0DY7uyyRSOrXWWs0jlm/wJocMdBqLRKJRFwfC/69Pt9RvpPbtYsGaovhhoSEWK0dEaAL/yXu6oRWZa9BqK3VbbFhb9emrKyMsWPHct11/cnIOMRrr83k77+30b9/f4KDg/n2229xdbXu7JkIQC2rHdgR18eS6mo9SmXbLqCnUMiIiQmkR49odLoa9uxJIjOzsMWyWsxmM5mZhezZk0RVVQ09e0YTExPQZoPzOqIQmmW1gZZRFEKzoHbbLBGg/9e/1+c7Cg8PN6D2XsiaRIAu/Jd9RQNCm2fPady2ZK/F87Zv305ZWRmvvz4LJyc1Dz10Dw88MIlt23by+++b6d07nptuut6qfRABumV1N8ji+jSspsZwxewRr9Go6NIljKKics6ezSErq5iYmAA8PV0u+ZzFxeUkJeVgNpvp0CEYb2/XFuyxfVOp5NTUiBvmhshkUsxmHGomtDWJGfSGOeL6/PLyCgBcXC79e7Q5xF7own9dGXcugt2QSCRi1L0B9rrOuu7f6uzZVEJDg1AqlUilUgYN6s+gQf1bpQ+O9GPe2kQBvcZdaQOCEokEb29XPD01ZGYWcexYBh4eGqKjAxoslCeVSggP90UqPT/I0ulqOHs2h5KSCiIifAkKsm21eFsQQZZl/w60rrT3RXOI907D6t4rjrSdWGpqBgARERFWbcdsNovPknAe8W4QWpVUKhUBegPsdeCiY8eOeHp6Mm7c/bRvfzVffPFNq/fBaDRfEEAItQyG2hsdcX0adqUO7kilUkJDfUhIiEWplLNvXxIpKbkXfMdIpVIiIvzqbwzNZjMpKbns25eEUiknISGWkBCfK/LGUQRZltV934jr0zCpVCKuTQP+9/3jOL9XWVk5AISHh1u1HZPJJLJRhPNceb+6gk1JJBKHGj1tLXVfzPYWpEdGRpKXl8eePXsoKytnyZIVtu6S8C8mU20AKn7YG3alBuh1lEo57doFER8fiULRdLE8iUSCQiGne/dI2rULQqm8cpPsxDpiy0QhtKaJr2TLHOnaVFVVI5FIrL79mVguIvzXlfvrK9iEvc4U29q/Z7Ds7UtaLpfTu3dvevToTkxMaKu3L5GAeMsIl+JKD9DruLo64erq1KxjQ0K8rdwbx1BXCE0QLpbZjN39jtuDuns/R7o2arUKs9lMWVkZbm5uVmvHHu/9BNsSdy5CqxIBesPqvpjtObsgMjKS7777hQ8++KxV2xXvGcvEtWlc7Y2yrXshCG2PCCgsq702tu6F/an7qXKk9018fGcA9u3bZ9V2TCZRz0E4n5hBF1qVVCq16yDUVuw1xf3fVqz4it27/+HFF9+kvLwCk8nEjTcOokePrlb9wa1d72i/18WWbJFdMNZrZus2eBmGPjOA7JP5HF570tZdERxM/MiO+LfzYc6Aj2zdlWb7oeiNVmtLzBJbJgYvGva/GXQbd+QitGsXjZubK7t37+a6666zWjviPSP8lxiuEVqVmPFrmCME6Eqlkq+//prQ0FBWrPiRzz//luuvH8NNN92JXm/N/YIlIsXdAvF5apzJaEYqUtyFSyCVSTCLNdYWiVliy8TgRcMcMcVdKpXSs2dXtm//26rtiABd+C9x5yK0KhFQNOzfa9DthcFgYMuWLXzxxRecPHmSzZs38/fff/PMM8+wceOf5Obm8tNPP/HPPwdYseIHq/WjdpbYfq6LPXGEgR1bMhlNSGXipscn0pOuw9s369iuw9vjE+Fp5R7ZP4lMiskoPlcNccRAqzWJwYuGOWKKO8ANNwxk06bNlJaWWq0Nsc2a8F8ixV1oVSJAb5i9rUE3GAwMHTqUTZs2nfe4i4uGmho9NTU1DBo0iCVLljBhwgTeeedDJk++0yo/vOI9Y1nd5RZrrRtmMpiQKa+cfdD/y8ldRd+74ml3TSSH1pxo5nPU3PbmjZzelsLulYfQlVZbuZf2SaaQYjTYx/exvREBeuPEbGjDHDHFHWD06JuYO3ceL730EgsWLLBKG2KbNeG/xHCN0KrEPugNs7eZ0GPHjrFp0yY++ugdsrISWbXqc959dw7p6QdJTz/AsmULSU1NZuDAgYSHh1NZqbNaX2q35rPa6R2avb1v7E1VWTVqF5Wtu9HqpHIp8SM7MuHDUahdVXzzxDr+WXm4Wc/9Z+VhvnliHWo3FRM+HEX8yI5I5VferYLaVUVV2ZU5ONGU/82E2rYf9koE6A1z1IGdwEB/Zs2azqJFi9i5c6dV2hDvGeG/rrxfXcGmxD7oltnTTHF5eTkAMTERODmpCQjwZ+/eQ/TocT3PPvsKZ84kM2LEDWRlZfHll1/Sv38fq/24iBR3y0SA3jidthq165UVoEf0Cmb8ghF0HBzN72//xe9v/YU2p/yC46RyKX3u7EafO7tdEIBrc8r5/a2/+P3tv+g4OJrxC0YQ3jO4tV6CXXASAbpFjhpotRaR0dQwRw5CH3robnr06Mr9999vld9bR742gnWIFHehVdlTEGpv7KnCfc+ePQkNDeXRR2fg7OzMwYOJhIaGMmTIEHbs2M6GDdvq12Olp6fz2mvPWa0v4j1j2f9S3MX1aUiVtgon9ysjQPcMcaP/5F74x3qze+Vhjv1xBrPJ8vtCppDR+/YuABz4+TimBtK5zx3J4dvpv9L5xlhuePxqcs8UsP2L/RSf01rtddgLJ3c1utIqW3fDLokAvXEi2GqYIw9cyGQypk27j7vvfoyCggJ8fX1b7Nxms1msQRcuIN4NQqsSM36W2VMgqlar+fjjjwEZMTEdWLlyJUlJSSxdupQTJ06Sk5ODTqfjqaeewsvLkyFDrrVaX2qvi9VO79DqftANYq1sg3Taapzc1LbuhlWpNEr639uTce/eREmWlhVTf+Ho+tONBucXw2wyk/j7aVZM/YWSrDLGvXsT/Sf3RKVRtsj57ZVIcbes7vumdgtM4b9EgN4wR78uYWEhAKSlpVnl/I58bYSWJ2bQhVb172rl4svofPYUoAPcdNNN3HTTTRb/bjAY+OqrrxgzZgRKpfVu1kWKu2USiQSFQoZeb8TJyda9sT/lhZW4+mps3Q2rkEgldLohhr7ju5GfXMR3T/9O8TnrVRmuLq/h78/2ceyPM/S/tycTPhzJ7pWHOf5nUosNBtgTV18N5QWVtu6GXdLrDSgUcvEbboEjzxRbk6Pf94WGBgGQmppKr169Wuy8dZmTjnxthJYnAnShVf27WrlI5zmfvQXoTTly5Ai5ubmMGjXMqu042nVpbQqFHL3eYOtu2KXS7DJUGmWbmw0N7uzPgHt7IVfJ2LRoF6n7Mlut7aKMUta8vJmIXsH0n9yTLkPb8ffn+8g8mttqfbA2tZsKlUZJaU6Zrbtil/R6I8oreHeEpjh6IGotjj5w4eXlSUhIEFu2bGHMmDEtdl6xZERoiAjQhVYlUtwtc7QCenWF5Hx9va3ajkwmwWQyi5seC+pm0IUL6asMVBTp8AhyJeeU4wfobv4u9Lu7B6HdAtj7fSKHfz3V4Nrx1pC6L5P0Q9l0G96e4TMHknE4h+3L9lOWV2GT/rQkj0BXKooq0VeJga+G6PVG5HIRoDfEbDZjMon1xA1x9N9wiUTCsGGD+f3331r0vCJAFxoivkGEViUCdMscbQu6qqraAkoqlXXXoioUcsxmM0aj4wxetCYxg964kmwt7oGutu7GZVGo5fS9qxt3LhhBVXkNK6au4eAvJ2wWnNcxGUwc/OUEK6auoaq8hvELb6bvXd1QqB177N8jyI2SbDF7bkldirtwIaPRhNlsRqEQAxj/5egBOkDv3vGkpKRSWFjYYuesm5gRgzrCv4lvWKFV1X0BOdJMcWtxtFTuyMhIAE6dOltfPMUaZDIpEomYtbFEzKA3riRLi1eIu627cWkk0H5gJFdP7E5pTjmrn/+D/OQiW/fqArrSKrYs3s3R9acZMKUXHa+LZueKg5zalgKO85VWzzPYjZKstl+p/lKJFHfL9HojEokEmUwEW//l6CnuAEeOHEej0SCTNf3+1+l0GAwGXF0bHyAWM+hCQ8Q3iNCqxAy6ZY6W4h4TE0NQUBB//bXLqu3UFkITs8SW1Abo4tpYkne2CN9o6y7DsAb/dj6MeXMofcfH8/fn+1k9yz6D83/LTy5i9aw/+Pvz/fQdH8+YN4fiH+t4194vxpu8JPu+1rak1xuQy8X8TkNqswtkIthqgMnk2DPoiYnH+eSTL3nuuefw8PBo9Ng9e/YQHh5OcHAwZWWNZ+OIAF1oiAjQhVYlAnTLlEoler3e1t1oNolEwqBBg9i+/R+rtyVmiS2rHbwQ18aSvDOF+MV4gYPc+2i8nLh+2tWMfvl60g9k8fWja0jaYZ1tfawlaUcaXz+6hvQDWYx+5Qaun3Y1Gk8H2WZAUhegt1wKa1uj1xtFCrcF4tpYZjA49rV5/fUFxMbG8uyzzzZ57OLFizEY9JSVlfHbb42vWa9L/RcBuvBvIkAXWp2jrbVuLUqlkupq+y1kZTKZePnll1m8eHH9Y0OGDOHw4WOsXv2rVduWy0WAbokYvGhcYXoJcqUcDztfhy5TSOl5Wxx3fTASqVzK14+tYc93RzDUOOa/raHGyJ7vjvD1Y2uQyqXc9eFIet4Wh0xh37cdHoFuyBQyCtOKbd0Vu1U3SyxcSKzPt8zRr83u3fsYN24cKpWqyWNdXFwoLi4BoEOHDo0eazKZRHAuXMBxPymCw3K0VO7WolKpqKmpsXU3LFq4cCFz5szB1dWVqVOnAnDXXXexceNGHnjgKbp27URMTKRV2lYqRYq7JSqVgqoq+33f2JrJYKIgpQj/WB9Ksuyz8Fd031D63dOTqvJq1s7dTPaJfFt3qcWUF1Tyx7ztBHb0ZcCUXnS6PoYdyw+QvDvD1l1rkH+sNwUpRZiMYhDZkqoqPWq1wtbdsEtiBt0yR782AQH+nD17tlnHzpo1i6KiIvr160e3bt0aPbYtFM8TWp59D2ULbZJcLsdgEMHWfymVSrsO0JOTkwG499576x+TyWR88sknSCQSfvllvdXaFrPEljk7K6mpMYgq943IOp5HcBd/W3fjAt4RHox+5XqueSCBvT8k8v0zv7ep4Pzfsk/k88Oz69n341GufTCB0a9cj3e4h627dYGQLgFkHsuzdTfsltFooqbGgJNT07OIVyKRXWCZo1+b4cOvZ+3atc3KAA0MDGTlypU88sgjTR5rMIiaDsKFRIAutDp7D0Rtxd5S3NPT01mwYAEbN24EYN68eZw8eZL58+efd9yPP/6IwWBg0KB+VuuLXC5m0C1RKOTIZFJ0OvGZsiT9YDZh8UG27kY9tauKgQ8mMObNoeSeKeSrR9ZwYtNZh6x4fjHMJjMnNp1lxdQ15CUVMvatoQx8MAG1q/0Ee6HxgaQfyrJ1N+yWTleDTCZ16EDLmmpniUWw1RBHvzZqtXW+p6qrq1EqrbtdreB4HPeTIjgslUplV4GovbCngYtdu3Zx9dVXA+Dv78+5c+eQy+W0b9/+gmP/+usvunaNo0ePrlbrj1Ipo6Kiymrnd2QSiQQnJyU6XQ0uLmpbd8cuZZ3IQ6VR4hXmTlF6qc36IZVJ6DKsPQl3dCXrWB7fTv+V0itwv229Ts/OLw9ybGMS/e/pyYTFI9nz3RGO/n7apqnl3mEeqDTKNpvF0BJ0uhqcnJQiJdcCvd4ovoctcPQU9x079hIfH9/i7/2amppmrWsXriwiQBdanT0FovbEntag1/1YJCT0YM+eA2zcuJFhw4ZZPN7ao+Jim7XG1QboYtDLEpPBRObRXMLig2wWoIf1CKL/5J6YTWbWv/MXGYdzbNIPe1KaXcavb2wltFsg/e/tSecb27H9832kH8y2SX/CugeSeTQHk0EsF7FEp6vGyUnM9lni6IXQrMmRr82xY6fYunUHX331VYufu6amRsygCxcQKe5CqxMBesPsKcW9R48evP766+zdexCAr7/+2uKxGRnp+Ph4WbU/oop74+pm0AXL0g5kEpkQ0urtegS5MWLWIIY80Y/E307x7fRfRXD+HxmHs/nuyV85+vtphjzZnxGzBuER5Nbq/YjoHULaAZHe3pi6GXShYY4+S2xNjnxt5s37iJCQEG6//fYWP7dIcRcaIgJ0odWJAL1hddfFXrage/bZZ+nfvz8A2dmWZ7SCgoI5fToZo9F6AbRSKQL0xjg5qUSA3oSzu9IJaO+Lxqt19uNWOivod08P7ph3E9r8cr565BcSfz+N2WQfn297YzKaOfLbKb6augZtfjl3zLuJfvf0QOncOtXCNd7OBLT3JWlnequ056hqA3SRjmuJo6+zthaz2eywM+hHj55k9epfmT17NgpFy38fiRR3oSEiQBdanT3NFNsTlUqF2Wy2WYX7iooKNm7cyK+//sr69esxm82sXbuW5cuX8/HHH1t83sMPP0xKShqffWZ5lv1yKRRyDAYjJhHcNEjMoDetsqSKrGO5xPQLt2o7EqmEuBtimLh4FD6Rnvzw7Hr+WrKXqjLx79McVWXV/LVkLz88ux6fSE8mLB5FpxtikEitu+Y5tl84mUdz0ZWKWheNETPolplMZgwGx50ltiaj0YTZjENemxMnTgNwyy23WOX8IsVdaIgI0IVWZ09rre2JXC5HIpG0+rV577336N+/HyEhIQwZMoQRI0YwbNgwFi5ciLu7O5MmTSI2Ntbi8xMSErj//vt5442F6PV6q/RRqay9NtXV4n3TECenuq3WRJZBY07/nUq7ARFWO39QnB+3vzuMHrfGsXnxbn6ZvYnC9BKrtdeWFaaX8MvsTWxZvJuet8Zx+zvDCOrkZ7X2YvtHcGZ7qtXO3xYYjcb/32JNBBMNqaqqQSKRoFQ63iyxten1BiQSCTKZ44Udffr0BGDVqlVWOb8I0IWGON4nRXB4IsW9YbU/7K2fXfD222+zY8dObrllGLt2/cbx49u5/fZRzJs3jxkzZrBmzZomzzF58mRKSko5evSkVfookUhQqxViltgChUKGUimnvFxkpjQmeXcGPhGeLb6+2dVXw41PD2DErEGc2Z7G14+tJWXPuRZt40qVsuccK6et5cyONEa8MIgbnx6Aq6+mRdvwCHLDJ8KD5N0ZLXretqa8vAqlUu6Qs6CtoTa7QCEq3Degbv25I16bsLBgbr11OE8//TSnT59u8fOLNehCQ0SALrQ6EaBb1prXpqSkBJPJxMaNG/H19aWgoJAOHWIJDPRnwoQxZGZm8tZbb/Hkk082ea66HxdrzuCKNG7LJBIJrq5OlJVV2rordq26ooaknel0Hmo5I+RiyFUy+tzZjfELb8ZQZeCrR9ZwYPUxUQW8hRn1Jg6sPsZXj6zBUGVg/KKbSbizK3JVywSKXYa148yONKorxPdLY7RaHa6uTg4ZZLUGsT7fMkcuEAcwf/5cAgJ8mTz5nhY/t1iDLjREBOhCq6tLcbeXYmj2pLXS/0+ePElAQAA+Pj689NJLTJo0ibVr/+CPP7YCMGBAXw4d2syDD05CrW76h2PDhg2oVCri4jpYrc+iEFrjagN0sX62KYm/n6LjddEo1JeXhtrumggmfDCSkK4B/PTiRjZ9sIvKYl0L9VJoSGWxjk0f7OKnFzYS1i2QCR+MpN01EZd1ToVaTodBUST+3vIzY21NWVltgC40TKzPt8xRC8TVcXNz5bnnHmPnzl2kp7dcIUmTyYRerxcz6MIFRIAutLq6LyIxi36h1ppBnzt3Ln5+Pjz44EROnTrO8uXLiYmJ4amnZlNQUAhAeHgoVVXVqNXqRs9VWFjI22+/zfjxt+Lk1Pixl8PJSUllpXjPWOLq6oRWKwLEpuScKqA0p5x210Re0vP9Yry57Y0buXpid3auOMiqmRvISyps4V4KjclLKuTHGRvY+dUhrp7Ug9veuBG/GO9LOle7gZGU5pSRe7qghXvZ9ogAvXEiQLfM0WfQAfz8fADIy8trsXPW1e0RAbrwXyJAF1qdTCZDJpOJAL0BrbkGPSDAj+eee4xff/0aV1cNmZmZnDuXxaxZb9QfExkZRmLiUc6cOWPxPF9++SWVlZXMnPm4VfsrUtwb5+qqpqqqBr3eNrsAOJLE30/RdXh7uIhMXWdPJwY/dhW3vHoDGUey+erRNZz+K9VqfRSadnpbCl8/uoZzR3K45dUbGPzoVTh7XkQAKYGuN7UXs+fNoNcbqKrS4+pqvUFYR6fTVYsA3YLaGXTHDdBNJhOLFi0lPDycHj16tNh5q6ur6++JBeHfRIAu2IRYh96w1kpxT0hI4MiR4xw+fAwvL09++GEpERGhAOdVWY2L60BNTU2jKV1ffrmcoUMH4et7aTNYzeXsrKSqqgaTyYzRaOT06bOUlpZZtU1HolDIUauVIs29GU7/lYLaRUlUQmiTx8oUUnrcGseED0ciV8pY+dha9nxzBEO1qJhvD/RVBv755jArH1uLXC1nwocj6XFrHDJF07c3UX1CUWmUnP4rpRV66tjKynQ4OSkdOk3ZmkwmE1VVehGgW+Do+8MvW/YtGzdu44MPPkAqbbnQSaw/Fyxx3E+L4NBUKpXYC70BSqWSkpISq7czduxYlixZwqBBtxAdHYmfnzcJCd3p1asbL774VP1x3333MxEREQwaNKjB8xiNRg4dOsyNNz5m9T6rVLXVcXW6ah54YDq//fYnUqmUJ598iFmzplu9fUfg5uZEWZkOLy8XW3fFrhn1Jvb/dIzet3ch+R/LlbsjE0LoP7knNZV61r26hazjLZfaKLSssvwKNrz7N0Gd/BgwpRdxN8Sw/Yv9jVbT7317Fw78dAyjXhT1a4pIb29cVZUeiUSCSqWwdVfsUk2NARcXx8y+KCws4pVX3uPee+9lxIgRLXpuscWaYImYQRdsQsygN8zZ2ZnKSutX4g4KCuLw4cN8/vnnREXFUFFRw/Ll3/HDD2uQy/+XatWzZ1cyMjJIS0tr8Dx79uwBQKNxtnqfJRIJTk5Kjh49zW+//cn777/PpEmTWLhwKTqdmDWG2jT3sjKxDr05jv2RhLOHExG9Qy74m1eYO6PmDGbQ1L7sX32M75/5XQTnDiLreB7fP/M7+1cf47qpfRk1ZzBeYe4XHBeZEIKzuxPHNibZoJeOp66Cu9CwuvXnosJ9w6qq9KjVjhmI7tt3mNJSLS+88EKLn1sE6IIlIkAXbEIE6A1zcXGhoqKiVSrcp6am8tlnS/njjz84fPgwUJvS7ubmWn/MpEnjkMvl/PLLLxc8v6qqipEjR9K3by8eeGCi1fsLtevQExNP4e3tzSOPPMJtt91GTU0NZWXlrdK+vXN1dUarrRQ7JDSDscbIgZ+PkTCua/1adLWrkmse6M3tbw+jMK2Er6b+wvGNSZhN4no6ErPJzPGNSayY+guFaSXc/vYwrrm/N2rX/78RlkDv27vWzp7XiKUKTTGbzWIGvQmiQJxlZrPZoa9PeXkFAD4+Pi1+brEHumCJSHEXbEKkuDfM2dkZk8mETqfD2dm6s9KnT59m+/YdBAcH4ubmilwuY9myRecVK3F2dqJTp3YcO3bsgucXFxdTUFDAokWvtdoaKq22lLNn05k0aRJyubz+GuXm5tVXWL2SubqqMRpNVFRUO2w6YWs6uuEM3UZ0oOOgKBRqBQl3dCXnVD7fPvkbJVlaW3dPuEw1lXq2f7GfoxvO0H9yTyZ8OIo93x5BX21A7ark6B+Wi18K/1NRUY3RaBYF4hohCsRZVl2tx2w2O+wMekVFbVajRqNp8XOLNeiCJWIGXbAJMYPeMKlUirOzM+Xl1p8RHjZsGNdddx2ZmdmcOHGaxMQTrFjx/QXHBQcHkJFx4TpdLy8voHZ9liXZ2bmsXv1ri/S3pKSUL7/8lnbt2vHGG7WV5vv06UNERASzZr2BySTWkUqlUjw8NBQXi4yC5jDWGDm1LZlBD/el803t+GP+dta9tlUE521MSZaWda9t4Y/3d9DlpnYMergPp7Ymi9nzZiouLsfDw7lFi2O1NY48Q2xtlZU1qNVKpFLHTv+3xvIFkeIuWCK+bQWbEAG6ZXVp7tZkNpu588472Lx5c/1jEonkgj3PTSYTaWmZDf6AqFQq/P39yfo/9u47vK3yeuD492pbsmXJtuS9V/YeZJJJGCGUWSjQ/qC0pexVyiizpexRSls62BsChISdhOy9d+K9h2xreMja9/eHSSAkTuzEtiT7fp6Hp0WW7j02snzPfc97Tk1dp+f5058e59e/vo116zafdsxffLGUAwcOMmjQoCN3nHU6Hf/5z39Ys2YjK1euO+1z9AcxMZFSgt4F0YlRnHfvDIafk09LYxulmyqp2FEb7LAkvahiew2lm6posbQx/Nx8zr33TKITpIaKJ2O1tkqNJ09CStA7F+4/m8OTbX66CLB3714++uij07qWlRJ0SWekEndJUPTlvO9wo9Ppej1BX7duHR988CFPP/0wF1xwNlarjdTUZLTao/cYrlmzkT179vP3v//zuMdJSUmmuvr4CbrL5WbTpu0AfPnlMqZMmdCtGPfs2c+iRV9jNscyfvxoDIZoKisr8Xg8+Hw+FIqOj68zzjgD4IQ3CgYSozGS4uJ6/P7AUSPzJB2UEUrGXzqMEefmc+C7Yt6+YQORcVoufnweB5YXY6+RRvf1V4akKIafl8/H93xDq9XJxCtGcvkL89n9xSG2LtyLt90b7BBDjt8fwOFwkpubGOxQQpbP58fl8qLVSqXKx9Pe7kGrDd8kNCqq4+ZUY2Mj8fHxQMcWv/Hjx+NyuUhPT+ebb74hPz+/28d2u91SibvkuKSrN0lQ9NW873DUFwn6jh07kMlkXHHFhZhMseTn5xyTnANYLI0AjB079rjHSUlJ7TRB/+9/36KuzsKIESP48MPFLF78dZdia293MX/+VUyffgGvv/4BDz30NLNnX8xVV92AzWZDLpcfNYouMjKSqVOn8Kc/PUF1tbQCGhGhQqVS4HD07nso7AgweHY2V/9zAeacWD7649es+s8WXC1uGktt7F9axKybJiGEeRmm5PgEmcDsmyax79tCGstsuJrdrPr3Zhbe8zXxubFc9Y8FDJ6dfaRhoKSD3d6GWq0I6xXQ3tba6kKlUkgj1joR7vvzhw8fDMD27duPPNbY2IjL5eKJJ/6E3+/lz3/+8ykdW1pBl3RGStAlQXG4SZzUbfpYkZGRvb4HfcqUKWg0Gi6++FoKC0s6fV50tB6A+vr64349NTX1uCvXXq+Xf/3rdf7v//6PL774gokTz+Daa2/r0ir3xo1bWbduEy+++CJ1dXU4HA7Wrl3L5MmT+O1vf4vJZDoqQRcEgSVLPkcQZPznP2+d9Pj9nSAIxMREYrVKZe6HJQ42cdnT5zD+0uGs+vdmFj24jKZy+1HP2fD2DrSGCEac2/1VEEnoG3FePhGGCDa+vfOox5vK7Cx6cBmr/7OZ8ZcO57KnziFhkCk4QYYgm60VozFSGh92AlKH+xNrb/eEbYM4gIyMNIxGAxs3bjzymN/f0b9i6NBB6HTaU7qWFUVRWkGXdEpK0CVBcbhbucslza/+KZ1Oh9PZu6OyxowZw3fffUdxcTkTJszj2mtvxefzHfO899//lLS0NFJTU497nJSUlOMm3UuWfEttbT233norKSkpvP3228hkMpYs+eaksQ0dOgiZTEZlZSVKpRK1Ws2UKVNYt249//73vzEajdhstqNeU1xcTGtrKyZTbBd/Av2b0RiJzSatoEfGaTnrjqmc/8AsijdU8M7NiyneeGzDQwCf2893L23gjCtHEZ0YddznSMKTISmKM34xiuV/X4+vk8ZwxRsreeeWJRRvqmTBg7M4646pRMb17iSNcGCzSfvPT6alpR29XkrQj0cUxe/L/8M3QRcEgSlTxrNixQ89ew7vR//ww884dKiIiy66qNvHdblcBAKBXp/YIwlPUoIuCYq+7FYebrTajruxTqezV88zceJEysvLefHFF/n00y/Zvn3PUV/3er188cUybrnllk5LsPLz87HbHezeffQYtiVLvmHixAkMHz4cAIPBwFlnzWXRopOXuZvNcfzf/13O008/zY4dO475usFgOGoFfenSpcycOZPhwwfz619fedLjDwRGow6n043LNTD31CpUcib8fARX/n0BAV+Ad25azLaP9+H3nrjTf81+C/uXFTH31snIFNKfx/5AppAx55bJ7F9WRO2BhhM+1+/xs23hXt65aTEBX4Ar/76A8ZcNR6GSn/B1/ZXL5cHp9GAw9Px4qf6kuVlaQe9Mx9+g8B2xBh3b7qqr67Baf1gYyM3NZezYsbz11kdkZGQwa9asbh+3tbUVrVaajiA5PuldIQmavthrHY4O37zoi5+NVqs9sr/844+XHNW4b/XqjXg8HqZPn97p6+fPn09ubg6PP/7iUY9v376bqVOnHfXYJZdcyqZN26itPX65/GGBQACFQo7BYCA3N/eYrxsMBpxOJ3V1dfzsZz9j3rx5TJw4hsWL3yIiQprTC6BQyNHrtVitA6/hWe7UdK58aQFpY5JY9NAylr24njZre5dfv/6tHchVciZfPboXo5T0lclXj0aulLP+rWNv9nWmzdrOshfXs+ihZaSPTebKlxaQMyW9F6MMTVZrK3q9FoViYN6g6AqPx4fb7ZUS9E4cLm8P5y0S99zzZw4dKuaNN9448phSqWT9+vUcOHCAAwcOYDQau33ctrY2IiOl6hTJ8UkJuiRopAS9c335sxk5ciQXXngh//nPW9xyy/1HHn/55TcYOXIE48aN6/S1CoWCyy77OTt37j3qcYulkbS0tKMeO++88xBFkfXrtxz3WG63m//97x3GjTuL//znLS64YMFx/3ipVCp0Oh179+7ls88+4/77b+e9914mMlJa5fkxk0mPxeIIdhh9xpQVw0V/PYup14xl4zs7WXjP19QXNHb7OH6Pn6+fXsPg2dlknXH8rR2S8JB9RiqDZ2fz9dOrT2nmeX1BIwvv+ZqN7+5k2rVjueixszBlxfRCpKHJYnFgMumDHUZIa2lpJyJCJd3E6ES4N4hzOFr44IPPeOihh45plqtSqRg0aNAx42m7qrW1FZ1Oum6RHJ80Zk0SNJGRkTQ2dv8CeiDQ6XR9Uv7vdrt57rnnWL58OQkJZq666hIAysoqWLZsFa+88spJ73xXVVWRmBh/1GMajeaYMXqH99S3tx+9mulyuXnzzQ/529/+Q12dhcsuu4w333ybKVOmdHrOH9+tzsnJODJyTfIDk0lPSUkdbre3X3cXjojWcMaVo8ibnsGuJQdY8uh3eF3H9lPoDkdtC9+9tIHZN02iqcyGo07aihNuohMimXXTJJa/tOH0/vuJcGhlKSUbKxl78VAu+utZFKwuZeM7u2h39N8eKm63l+ZmJ4MHpwQ7lJAmNYg7sXCfgb569XrcbjcXXnhhjx+7ra2NuLi4Hj+upH+QVtAlQSOtoHcuMjKyT342ixcv5sEHH+Scc2axfv0XTJvWMVP8cPf2rtwZ3rVrJ4MHH12KrlarjmkA+N///hedTsu558458lhhYQnTpy/g3nv/wuzZc9m/fz/vvfceU6dOPeGNAYPBgNfrJSEhgX37DnX5+x1I1Gol0dE6Ghqagx1Kr5ApZIz+2RCu+scC1Dol796yhI3v7Drt5Pyw4o2V7F9WxPz7Z6KODN8LzIFIHali/v0z2b+siJJOmgJ2l9flY+M7u3jv1s/RRKq56h8LGH3B4H7bq6ChwUF0tK5f39zrCVKDuBML9wR9+PDByGQyli9f3uPHbm1tlUrcJZ3qn39ZJGHhcBIqjVo7Vl+toE+YMAG9Xo9cLsNoNBx5/PAIka50Fx0xYiQ7dx7dJM5kiqOwsPCox3bv3s2YMSOIiflh9fvOOx8C5OzZs4c333yT/Pyujbg63Ml9+PBhUoJ+AmZz/yxzzxiXzC/+Np/86Zl8+cQqvn56DS2Wnr+htf7NHdhqmjn3j2f220Ssv5EpZJx7z5nYqptZ/2bX9513VXN9K189tZovn1hF/owsfvG3+WSMS+7x8wSbxdKM2Rwd7DBCmiiKUoO4k+hI0MN3jFhGRhrz58/l+eefO9K5vSccbgQslbhLOiNdcUiC5vCotZ+WPEs6bl44nc4e/YNwPOnp6TzyyCN8+OHio8alORwdzcUMBsNJj3Heeeexf/8hDh78ISE/66wZfPnll0c9z+12o9H88Ie6traetWs3ce+99zJkyJBuxR0dHY3X6yU7O+eozqqSo8XF6WltddHe7gl2KD3CmBLNggdnMfvmSexYfIAP7vqS6r0nbjp4OsSAyLfPrUWhVjD7pkm9dh5Jz5l90yQUKjnfPr8WMdB7N3+r99bzwZ1fsmPxAWbfPIkFD87CmNI/Etr2dg+trS7i4qRxgyficnnx+/1ERkrNSY+nY8RaeK+gA9xww7UUFBTy1Vdf9dgx29vbEUVRGrEm6ZSUoEuCpi+7lYebiIiOO/J9cfPi2muvJSIigldeeffIY3Z7x6prVzqTLliwgMzMTB555Jkjj5lMMcdUR9TUVB81p3znzr2IosjcuXO7HbNcLkev15OYmEhjo7Xbrx8olEoFRqOOhobwXkVXR6qY9utx/PyZc7BWOnj7hsXs+6awVxOww3xuP1/8dQWJg01M/tWYXj+f5NRN+dUYEgeb+Pyxlfjc3W8K111iQGTfN4W8fcNirJUOfv7MOUz79TjUuvBOSCwWB0ajDqVS6u1xIi0t7eh0GmlMVicOj/nUaMJ7m8Th65if9tU5HdKINcnJSO8MSVBFRkZKs9CPQyaT9VmZu16v55prruH119+nvb1j37jd3rFvuSsJukaj4Ve/+hWbNm0/8lhGRhoul4vi4uIjj8lksqP2lZeXV6JSqUhMTDyluI1GI6NHj6aoqJQlS745pWMMBGZzdNiWuQsygWFn53H1Py/AkBTF+3d+ydrXtuFu69uKAKfdxWcPLyd/egZnXDmqT88t6ZpJV40id1oGnz28vM+bt7nbPKx9bRsf3PUlhiQ9V/1zAcPOzkOQhedoqYYGh1Te3gVSg7gTczrdYT9izWaz85vf3MHw4cMoLy/Hau2ZBYG2tjapvF1yQlKCLgkqqVFc56Kjo7Hb7X1yrltuuQWbzc7ChUuA7q2gAzQ2NhIfbzry75Mnj0cul/Pdd98deSwvL59167bQ2trGvn2H+OijJYwaNRK5/NTG0xgMBqKjo7nooou45Zb7sNnsp3Sc/i42Nor2dg9tbeHVcTpleAKXP3cuI+cPYunf1rPkzyuwVwev4Z2jtoVPH1jG4NnZTLh8RNDikBxrwhUjGDQzm0UPLsNR2xK0OGxVzSz583cse3EDI+cP4vLnziV5ePzJXxhC2to6tsRI5e0n19zslBrEnUA438BoaWnl5pvvZdSoWTQ2WtmzZy933HEHn376aY8cX0rQJScjJeiSoJIS9M4dboTWF7Kzszn//PN5+eXXEUXxyF7xhoaGTl8jiiJvvPEGd9xxB4sWLToqQdbroxg9evhRCfpdd91FWVkFqamjmDp1PhaLlT//+S+nHLPJZMJut3Pttdditzdjs4XnKnFvUyjkxMXpqa0Nj736+oRIzvnjdM7543QOfFfCe7d9Tvm26mCHBYC9pplFDy5l2LxcJl4xMtjhSICJV4xk6NxcFj20FHtNaEwsKN9WzXu3fc6B70o4949ncs4fp6OPD49uzbW1NuLi9Kd843Sg8Pn8NDe3YzBISVZnwjlB37FjD2+/vZBrrrmWu+6668jj2dnZPXJ8qYO75GSkBF0SVFKJe+cMBgN2u73Putzfdttt7N9fwJo1G5k27QzUajUffPBBp8+/5557+L//+z8+/fRjqqqqSEg4eqUoOTmBqqofRhyNGDGCzz77jNdff51vv/2WgoICzjrrrFOOV6vVotPpiI2NRRAEli1bdcrH6u+SkozU1dnx+3u36eDpUGoUTLpqFFe8MJ92h5u3b/yMnYsPEPCFVsy2qmY+fWAZg2ZlMfP3E8O2jDncCTKBmTdMZNCsLBY9uAxbVWgk54cFfAF2Lj7A2zd+hqvZzRV/m8+kq0ah1ITuvm6/P0BdnZ2kpJhghxLy7PY2tFoVGk149xvoLaIohnWC3tLScV16//33c//993PxxRfxwgsvMGPGjB45vrSCLjmZ0P1LIRkQdDodTqcTURTDep9Sb4iOjsbj8dDe3t4nnT5nzJjBiBHDeeaZf3Lbbb/F7XaTlpbW6fO//fYbLrnkfP773+c4cKCQhISOEnefz8cLL/yHxYu/4bHHHjvqNQsWLOjRmM1mM4FAgJ///Of8+99v8dvf/rJHj99f6PVaNBoVFoudxMQQu/gWYNCMLCZdNRp7bTMf3/sNjaWhvdpvq3Kw8J5vWPDATM7945l88+wafJ7eb0om6aBQy5l35zT0Zh0L7/mGtiZnsEPqVLvDzYp/bWLP1wVM+/U4rvrHBWx4ewcHV5ZAiE0Yra+3ExGhksq2u8BqbcVolFZAO+N2e/F6w7fDfUtLR2VnVFQUGo2GhQs/7rFji6IoJeiSk5JW0CVBpdVqEUVRGrV2HAqFAr1e32f70AVB4K9/fZwNG7Zy8cXXMnToUC688MJOn6/Vao+UQQ4enIvBEM3SpauYNm0Bf/3rC/zpT3/ij3/8Y6/GbDabsVgs+Hw+RDFAW1voXqgHkyAIJCcbqa629VlFRlck5Mdx6ZNnM+HyEax+ZQuf/mlpyCfnh7U1Ofn4vm9R6ZT87NE5aI1SUtMXtMYIfvbIHFRaJR/f921IJ+c/1lhq49M/LWXNK1uYcPkILn3ybOLz4oId1hGiKFJTYyUpKUa6WX4Soihis0kJ+om0tLQTGalBLg/PNCM2tqP/zo8b3fYUp7PjM0sasSY5kfD8zZH0G4dHrUll7sdnMBj6bB86dMw0LygoYO3atezYseOEf0CGDh3GypXr+Oqr5Xz33RouvvgaLrvsOhISktm6dSuPPvpor48QiY2NxeVycf3112OxNHHhhf+HwxFapa6hwmw24HJ5aG4OfkKji9Uy97YpLHhoNqVbqnnn5iUUr68Idljd5nF6WfzIcuw1Lfz8mXNJGGQ6+YskpyxxsImfP3Mu9poWFj+yHI/TG+yQuq1ofQXv3LyE0i3VXPDwbObcOhldTPBv7jgcTtxur9S9vQva2z243T5p//kJNDeHb3k7wPTpZ6DXR/HRRx/1+LHb2tqkEWuSk5LeHZKgkxrFdc5oNPbZCvphmZmZTJkyBaXyxLNL77rrLjIzs/jFL67n4ouvpampmc8++4zvvvuOMWP6Zl60QqEgJiaGzMxMVqxYQWFhKb/85U14PH07hiscyOUyEhIMVFcHb268XCVn3KXDufLv5wPwzs1L2PrRHvxhXB7u9wZY9uJ6ti7cwwUPzWbEufnBDqlfGnFuPgsenM2Wj/aw7MX1+L2h1ZugO/weP1s/2sO7Ny9BEASufGkB4y4ZhlwVvMZsNTVW4uONYbvi2Zdstlaio7XSz+oEwnn/OYBarebss2excOHCHj92a2urVN4uOSlpD7ok6Ppq3nc4MhgM7NmzJyT36Ofl5bF+/QZWrFiBWq1m8uTJQYnRbDbT0NDAxIkTWbRoEXPnzuX22x/gpZeeCLmfWbAlJcWwdWsxHo8XlerEN2B6WvbkNKb8agztDjeLH1lO3aHGPj1/b9vzVQENpTbO+cM0EgebWPnvzbhbpRtFp0sdqWLG7yaQNMTMZw8v61fvm9YmJ0tfWEfCIBPTfz2OIXNzWPfG9j6vJnG7vTQ2tjB+fM90qO7vrNZWYmKk8vbOdDSIc5GTE74JOsC5587mww8/o6qqipSUlB47bltbm9TBXXJS0u0/SdBFRkZKK+idiIrqmEXb0hK82b4nIggCs2bNYsqUKUFLhg8n6IFAgDPPPJNXX32Vd9/9hGef/WdQ4gllWq0ag0HXpyPX4jKNXPiXuUy/bjyb39/NR3/8ql8lWT9Wd7CB9+/4EoVawS/+Np+00YnBDimspY1O5Bd/m49CpeD9O77s1++bD+/+ii0f7Gb6deO58C9zicsw9tn5a2ttGAw6IiLUfXbOcBUIBLDbndL+8xNwOt2AiE4X3u+nadPOQBAEli9fDnT8t3/vvffYs2fPaR1XahAn6QopQZcEnVTi3jmZTEZ0dHSfl7n3hK1bt1JUVNTr59Hr9SgUCqzWjtLtq666ikcffZTHHnuB775b0+vnDzfJyTHU1NgIBHq3RDgiWs3M30/k4sfnUXeogbdvXMzBFaHXubqntTtcfPHXlWx8dxdn3zWNM387PqRHa4UipUbBmb+bwNl3TWPju7v44vGVtDtcwQ6rd4lw4LsS3r5xMXWHGrjkiXnMuH4iGn3vJjl+f4DaWhvJySE23SFENTe3o1DIwj757E2Hy9vDvYItJsbI4MF5bNiwAYCvv/6aX/ziF4wYMeK0egNJM9AlXSEl6JKgO7yC3tsJQ7gyGo192iiuJ3zwwQeMHz+e3Nzc077bfDKCIBzp5n7Y/fffj0KhoKiorFfPHY5iYiJRKuW9toouU8gYtWAwV/3jAjR6Ne/d9jkb3tqJtz38GnqdjgPLi3nv9i+ISTVw5d/PJ2dKerBDCgu5U9O58qUFGJP1vHf7FxxY3vNdlEOZt93Lhrd28t5tn6M1aLj6nxcw8vxByBS9c7lWW2tDqVRIJdtddHi8Wrgnn70p3Pef/1hGRioVFR1bTmJifriJ9eGHH57S8QKBAE6nU1pBl5yUlKBLgi4iouOD/PDoCcnRDAZDWK2gv/vuu/ziF78gNTUZoE9W0X+aoAMkJCSwbNnqXj93uBEEgfR0MxUVjT1+Uyx9TBJXvDCfwbOz+eqp1Xz15Gqa6wZuf4kWSxufPrCU9W/vZNqvx3HBI7Mxpkhdso8nJjWanz06h6nXjGP9m9tZ9OAyWiwDt7LKUdfKl0+s4qunVjNkTg5XvDCf9DFJPXqOQCBAZWUj6ekmKeHsIptN2n9+MuHewf3HUlOTKCwsAOCMM86gvr6ezz77jMsuu+yY5z722GMMHjyI3/3ud9TU1Bz3eIevcw9f90oknZESdEnQyWQy9Ho9Docj2KGEJKPRiMPhwO8P/U7XTU1NXHnllQQCARoaGpk4cQJnn312r5/XZDLhcDhwu91Ax3vqiSeeYOnSlVRUVPf6+cNNXFxUj66iG1P0nP/ATObeNoVdnx/k/du/oGp3XY8cuz8oWFXKOzctpqnMzs+fOYczfzcBXeyxIwwdohWLWB1Ss+p7my5Wy5m/m8BlT59DY6mNt29aTMHqsmCHFTKqdtfx/u1fsPuLg8y9bQrz/zQTQ7K+R47dsXouJy4uqkeO1995PD5aW13SeLUTCAQCtLW5+02CPm3aGRQVFVNQ0JGkm81mFixYgNF4dI+IAwcO8Kc//Qm9XsfHHy9k9uxZ1NfXH3M8h8OBXq+XRqxJTkp6h0hCQjDGiYULrVaLQqGguTn053urVCqgo6/A7bffwTfffNsnd4rVajXR0dFHraLPmTMHgG3bdvX6+cNNxyq6icrK01tFV+tUTL1m7JHZ1G/d8Bl7vy5ADAycBLOrPE4va1/bxgd3fYkmUsVV/1jA1GvGEhGtOfKcvWxiNxsoYX8QI+0bEdEapl47lqv/sQBNpIoP7vqSta9tG3BbIbpCDIjs+aqAt274DEdtC5c/ey5TrxmLSnvqkxgCgQAVFdLqeXdYra1ERmpQqaSeEp1pbXUhl8vQaPp2SkhvmTlzKpGROu67774TLpL873//A+CNN/7OqlWLqKys5IYbfn/M82w22zHJvURyPNKnjCQkGAwGKisrgx1GSBIE4cg+9FD/YI+KisLr9RIIBI4k630lKSmJ6upqUlNTgY6bBDKZjJaWgVtifSJxcXrKyhqoq7OTlNS9BlGCTGDI3BzO+MVIGkqsfPiHr7BWShUwXWGrauabZ9cSl2FkwhUjuPpfF3BgeTFbv9hFe20bkURTygEMYhyxQnyww+1x0YlRjDwvn0GzsqnaU8dH93xNU5k92GGFBXerhzWvbGXft4UdNzf+eQEb393F/mVF3b4pVldn/371vGdW4weChgYHJpP08zqRlpZ29PrwbxB3mFYbwcsvP82vfnUzv/3tb/nf//533O/NZrMxYcJoEhLMANx55w0888yxk2TsdvuRaxSJ5ESkBF0SEoxGY8jO+w4F4bQPXaEIzsdKcnIyBw8exOPxoFKp2LJlC4FAgLFjRwYlnlB3eBW9pKSehARDl0vukofFM+3acSjUcpb/fQNlW6UtBKeisczGl4+vwpQVw6gFg/nVixczfEcmxUtqWLrnS/axmYniHNRC/ygVTR4ez6jzB5M2KpGi9RV8+qelNJRYgx1WWLJWOlj8yHdkjE9h6jVjGX52Hmte2drl1x9ePc/Kipf+3naR1+vDZmsjJ0canXgi/alB3GHnnTeXl156nN///m70ej3PPffcMb83DofjqGsfuVyGUnl0FUHHiD47I0aM6JO4JeFNStAlIeHwyImWlhb0eukO9U8ZjcZOm45IOuh0OgwGA7W1taSnpx8pd09N7dnGSv2JyaSnvLxrq+jt7R5KSuo5794z2fLRXnZ9fpCAT5q8cLoaSqx8/vwyat4o5oxzxvKzP5zP2S0z+XbVN2xduYM0y5CwTaKizDryz8xi0IxMNFFq9n5TwMp/baLN1h7s0PqFsi1VVOyoYeT8QZx335ns21dJVlY8EREnrl6qq7Mjl8uk1eBuaGxsJjJSc9Kf7UDX0tKOydT/GmFefvmFtLS0cffdj/DNN19z/fW/55Zbbjny9Tlz5nDDDTewcuU6xo0bxeLF3zBs2NCjjtHa2lHNFxUl9XyQnJyUoEtCgkwmw2AwYLPZpAT9OIxGI62trbjdbtRqaf5qZ5KTk6mqqiI9Pf3I3etwaK4XLD9eRY+PNyCXH7uK7vf7qahopKqqCbM5mrdvXIzT3s9nUvexGsopth6k+J2DVH5kY8j4QYyeMZaLLr2QisJKKtc0ULa1mtbG0J90ERmnJWNcCnnTMojPjaViZy0b39lJ6dZq/B7pd7GnBXwBdizaz6GVJdz31XVs3VpESkosaWlxyOXyY57v90ur56fCYmnGbO5/iWdP8nh8OJ0e9Pr+tYJ+2G9+cxWJiWY+/vhzbr31Vs444wwmTJgAwO9+9zsWLlzIVVfdgEajoa3Nyddff33U6202GwaDQfq9k3SJlKBLQsbhMu70dGle8E8dboLW0NBASkpKsMMJWUlJSezbtw+Xy0V0dMfFlM3mwGg0BDewEGYy6ams7EjA09NNRx4XRRGLxUFJST0ajYpRozKJioqQkvNeEEXHe9VEEnKPmqL1FRStr8AW9QkJ0wzMmDKT6deNx1rpoHxbNWXbqqkvbAqJCgaZQkZ8biwZY5PJGJeMMSWa2oMNFK0r58snV+Fqdgc7xAHBaXeRn59MUlIMRUW11NXZycqKx2yOPiohqKpqRKWSS6vn3eB2e3E42hg0KDnYoYQ0m62jiZ5S2X9Ti/nzzyInJ5NFi746qnGvTCbj/fff5+mnn0Ymk3H99deTkZFx1GvtdnvI9xGShI7++1skCTtGo5HCwsJghxGyDs/6lhL0zkVERBAbG0t1dTW5ubkAHDxYRFaWdNOnM4IgkJOTyO7d5SQkGFCrlTQ3OykqqsPj8ZKdnYDJpJfu+veiOCGRoeJ4DrCdHaxhtDgVuaDA2JJI2Rfl3P3FH4jXJTFr1DxGjBvKOXdPR61TYSlqou5QI7WHGmgottLS2Aa92UBfgKg4HabsGBLzTSQMMmHOjsHd5qFiRy1bPtpL5c5a3G2eXgxCciJRURGMGpVJQ0MzJSV1VFdbyclJQK/X4nJ5qahoYsSIdOn3uRsaGpqJjtahVvePzuS9xWZrxWjs/zPit2/fjSAIjB8//qjHTSYTTz31VKevs9lsR65LJJKTkRJ0ScgwGAw0Nzfj9/uPW5o30JnNZrZu3So10juJ5ORkKioqmDZtGoMGDeK99z7m3HNnBzuskBYdrSUuLoqiolrkchkNDc2kpsaRmhp33LJ3Sc9LFNKJEHXsYA272MBIcTJyQU6ikI5K1FDadoB3173KV+tM5DGSlMQUEgaZSBxkYuLlIzCmROP3BrBVN2OrcmCvaaa1yYnT7sJpa8dpb8fd6sHvCxy347cgE5ArZKgjVWgNEWiNEWgNGiJjtRiS9BhTojEm65ErZdiqHNQebGDvNwXUHWzAUSdNSgglgiBgNkcTGxtFZWUju3aVYTLp8fkCxMVFER2tDXaIYcVicZCYaAh2GCFNFEWs1jaGDOn/CwhbtuxkyJDBR6r0usLv99Pc3CytoEu6TErQJSFDq9WiVCpxOBzExHRv7NNAEBMTg8/no7m5uVt/GAaapKQkdu/ejdPp5Pbbb+f666+ntLSczExpFb0zHWPxFFRVNWEwaBk/PgeNRmqG1Ft8kVr8aiVKRysy3w/7sg1CHCPFKexkLXvYyAhxEjJBRqwQT4xopok6CtjNJpZRWZuBsdZEwoo0BEFAppARnRBFTEpHMm1I0pM42ITOGIHWEHHUvHW/14/f+0N5/HVvXoJc8cNN0XaHC6e9nTZbO06bC1uVg5KNFVirmnHUtYREab3k5ORyGRkZZhISDBw6VI3d7iQ1NZZAINDlqQ0DXXu7h9ZWlzSO7iTa2twEAoF+u//8x7Zu3cXEiZO69RqHw4FSqSQiov//fCQ9Q0rQJSFDEIQj+9ClBP1YMpkMk8mExWKREvQTUKlUmM1mqqurufrqq7nnnnt4662FPPjgncEOLeSIokhjYwslJXUoFHLi4w04nW6plLOHBeRy2lPjcWYm4cxIxmP6YRVF3taOorkVpaPjH4Wjlbw6I4dql7BH2MxwcQIyQYYgCMSRSIwYTxXFFLKbGsrQoMWIiYAvgK3Kga3KAVQeE4NMIUOpUaBQypGr5Gii1Fz29DkAfHDXV7ib3fi8frwun5SA9zNqtRK/P0BCggGbrY2GhiKyshKIi4uSqrFOoqHBgdGo69f7qnuC1dqKwaAbEDd+qqtru12qbrPZMBqN0u+bpMukTxxJSDEajdhstmCHEbJMJhO1td3/4zDQJCcnU1RURF5eHhdddBGffvolDzxwh/TH8UdaW10UFdXidLrJzIwnIcFAICCyZUsR9fUOEhIMwQ6x13kMUShanUetYvfYsWOiactMxpmZRHtqAmInF/h+XQR+XQTuRNOPHp1EXOEIGhb9lc25FhInXIOqxXkkgY91pBJvHcV6+zs0UosR03GP/WMBXwB3q4fDLdvaf9S8rcXShrfdexrfrSSU1dfb8Xj8jByZiEwmUFdnp7CwhpoaDdnZCURGak5+kAHKYnGQmhoX7DBCns3WSlzcwBgfptNpaWpq6tZr7HY7BoOhdwKS9EtSgi4JKQaDgaqqqmCHEbLMZjP79u3D5/OhUEi/vp1JSEhg586dNDc3c/nll/PKK6+wY8cexowZEezQgs7r9VFaaqG+vmP2+bBhaSi+L2+WywWysuIpLq4jLi7qyOP9kWNELpazpwAga3ejaGlD0eJE0fr9/7Y4f/SYE7n7xI3P/GoVzvREnJnJODOS8EWfXrMkbe5E4s7/A42Ln6JWoyX2nFuOeU7Ut3bKdywmEGMmpzkZeS/caJCEN5/PT0mJhdzchCP9JBITjZhMesrLG9ixo4SEBAMZGWZplfgn2tpctLd7iI0dGInnqfL7AzgcTvLyEoMdSp+YOnUiX3/9FU8//XSXX2Oz2aQGv5JukT6NJSHFaDTS1taG1+s9Msda8gOdTodGo6GpqYn4+PhghxN0jY2NfPLJJ6xcuZJNmzai0+lITU3jiiuuIDc3l+rqambMmIHZbGbhwiUDOkEPBERqaqyUl1uIjtYxdmw2Wq36mOeZTHpqaqyUlVnIyemfF1weQxQNsyYc+fdAhBpPhBqPufOtNYLH+5MEvuN//VoNzowkXEkm6OHyTt2gqfhbm7At/y/RUy5HoTcf9XX9nGsJqJRUblpIQ/ooUkZeSXRtC7qSalRWR4/GIglPZWUWtFrVMXuoFQo52dkJJCYaKSmpZ/PmQtLTzSQlxSCTSZVG0LF6HhPTv29U9gS7vQ21WkFExLF/T/qj6OgoKiurutyw1+Px0NbWJq2gS7pFStAlIUWtVhMREYHNZsNsNp/8BQNMR3fejnFrAzlBdzgcPPPMM7zwwgu0t7czatQw5s07E6/Xx8GDhVx99dWcd955XHXVVRQUFDBnzhz+9a/XOeec2Uybdkaww+9zVmsLxcV1gMDgwanExHS+uisIAnl5SWzbVozJFN3vOj6LgkD9edMQVd27ASiqlHhjo/HG9m3/B93gM7GveoP69+7HdOG9qMxZR74myOQYZ/wfmvSRNH3xHCXLHiP27JuJmPkzVPYWtKXV6Eqqiaio7ZUyfkloczjaqK21MXZsdqeJhFarZtiwNKzWVoqL66ittZKdnXjCz4iBQBRFLBYHWVkJwQ4l5NlsrQPm/WKxNPLmmx9y5513dXnLnN1uR6vVolYPjBsYkp4hJeiSkGM0GrHb7VKC3gmTycSBAweCHUbQiKLIggUL2LJlM7/5zdXcfPOviYuLPeo5+/Yd4pVX3sXj8fD000+zfft2AIxGQxAiDh6n001xcR3NzU4yMswkJnZtdUyrVZORYebQoWrGjs3uV6PWrJNG4EoOn88Wx/r3EH0efPZabKveIP7SR455TkTmaBKv+TuNXzxPwyd/RhGTQtToc3EPm4VjzGD81lp0jS6iKixoS6pQ2VuC8J1I+pLfH+DQoRoyMszHrZT5qZiYSAyGbGprrRw4UIleryU7O6FLr+2PrNZWAgFRKm/vAqu1laysgbFg8PzzL6NUqrjjjjs6fY7P5+P666+nuLiYP/zhD+Tk5Eir55JukxJ0ScgxGAxYrdZghxGyTCYTW7duxel0otX2r9XNrvjmm29YvXo1n376OjNmTDnuc4YOzee55x6hrMzC448/SkVFAWecMY6UlP5Zsv1TPp+f8vIGamqsJCQYGDQot9v7S1NSYmloaKaszEJ2dv9YRXIlxGGdNDLYYXSZKIq07l6KPMpEROZotIOmdfpcuc6A+dKHcVfupWXHl9hWvIJ99Ruo4rNxV+1HN2QGceffBUxEaWsmpqKm774RSZ8rLbWgVMpJSYk9+ZO/J5MJJCfHYjZHU1ZmYdu2YpKSYkhPNw24Mu+aGiuJiUap3P8kXC4PLpcHg0EX7FB63bp1m/n3v9/k8ccfP2aeud/vZ82aNcTFxfH666/z+uuv4/f78XjcPPfc88TGdv33UCIBKUGXhCCj0UhJSUmwwwhZSqUSo9GIxWIhIyMj2OH0ObvdDtDpfvIvvlhKY6OVK664kMREIxUVjZx33jwiIvr/XG9RFKmrs1NaWo9Op2H06KxT7tAsCAKDBiWzbVsxcXH6sC91DygV1M2fBmFUDSAIAtpBU/HUFR+3Sdzxnq9JG44mbTi+Viutu77BaylFrjfTdnANsogo1EmD0A05E3tcFNBR9l57wZkoDlaiK6lG2dzay9+VpLc5HE5qa60nLG0/EaVSQW5uEomJMRQX17F5c+GRSQ8DYRJGe7sHm62NvLykYIcS8qzWVvR6bb+/gWO3O7j++j8wffp07rrrrmO+/tRTT3Hfffcd8/iVV16F3W4nOzu7L8KU9CNSgi4JOdHR0bhcLtrb24mIiAh2OCHJbDbT0NAwIBP08vJyIiI0REYefcfe7/fz/PP/5rHHngc6ytyffPIB4uKiqKmx9ptV4M7Y7W0UF9fh8/nJy0siNvb0Zxz3p1L3hpnj8cb07f7xnqBOzKdt73eIPg+Cous3mRSRMRimXAFAwN2GbcVrtBdvpWXbEtr2ryRCo4YJHReazsxk3GkpNADKJju6kqqOveuV9QgBaSZ6OOkoba/ucmn7iURGahgxIp2mpo4eFoc/R/v7amlNjZW4uCjUaqlR7cnYbG0Yjf1///nrr7+P1Wpn/fq3kMuPvRnx5ZdfHvXvUVFR/OEPf+Caa67h22+/lUrcJd0mJeiSkKNUKomKisJut0sJeifMZjPFxcUEAgFkPdw5OtStWPEdQ4fmI5PJCAQCfPnlMv71rzcoKirFYmngT3/6E4mJidx4441kZaVx+eWXsm9fJRkZ5rBOMDvjcnkoKanHam0lLS2OlJTYHn1P9IdS99bsFJpH5Qc7jG5rL9mGfd27KE0ZID/1ZEGm1hF79k0AODYupL1oM6Li+O8Rb6wBe6wB+/hhCB4v2vJadCVVaEuqULY4TzkGSd8oK7OgUHSvtP1EBEEgLk5PTEwkVVVN7N1bQUxMJFlZ8Wg0/a8qye8PUFdnY+jQtGCHEvJEUcRmax0Qc+ILC0sYPHgQqampx/36Y489xvr167npppuIjPzhhkVtbS1RUVHSWFxJt0nvGElIMhqN2Gw2EhMHxp7h7jp8N9ZutxMT0/loqP7o3HPP49Zbb+WVV95h4cLP2bhxK9OnT+e6637D/PnzmTRpEgCFhYU8+OBTTJgwFrU6AovFQWKi8SRHDx9+f4CKikaqqhoxmaIZPz6nV1Z8BEEgPz+Z7duLjxnVFA58EWos847fqyDU2Va8gjwimrgFd/dYaXH0GZcQfcYlqOUih0vcvY0VYEw/5rmiSklbbhptuR3JiqrBhq6kiuhtB1C2Ssl6qHE4nNTUnHpp+4nIZDLS0kzExxsoLbWwZUsRKSlxpKXF9asbnxaLA7VaGfZbevpCc3M7giAQFXVq26jCRU1NHV98sYzrrvtNp8+ZPn0606dPP+Zxm812zH51iaQrpARdEpIMBgM1NVITo878eNzaQEvQzz77bFQqFXfd9TA5OTksX76cWbNmHfO8J598krVr13LddbezcOGbRxqmhfseysPjf0pK6lGrlYwcmYle37uVJjqdmsxMMwcOVKGJUuFq8fTq+XqS5ewp+CPDsxLH32olasz5qOJ6dzWv/r37UI29EP34CxFkne8l9ZiMeExGXIkmkt//mvD+TepfNFEqDhyoIjPz9EvbT0StVjJoUDJJSUaKiuqor7eRmRmP2RzdLz5ba2qsJCXFhP330hdstlaMRl2//ln5fD5uueU+dLpI7r///m6/3mazkZQk9TKQdF//ue0p6Vfi4uKwWq34/dLs3s6YTCbq6+uDHUafy8vLo7W1lbKyMvbu3Xvc5BxApVLx/vvv09ho5YEH/kJ7u4eWlvY+jrZntbS0s3NnKSUl9WRlxTN6dO8n54clJ8cSGalhzq1TCJfMzDEi98jqbzjSpI+ivWRLr58nImcC9pWvU//OH3FV7Dnp89vTEnCE4ZaBfkuAObdOISpKQ3Jy33SL1uu1jB6dSWZmPCUl9ezcWRr2n6/Nze20t3uIjw+/XhXBYLX27/nnXq+X3/zmDlat2sCrr77a7ZVwv9+P1WolLq7/bwGQ9DwpQZeEpMjISNRqNU1NTcEOJWQlJCTgcDhoa2sLdih9TqlUkp6ejlp94pWi7OxsPvroI5YtW8WuXTupqgrP95PH4+XQoWp27izFYIhkwoRc4uP7thrgcFd3Y7KesRcO7bPzniqPIYqGWROCHUanxIAfMXDiG5Da/Ml46oqwr3uP9pJteK3VBFw932U99pxbiL/icUS/l/r37qXuvfto278SURQ7fU3jjHF49f334jycjL1oKMZkPfn5yX3+mRAfb2DChBwMBh07d5Zy6FA1Ho+3z2LoSYerrI7XBExytPZ2D62trn49J/73v7+bL75YxsKFC5k3b163X9/U1IRarT5qT7pE0lVSgi4JST8u4ZYcn1qtxmQyUV1dHexQQtq8efP4+OOPefnl/1Bba8XlCp/y7EAgQEVFA5s3F+H3Bxg/PofMzOA1u1Mo5Hz99BrGXTqc5KHxQYmhK0RBoP68aYiq0OrCHPC4cB5aT+Pnz1L14i+wfPTwCZNgbd4kVIn5ONa+g+Wjh6j57++ofOlq3LUFPR6bJm04Cb96AdOF9yF622lc8gyu0u2dPl9UKak/e3KPxyHpnuRh8Yy7ZDhfPbU6aKOu5HI5mZnxjB+fg88XYPPmIioqGgmE0QQAj8dHQ0MzSUkDa8vYqWpocGA06lAq++dO2e3bd/Pxx5/z3//+lwsuuOCUjmGxWDCbzf16C4Ck9/TP3yxJv2AymTh06FCwwwhpKSkpFBUVkZeXF+xQgq6xsZE//OEPGAwGxo8fz1lnnYVarearr77i66+/pqqqir179xIRAZMnjwx2uCckiuL3o43qUShkDBuWFjKjjRpKrKx9bRtn3TmVD+74AqfdFeyQjmGdNAJXsjnYYRwhiiKO9e/TvGkhoteNMi6diLxJtO1ZRu3rt6JJGYIyLg1NxiiUxh/2KwpyJebLHsHfbEFQqPG3NNGw+EnaDqxGndjzv/OCIKDNm4w2bzI1r9xA01d/IyJrHLohM9Ckjzjm+e0ZSThG5BK9u7DHY5GcnNYYwVl3TGXtq1tpLLUFOxw0GhVDh6Zit7dRVFRHba2N7Oz4Hhn52Ntqa20YDNpe3b/fn1gsjn7bvd3v9/PII8+Qn5/PVVdddcrHsVgsDBo0qAcjkwwkUoIuCVkmk4lt27ZJ89BPICEhgZ07d9LS0kJUVP8tNeuKe++9l9dff53MzHReeOEFABQKBT6fjyFD8pk5cwoGgwZB0CCKYsheMLa1uSgqqqOtzUVmppmEBGPIxbrv20KShpg5646pfPbwcsRA56vAfc2VEId1UmjdgLF99z9atn6GfsJFRI46+0gSrhs8ndbdS3GV76Jl51eozFkk/ur5o14r10Qi13SUSCpjklEn5uGz9X4Dzdhzb6d540c4CzfSuvtbYs6+haiRZx3zvMaZ49GWVEtd3fuYIBOYd8dUKnfVsm9pUbDDOYrBoGPs2Cxqa20UFNSg02nIyUlApwvNbt+iKFJbayUnR5oa0xVtbS7a2z39trz9L395nrVrN/Htt9+e8naH9vZ2Wltbpf3nklMmJeiSkKVSqTAYDFgsFtLTjx0BJOnYix0fH09VVRWDBw8Odjh9KhAI8Mknn1BYWEhmZibLli1DJpOxevVntLU5+fTTL/D7A8yfP5f09I7ZpaIosnlzEfX1DhISDMH9Bn7C6/VRVtZAXZ2NpKQYhg5NDVrJalesfHkTlz51NhOvGMHGd3YFOxwAAnI5dfOnQQiNfRJFkbZ9K1DGpWOcee1RX4vIHENE5hgA7GvepnXPMgA8jRW4K/cSOeqcY27OKGNSaDuwqtdvMqkTczFdeB9+p4OmL57H+vWLNG/+hMihM9FPuhRB6PgZB9QqLPMmkfzx8l6LRXKsiVeMRKNXs+Qv3wU7lOMSBIGkpBjM5mjKyxvYvr2EhAQjGRmmkCuLrq93IAiyfptw9jSLxUFMTFRI/306VYsWfcULL/ybp59+mtmzZ5/ycSwWCwaDAZVK1YPRSQaS0PqUlEh+wmw209DQICXoJ5CSksL+/fsZNGhQyK209qYHHniAv/71r6hUKjweD0lJCTz99ENERuqIjNRx/fX/d8xrBEEgPT2OiooG4uNDYyzQ4dE+ZWUN6PURjB2bHRZlll6Xj6+eWsMlT8yjqdxB4dqyYIeEY8wgvDHB78DstdXgrjmE6GlHkCuQqSLwOx0nfI3CkIi/pZGmb16idefXAGjSR6KMST7qeeqUITRv+RR/axOKqN5fnZFrozFd/ADNmz7G01iOfc3b+Bz1xJx905Ek3ZmdSvPQbPT7ins9HgnkTctg+Dl5LLzna3zu0J50olDIyc5OIDHRSHFxHZs3F5GRYQqZUWaiKFJR0UB6elxIxBPqRFGkoaGZzMzQ7UFyqvbvL+Cmm+7h8ssv58477zytYx3efy6RnCopQZeENLPZTElJSUiXJAdbfHw8O3bswOFwYDAYgh1On1m69FsuvXQBzzzzMCUl5YwYMQSZ7OQrp2azgfLyBiwWB/Hxht4P9ASs1laKi+sQRZFBg5LDbgXHVuXgm2fXcM7dZ9La1EbtgYagxeJXKbFOHB608x/WXrYTy0cPQ8AHggzEAIJSjX7CRSd8XUTWGAS1jrb9q9BkjMZVtoOA59ixVerkQYBAe/FWokad3TvfxE8IMjnRky4DoCV5CNal/0JhSEBQaogaez6CINAwawLashoUbeE9aivUJQ0xM/OGM/jqyVXYqpqDHU6XabVqhg9P/763Rh01NTZychIwGoPb4dpicSCKImazIahxhIvWVhcej6/fjVez2x1cddUNZGdn87///e+0rjc7bmI0kJ2d3YMRSgYaKUGXhDSDwYAoitjt9m7PoBwo5HI5CQkJVFdXD5gE3efzsWfPXi66aB56fRSjRg3r8mtlMoG0NBPl5Q2YzcFZRW9vd1NcXI/d3kZGhpmkpBhksvC8AVWxo5a1r27lvHtnsPCeb7DXBCdpsE8YSkAbvD2uvpYmWnd+TfPWRWjSR2C64I/I1DpEMXBkpbkzos+LXGck5fevIig1eOpLqCvbgeg9tgGfXGfsmFu+6g00acOPWWHvbZGjz8GxaSH21W8C0F68BbnOAKKIM8vEsN3SzdTeYkjSc+49Z7Lm1a1U7KwNdjinJDY2CqMxkpoaK/v2VWIw6MjOjiciou+rhkRRpLy8gbQ0U9h+/vY1i8VBXFxU0CaJ9Aa/3891192Bw9HC8uUr0OlOryGr3W4HGDDXY5Le0X9+wyT9kkwmw2QySePWTiIlJYWqqqoTjmzqTw4ePIjL5WL48CHHfM3tdrNmzUZeffVdGhqOP/c8Pj6aQEDEYjlx2XFP8/n8lJTUsXVrMSqVggkTcklJiQ37i8N9S4vYt7SQ8x+YiUbf9xfaPq0G27jgzGb31JfQ8NmTVL98Lc1bFxE5bBamn92LTN1xkXey5Lzp239S8exF2Fa+hqDSIsjkqEzpKIyJ2Fa+hs9Rf8zvdex5tyPTRmNZ+PBJS+d7miDIiL/8rxhmXEPMvBsRvW58jnp8jnrqd39EgSl4VRT9WUS0mvMfmMm+bwvZH2JN4bpLJhNISYllwoRcVCoFW7cWU1JSh8/Xt+X6h1fPg11JFS46VoYdmEzB30bUkx577AVWrFjL+++/T2Zm5mkfz2KxYDKZulTRJ5F0RlpBl4Q8s9lMZWUl+fn5wQ4lZJlMJvx+P1arldjY2GCH0+v27t0LwJAheXi9Xnbs2Mu6dZtZt24zGzZswensKLNdtOgrFi9+65jXy2Qy0tLiqKho7JNVdFEUqauzU1paj1arZvToTCIj+9dkgg1v70RvjmT+fTP49MFl+D19d7FtO2NEn888F8UA9hWv0bxlEQpjIsZZ1xE5bDYytbbLx3BsWkjrji9RJw+hedPHqOJz0A2ehqBQEXvuHTR8/AjVL/8aQRWBwpCIIJMTNeY8IofPwXzpw9S9dScNnzxG/OV/QVD0XTMipTGR6IkXAxA16hwA3DWHqHvrTqqbt5Ot/RkKZ+iN3wtXcpWc8+6dQX1hExve2RnscHqMSqUgLy+JpCQjRUUd+9M7JlcY+uQzuaKigbS0uLC/QdpXHA4nfr8Y9G0JPWnNmo08//zLPPXUU8ydO7dHjmmxWEhLS+uRY0kGLun2jiTkmc1mbDYbXq832KGELJlMRlJSElVVVcEOpU+YTCYA5s37ORkZY5k37zKee+5lFAoNDz30MDt27OCVV15h7dpN1NTUHfcYCQkG/P4ADQ29W5LtcLSxfXsJFRUN5OYmMXJkRr9LzgEQYdmL6xEDInNvnQx9dM3r1etwjOrbm3diwE/jkmdo3voZhhnXkPTrf6Ife363knMAQdZxj9x04X0oDIm4qw8c+ZomZTDJ17+K6Wf3ET35ctSJeXjqCmn68gU8lhKUhgTMFz2Au64Q+7r3evT7OxXtJVvh+7ntDXMmBjuc/kOAubdOJhAQWf739dAPi6QiIyMYOTKD3NyEIx3fHY7eHdvX0NCM3y+tnndHx+q5vt/c0BBFkT//+TnGjx/HXXfd1SPH9Hq92Gw2qUGc5LRJCbok5Gm1WnQ6HY2NjcEOJaSlpKRQU1NDIBAIdii9bvr06Tz55JOce+75PPzwI2zatAmbzcbXX3/D3XffzahRo7j44otRKpV89tlXxz3G4VX08vKGXtka4HJ52L+/kt27K4iL0zNuXA4mk75f78/1ewN88fgq4jKMTPnlmD45Z9OU0Yh9PO7HVbEH54HVxM2/k+iJFyHIT60YTTdsFggy2vavRBmTjLex/Kivy9RatPmTiZ54MbFn30TaXZ+iMCRiXf4/RDGAOnkQ0WdcQvPmT3BV7u2Jb+2UiT4viqhYxIAfW0IELXnS5I2eMOWXY4jLMPLl46vwe/vvZ7sgCJhM0Ywfn0NcnJ7du8vZv78Sl6vnb8z/sPc8TipD7qJAoKN7u9ncf8rbly1bzZYtO/jzn//SY3+XGxoa0Ol0RET0w5vwkj4lfTJJwoLZbJb2oZ9EbGwsMplsQNzIUCqV3H333bzwwgv84Q9/YMKECSgURydJ0dHRnHPOOXzyyZedHqdjFd1PY2PPraL7/QHKyixs2VKEIAhMmJBDerqpXzXVORFXi5slf1lB3pmZjL+sd7uqu2MNtAzN6tVzHE/g+33fEdnjT+s48gg92kFTsX33P9pLtiLXn3jVRZAriZl3I+6KPdiW/w9RFIme9HPUyYNp/OxJfK3W04rndAhKNT57HfXv3E3tqzdSe0Yufk3ojwsMZeMvG07emZks+fN3uFrcwQ6nT8jlMtLTTUyYkIMgCGzZUkhZmQW/v+duTnSsngdISDD02DH7O7u9DUEQiI7uXpVQqBJFkb/+9QWmTJnMWWed1WPHbWhokFbPJT1iYFwxSsLe4QR9oDRBOxWCIAyoMveuuPzyy9m6dSeHDh2/qZJMJiM11dQjq+ii2NF0bsuWIqzWVkaOzGDw4BTU6r7dGx0KHLUtfPbQMoafm8/YS7reYb+7mqaNhiCsgAU8ThBkCKrTXyWJO/8u9N+PMFNEnbx/RETGKGLO+j0t2xbTvPljBLkC0wV/BEGgcdETiP7gbAXSj/8ZCkMi0LEFwFG4kobZE4ISS38w7pJhDD83n88eWoajrjXY4fQ5tVrJ4MEpjByZgdXaypYtRUeaup0OafX81FgsHc3h+ksF2FtvfcTOnXv5y18e67HvqeMaQJp/LukZ0qeTJCzExsbicrloa2sLdighLSUlhdraWvz+vu2GG6oWLFhAdnY2N910b6c9DBITDXi9fhobW075PC0t7ezcWUZxcR0ZGWZGj85Er+8fKw2nylrp4LMHlzHq/EGMufDYbvuny5UYR1uQyqgD7jZkqogeubATBBnG6b8k9faFRE++vEuviRp9LtGTfo595eu0HViNXGfE9LN7cdcWYFvx6mnHdCpkqgiSrvsnKbe+jyZtJK7yXTQPyaI1OyUo8YSzMRcNZeT5g/jswWVYK/u2S3+o0eu1jB6dSUaGmeLiOnbuLKOlpf2Uj9fY2IzP55dWz7shEAjQ2Nh/ytsXLfqK229/gF//+tfMmDGjx47b1taGy+UaEI16Jb1PStAlYUGhUBATEyOVuZ+EwWBApVINqJ9TY2MjH330EQUFBTidTlauXElra8eKk1ar5Z133mHHjj38/e+vHPf1P+xF736Fhsfj49ChanbuLCU6Wsv48Tl90oE4XDRV2Fn00DLGXDiUUQsG9+ixG6eP7dHjdYfobkdQ9ewNGJlK06297NHTrkI75Ewav3iehs+epP7DByHgo2XbEtr2r+rR2LpKkCuRayKJGnMe7uoDNHz6GNUTM/Gr+67DfLgbfcFgxvxsCIseWkZThT3Y4YQEQRBISDAwfnwO0dFadu4s5dChajweX7eOI62enxqrtRWlUkFUlCbYoZyW7dt38/DDT/Ob39zBz3/+c/7973/36PEtFguxsbHHbLeTSE6F9AklCRtms5mGBmnG7okIgkBycvKAKnN//PHHueyyy8jPz0en0zFz5kzS0tLYvn07ABMnTuSiiy7iu+/WdHqMxEQjPp+/y3PRA4EAlZWNbN5ciM/nZ9y4HLKy4lH0cbOycNBUZuezh5cz7pJhjJjfM93W29ITaU9P7JFjnQoRIMg3YQRBIHbeTSiNiTgLNqAyZyGPjAHAseGDoMYWkT0e46zr8NQXU/3JA1SOOfa/VaNYi1NsoUGsYbe4kRLxwHGONLCMnD+IsRcP47OHl9NUZg92OCFHoZCTlRXPuHE5+Hx+Nm8upLKyscuNUS0WBz6fn8REYy9H2r/U1zswm8O7wWlBQTFz517Km29+xI033sgbb7yBXN6zf6+l8nZJT5Ju80jChtls5tChQwQCAenu9wmkpaWxYsUKXC4XGk143/HuilmzZvHcc88REaFh7NiRnHXWDD755AsuvPBCtm/fTmxsLIMGDWLNms5XFWUyGZmZ8ZSU1BMXF9XpH25RFGlqaqWkpA6ZTGDo0DSMRl1vfWv9RkOJlcWPLOeCR+Yg+kX2fFVwyscSgaYgrp5DR3KMGPyO2jJVBIm/+hsIHavXXnsdNf++Dm9jRVDjEgQB/fifoRs2G8tHD1Ky/T/okhZgqulodOYSnexk3ZHnK1FhoYoEMQWtEBWssINq+Dl5TLh8BJ89tIyGkuA1+wsHEREqhg5Nw2Zro7i4ltpaG9nZCcTERHaaRPr9fkpK6snOTpCuH7rB7fbS1NRCVlZOsEM5LZ9/vpSIiAhqa2tRq3u+eWXHNoBGBg/u2UoxycAlfUpJwoZer0ehUGC1ShcvJxIZGUlcXBzl5eUnf3I/MHfuXF599VVSU9NYu3YTS5eu4uyzZ1FRUcHy5csByM3Npa7OQktL582WzOZoNBolFRXH74Lf1uZiz55yDh2qJiUllrFjs6XkvBssxR1J+hlXjjqtcvfWvHTciXE9GNkpCJEEHUBQKBHkHY0IlYYEkn//Ggm/fD7IUXWQR0QRf9mfkUfFstf+FW3KjgTdQjUAqeQwhumoiUBNBHIGXkNF6ChrP+PKUSx+ZDmWYunvW1cZjTrGjs0mJSWWgwer2bOngra243e7r6hoRKNRYTLp+zjK8FZba8No1BEREZ7bVMrLK7n99gd4+eU3EEWxV5JzAKvVikKhQK+X3l+SniEl6JKwIQiCNG6tizIzMyktLR0QM9FVKhXXXHMN+/fv56OPPqKtzcMTT7xIRkbGkQYwkydPBmDp0s5X0QVBICcnkaqqJlwuz5HHvV4/RUW1bN9eglarZsKEXJKSYsK63C9Y6gubWPTgMsZcOISp14yFbv4IRUGgaVrfzFfvTHvpdlp3fYtcd/wyWfvqt6h///6gTZxQ6E2oE3ODcu7jkWkiMV/2KIJSxTbFBorFfRSymzRyyWUEJezDTTujmYZa6P8VP0cRYOo1Yxn9syEsenAZ9YVNwY4o7HRML4lhwoQctFoV27cXU1RUi9f7Q6PU9nYPVVVN5OQkSJ/b3RAIiNTW2khKigl2KKektrae88+/mm++WcVVV13NypUre+1ch8vbpfeXpKdICbokrJjNZurr64MdRsiLj49HLpdTW1sb7FD6jFwu55JLLmHr1q3s3buX/fv3H9kPlp2dzRlnTOTNNz88YeIUFRWB2RxNSUk9oihSXW1l8+ZCnE43Y8ZkkZOTiFIp7TM/HQ0lVhbe+w0Z45I56/apyBRd/zPUPCwHb2zwOgnb172H5cMHUcYmY7r4wWO+7rXV4NjwAa7yXdKF2o8oImMw//wv+AU/pRwgmSxyGE4xe3FgZSRTiBQG1sqTTCHjrNunkjEumYX3fCOVtZ8mpVJBTk4iY8Zk4XS62by5kJoaK6IoUlJSj9kcTVTU6Y9FHEgaG5uRyQRiYiKDHUq3ORzNXHLJrxFFgY0bN/Lcc88xfvz4XjtffX29tP9c0qOkBF0SVuLj42ltbaWl5dRHYg0EgiCQkZFBaWlpsEPpc4IgMHToUCIijr4Yu/vuP7Jq1XpuvfV+/vvft1m2bDUu17HlkJmZZpqaWti8uZDq6iYGDUpm+PB0dLoBtrrXi5rrWvn4vm+ITohkwYOzUGlPXtockMuxThnZB9Edn6tyL4617xA99UrMP3/suDPLZT3c2b0/URoSSLzuXyRd8DB5qvHYsFBOATkMxyAMrLFEKq2SBQ/OIjohkoX3fkNz/cCbc95bdDoNw4enM2hQMlVVTWzeXIjV2kJmppQ8dVdNjTUsq8VEUeQ3v7mT2loL33zzDWlpab16vubmZlpbW4mPj+/V80gGFilBl4QVpVJJfHw81dXVwQ4l5KWnp2Oz2Whubg52KCHhwgsv5Mknn2TZsrXcf/9fufTSX5OTM4FbbrkPu72je3t7u4fCwlpEsaO8b+zYLGJjo8LuAiUctDvcLHpwGT6Pn4v+chY644lXtxyj8/Hpg7eS43N0bK2Jnnhxp+8Huc5w5P+LPm9fhBVW5JpIlIPG0XjmWGqpQE0EaYROOX5f0BkjuOgvZ+Fz+/n0gaW4mo+/Z1py6gRBIDY2irFjswgEREQRCgtraW/3nPzFEgBaW120tLSH5bz4zz//lqVLV/L6668zZMiQXj9fdXU1CQkJKJUDs4eGpHdICbok7KSkpFBVVRW0PZ7hQqVSkZycPCBX0Ttz9913U1NTg9vtZu/evdxzz70sXvwtF154DQcOVLB1axEKhZwJE3KQyWTU13dt7Jrk1HhdPr58fCUNJVYufmIehuTjlzkHVApsZ4zo4+iOJo/o6C7ud9q79HzRJyVenXGMGUx0ynjctHOIHQPms9yYoufiJ+ZhKWniyydW4nP7T/4iySmrr3cgk8mYMCEHhULO1q1FlJTU4/NJP/eTqamxYjZHo1SG17Anp7Od++//K+eddy4LFizo9fN1bIWrJjk5udfPJRlYpARdEnbi4+Nxu904HFLydDKZmZlUVlbi9UqreT92uAz+/vvv5+uvv+a22+5k+/b9DB2aTH5+MhqNiuzseMrKLNLFXC8L+EWWv7SBQ6tKueTxeaSOTDjmObbxw/BrT2+LwekmgaqEXJApaDuw9oTPk+tNHf9HFl4Xtn3Nc/GV5EVMoYoSDg6AJD11ZCIX/3Ueh1aV8t1LGwn4+/f3G2xer5/SUgvZ2fFoNCry85MZNSoTh8PJli1F1NXZ+/177lT5fH7q6x1h2Rzum29WUFlZwzPPPNsn53M4HLjdbqm8XdLjpARdEnbkcjkJCQlSmXsXGI1G9Ho9lZWVwQ6lT3388cf85je/4aKLLuL111/H4zm2tNFqtbJ69Wqam5tJTk7mjjvu5J57Hj3S+T42NgqdTkNZWUNfhz8gbXp3F2tf28a598xg7EVDjzzui1BjGz/0BK88OXdtAVUvXU3N/36Pfc3beCyl3b44l+sMRI6Yi2Pdu3itnX/2xF/6KDFzr0emknoWnEhAo4LLfsNgYRzVlFBDWbBD6h0CjL14KOf8cTprX9vGpnd3BTuiAaG83EJUlIbY2Kgjj0VFRTBqVAbZ2QmUlVnYsaOU5mZnEKMMTXV1dnQ6dVg21TMaO5qI9lW5eVVVFYmJicjlUvNYSc+SEnRJWEpJSaG6ulq6A94Fh0euDZSf1ccff8wll1zC+vWrqa2t5JprriEtLY13330XURRpb29n27ZtrF+/noSEBGbPns2cOXN46623+Oijxfz5z88Bh8euJVBba8XplMqV+8LBFSV8cv+3DJ2Xyzl/nI4yQolt0khE1eldbLXuWQYBP6rEPFq2LaH2tZup+e/vsK16A3ddUZd/N4wzr0UeFUfDZ08i+o6/n1UZl0rUmPmnFe9A4U6IQzn758SSwAG20SDWBDukHqWMUHLO3dMZOjeXT+7/loMrSoId0oDgdLqprbWRnX3sWLWOca3RjB+fQ0xMJLt2lXPgQBVut1RlBh2VRjU1VpKTw2/1HCA9PQWAwsLCXj+XVN4u6U1Sgi4JSyaTCb/fj9UqjaY5maSkJDweDw0NA2Ml+NChQ0RFRbJ27ed8+eW73HjjtdTX13PNNdfw1VdfsXz5cgBmz55Nfn7+kTvfl112Gc8++ywvvPBvXnnlHaCjI3BCgpGioroBc4Mj2BpKrHx415co1QoufeZcNJPzTvuY6qRBBFwt6Mf/jJSb38Z86SOoU4bSuvNr6t64jZr//Abbytdw1xxCFAOdHkemisC04G68TZXYVr520vN6bbXS++YkHGMHk513BXEkspfNWEVLsEPqEcaUaC57+hwUKgUf/uFLGkttwQ5pQBBFkaKiOhISjCecvCGXy8jIMDN+fA4AmzcXUV7egN/f+e//QGCzteHz+TGZwnPsYXp6KmlpyXzyySe9fi6r1UogEMBkMvX6uSQDj5SgS8KSTCYjKSmJqqqqYIcS8uRyOenp6QOmWdz48eNpaWnltdfe4/bbH+Af/3iVSZMm8Y9//AO5XM7kyZMZO3bsMWPYAG6//XZuvvlm7r77UZYuXQVARoaJ1tZ2LBap50FfcbV4WPKXFeyu93P7SBgZc3oXzdq8SShNGTR88heQKYjIGkvcubeSctNbmC/7M5r0kbTuXkrdW3dS9dIvafziedoOrCHgOnb8lSo+C+PMa2nZtgRX1b5Oz+ks3ETNf35D46LH8Tul986JNJwzjUHRs4gmhh2sZY+4CbfoCnZYpyx7chqXPjmPovXlfP7YClwtUvfwvmKxOGhtdZGR0bWkSaNRMnhwCiNGpNPU1MyWLUU0NDgG7I21mhorCQlGZLLwTA9kMhmXXLKAjz76CJerdz9DqqqqSEpKCtuflSS0Se8qSdhKTk6mpqbmyJ5hSecyMjKor6/H6ez/++3mzJnDJZdczJ13PsTq1Zv56KOPuPfee0lMTGTWrFnExHSU7vl8PpYvX05LS8uR1wqCwPPPP8/ZZ8/jxhvvoaGhCaVSQV5eEkVFdXg8UhlkX3Eb9HzqjOGtIhlXZAdYkOZHJpzaRbNMFYE6ZSgB99Hvf0GuICJzNLFn30zKTW8R/4sniBw+G09dEY2Ln6TyxV9Q9+49ODZ9jKeh/MhFe0TWWJDJadv7Xafn9DaWA9BetpOaV27AWbDhlGIfCAIaFZafzWWEfBoZ5FNPJTtYg1cMr8RWJheY/KsxzLrhDJb+bT2b3t2FGBiYiV4wuN1eiorqyMtL7Hb38ehoLaNHZ5GRYaKwsI5du8pobW3vpUhDk8vlwWptJSnJGOxQTsvPf34BdrudL774otfOEQgEqKmpkcrbJb1GajMrCVuxsbHIZDIaGxsxm83BDiekabVa4uPjKSsr65O5oD81V3Zpn55Po9dw3+8fZPSM4Wz4bAv/Wvh32l3tqFATTyqxxFNFCY3UEk0MY5iOXPjh49AtyrHTzJS8ixjBJARB4Kw7plKwrowvn1jVp99LqPnI+nifnOeOT6opL2hlrw2e3SNwbb6fnGg/bxfKsbi6N5deDPhp3f0t2rxJnc4wF2RyNKnD0KQOwzjjGnwOC+0lW2kv3oJj7bvYV76GXG9GZUrHXbUfRbSZ6KlXdnrOiJwJ2Fe/iX78BXjqS2j49DF0w2YRM/u3yDTBm+ceqtwJcVhnnUH2MoEEMZWtrGQHaxgtTkMpqIId3kkZkvXMvXUKCpWMj+7+CntNy8lfJOkxoihSWFhLTEwkcXGnVp4tCAIJCUbi4vRUVDSyY0cp8fEGMjLMqFT9/3K5psZGTEwkGk3o/76dSF5eNqNHD+fNN9/k4osv7pVzNDY2IpPJiI2N7ZXjSyTSCrokbAmCIJW5d0NmZibl5eX4/f13bJhMIWPk+YO4+p8XEGcw8d9b3+X5t58m2mViPDOJJ5V6qtjJOpqxkU4erTSziw0EfrT3WC1oGMxYGqg50l169X+3kJAfR960jOB8cwPInpp2viv4oby8wSXw7G45Rc0Cd43wMz0hgEDXVyYFmRzdoKm4ynYS8HRtVUwRbSZq9LmYL3mIlFvexXzJw2hzzwBAO3g6CVc/hyKy80ZKKlMGkaPOpnnTJximXUnsubfjLNhIzas342ko73LsA4ljzGBa8tLRCXpGM402WljD51SKxcEOrXMCjJifz8+fOZfqffV8+AcpOQ8Gi8VBc7OTnJxjxzR2l0IhJysrnnHjsvF4fGzeXEhVVWO/rtYLBALU1dnCtjncT/3qVz9nyZIlbNq0qVeOX1VVRXJycqc3fCWS0yUl6JKwlpKSQm1tbb9OOnuKyWRCqVRSU9O/OiUflj4miStemM+QOTl89dRqvnxiFZvqVhNBJEMYR7QQS74wimmcx0TmMJVzyBVGMJLJ2GhgH5uP2ndoFpJJIoMCduIUW3G1uFn5781M/814tAZphFZvemlV4zGP+USBxeVy/n1AzozEAL8fHMCg6nqSbph2NQG3k9Zd33Y7HplSTUT2OGLm/BbzJQ8RO+9G5BFRJ32dcdZ1KGNTsCz8M5rM0ST9+iVkGh31H9zfaRf4gc5yzhQ8hij0gpFJnEUsCZRxMNhhHVdknJYLHp7NqPmDWfLn71j/xnb83v6bxIUqj+dwaXtSt0vbTyQiQs2wYWkMGZJKba2drVuLaWrqnzdfGhqaUSjkGAy6YIfSI6666hKGDx/CnDlzuPjii3n99ddpbm7ukWP7/X5qa2ul8nZJr5ISdElYMxgMqFQqLJb+0fm3NwmCQFZWFsXFxf2qAY4hWc/8P81k7m1T2P3FQd6//Quqdtd9/1URBQpkwg8fdYIgECUYkAkd3dtjBDPDmUg9VRSy+6hj5zESFRr2sQVRFCnZWEnFzlrO/N2Evvr2BpyNZW1sKu+8V0Jxi8CTu+VY3fDHkX7GxQWgC6vpimgzqoRsPJa+G3UlU2owXfwAiH7q3v4D7poCNOkjCbTZCbja+iyOcBJQq6hbcCYBuQyNoCUKA358wQ7rGPlnZnLFC/Nprm/lvds+p2a/9DcoGERRpKCgFqNRd8ql7ScTExPJuHHZJCfHcPBgNXv2lPer0ZuiKFJV1URycky/WRGWy+V88MF/uO2231JZWcq1117LjBkzeqQPT319PWq1GoPBcPqBSiSdkBJ0SVgTBIHk5GSqq6uDHUpYSEtLw+VyUV9fH+xQTptKq2TqNWO5/Nlzaa5v5e0bP2PPVwVHNWXKYBDN2LCJJx4xZxaSSSefGsqOunmhEJQMZTwOmijjENBR6p442Ezu1PTe+cYGuL8fZ/X8p9x+gfdL5LxdJONn6QGuzQugU5w4SRdFEdHtRJCf3kz17lJExRF/5VMoos00fvYELVs/Q5s/BXlkeDdi6k3uhDgaZ44HQIESP358Ymg0aNTo1Zxz93Qm/2oMS19Yx4p/bsLrCr0bCANFQ0Mzzc1OcnMTe/U8HdcasUyYkINGo2LbtmKKiurw+cK/eq+pqRW320dCQv/6TEpIMHPnnb/n228/ZOXKTykoOMQ111xz2gsUh2ef95ebGZLQJCXokrCXkpJCXV0dPp90kXQyCoWCnJwcDh06FLar6IJMYOjcHK7+5wXEpBn48O6vWP3fLccdZRRHIpEYKGH/SY9rxIQPL+0cvbJpEOLIIJ8S9tEs2nC1uFn18iam/2Y8EdFSqXtPWnawhX21XR+Ns88m4/FdHZUQ94/yM8kcwL76Tere+SOOTR8j+n9I6lp3fIm3qfLIPvK+pDQkEH/5X0n69b9Iuekt4i64p89jCDeH96ObSUYkgIXg3oQ9/Llz1UsLEEWR9277nLKt0o3hYPJ4vBQW1pKb27Ol7SeiVCrIzU1kzJgs2tpcbN5cSE2NNWz/noqiSEWFhdTUWOTy/psSjBgxlH/96yk+/PBD/vKXv5zycXw+H/X19VJ5u6TX9d/fRsmAodfr0Wq11NXVnfzJEjIyMnA6nWG5LSBpqJnLnjmH0RcOZfk/NrL4keVYKzqfMS0IAlkMxkYDzaK10+dViIVU0dGIysuxpYtZDEVL5JFV9OKNlVTuqmPG9VKpe0/xB0T+sebkq+c/1eYTeLVAzjvFMmYnuLn/wnFkJZuxr3qD2tduoWXHlzg2LsS6/D9EjT2fiOxxvRD9yQmCgDIuFbnOKK28dJHlnCnIjPEYMVFHRdDiMOfGcskTZzPmoqEse3E9Xz+9Bldz/ylxDkc/Lm03mXqntP1EdDoNI0akk5eXRGVlI9u3l2C3h9+2Fau1FZfLS1JS/2gOdyLnnz+P2277HQ8//DBtbaf236q2thatVote3/fvOcnAIiXokn5BKnPvunBcRY8y6Tj7D9OYf98MCteU8e4tSyjb0rXu/SaS0KClkqM7QTvFVhyilTLxIAXsopFaEkhDz7EXKjJBRjypWKnHL3aUNK7+X0epe84UqdS9JyzZ00xp06k3Tlv32TvceM2VbNu5m0fuvoU7n38TQ3wq1qUvY1/9JpEjzsI489c9GLGktx3ejx4vS8eKhQJxF36x7yqlNFFqZt4wkQsfnUvZ1irevVVaNQ8VfVXafiKCIBAXp2f8+BxMJj1791awf38lLld4NIAURZHy8gZSU+P69er5j82cOeX7jvWntqBTXV1NSkpKD0clkRyr/w92lAwIycnJFBQU4PF4UKnCe4ZnX8jMzKSoqIiGhoaQniGv1CgYc9FQRi0YTOGaMt6+cTFOe9dLoOH7vYNiJqUcJF8cjUJQ4BKdrOfrI89JJpMchqNA2enqZgKplHKAcg6RxRBczW5W/XszM66fQPXeetod3YtL8gOPL8DL67q/en6Yr7kRx4YPUBgSWREYTOEuBRdmRPHCI3ezpBzW1/gQlNJ2hHDkTogjasaFpHxno4JCBGTkMrxXzynIBIbMzWHSlaOoPdDAe7d9TnN968lfKOkTHo+PwsLaHu/afqpkMhlpaSYSEgyUllrYsqWIlJRY0tJMIZ342mytuFyeAbF6fpjZHAdAXV0d2dnZ3Xqtx+PBYrEwfHjvfv5IJCAl6JJ+IjIyEr1eT21tLenp0ormySgUCrKzszl48CAmkyn0Sm4FyJueyeSrRtHS0Man93+LpbjzEvWTSSCNYvZhoYokMrDSUd4/mmlEE4NC6GgcFhADtInNaIk6qvM7gFaIIk3MpYxDJIkZaAQtxRsqyJ6UxpxbJrHkLyu60kxcchwfbLdT13zqK6Oe+iIA4i//C4roeJrc8L9DcoYYAlycGWBygoJPy0RKWkLsfS7pkpbxI9EWjICq3p+HnjjYxLRrx6GOVLH0b+sp3yatmIcSURQ5eLA6aKXtJ6JSKcnPTyYxMYbi4lrq6uxkZcVjNkeH3N9YURQpK2sgJaV/7z3/qR8n6N1VU1NDdHQ0Ol3/GEUnCW0D57dS0u8lJydTVdW1smdJxyp6a2srDQ0n7nDe18y5sVzy+DwmXTWKdW/s4OP7Ti85B4gQdMSRSDH78Ik+mqhDjoIYzEeS8yaxni2sYCNLOcSO4x4nk8EoUFLAriOPrXx5E9GJesZePOy0Yhyo2twBXt1wev99VQm5IMhwFm486vH9dhmP75Szxyrjd4P8/G6Qn1SddBclHNXHBxAQSKV7q15dZc6J5fwHZnH+n2ZSsqmSd29ZIiXnIaiiohGXy0NeXlKwQ+mUXh/BqFGZZGXFU1paz44dpTQ3n/54r55ks7XR3j6wVs8BnM6OSje1Wt3t10rl7ZK+JCXokn4jOTmZpqYm2tvbgx1KWFAqlWRnZ4fMXnStMYLZN0/iwkfnUrGjlnduWkzh2rIeO34+o/DiYT9bacGOHx9NdIybs4oWdrAGAdChx4rluD8ThaAkjxFYqKZS7Fi19Ti9fP3UasZeNJTkYfE9Fu9A8dYWK7b20xtVpIiKRTd0Bs2bPiHgOfr33ycKfFst45EdcmqccPNQP7/O95OoDf57XtJ12pFzkWki2cZqAuLR75ef/nt3xKYbOPeeM7nwz3NpLLPy5vWL2LpwL35v4HRDlvQwm62ViopGhgxJQaGQBzucExIEgfh4A+PH5xITE8muXWUcPFiN2x38cYEde88tpKTEhvzPsaft39/R6HXYsO7dUG9vb6epqYmkpNC9MSTpX6QEXdJvREREYDKZqKgIXrffcJOVlUVLSwuNjae+//d0yZUyxl40lKv+sQCFSs47Ny9m8we78bl7dr5shKAji8FYqMKNi0TSiSQagEqKiCSa8cxiCONop40ayo57nAQhjTRyOcROLGLHCltjmY21r23jrDumojVG9Gjc/ZnN6eOtzbYeOVb05CsIuNuwfvvP495ccfoEllTI+fMOOVY33DHczy9z/ZiUXtpLtvVIDJLeozJlYLrkIdpppRk7TrGVg+IOVomL+Y5PsYr13TqeIVnPWXdM5dInz6bZ0spbv1/Ehrd2HndcoyT43G4vBw5UkZOTQGRk+HzGyuUyMjLMjB+fQyAQYMuWIioqGggEgncDyG5vw+n0kJw8sFbPAQ4cKCAqKqrbWyHLy8sxmUxERITPe08S3qQ96JJ+JTMzk127dpGbm4tMJt1/Opkfr6KbTKY+P3/WxFSm/N8Y3G1elvz5O2oP9G65fYYwiHQxH+hY4QiIAfaIm2ighkQyEASBaGJIEFMpZi8JYhpy4dgVhlxG4KadvWxijDgdgxDH/qVFJA02M+/OqSx6cBliQFqhPZlXNlhp8/TMharSmEjMvBtp+vxZNGnDiRxx1nGf1+IV+LRMzooakbOSA9w9wsva5iaWVW6iLXVij8Qi6R2q+CyQKdjOOgIBD0pUJJGJhSpqKCeGk1ewRCdEMu7S4eROzeDgimLevnExrU2hVX4sOZooihw4UEVMTCQJCYZgh3NKNBoVQ4akYre3UVxcR22tjezsBGJjo/p0f/qP954PtNVzgP37Cxg2bGi3fuaBQICysjJGjRrVe4FJJD8hZTCSfiU+Ph6ZTEZtbW2wQwkbWVlZNDc39+kqemyagQsemc2M6yewdeFePrr7q15Pzg8TBOHIH+cm6qinkhSyyeWHkrc08vDgpoXjr+4KgsAQxhOFgYPsOLJiu/Lfm9BEqZl4xcje/0bCXF2zlw+323v0mJFDZxI54iysS/+Np6H8hM+1ewQ+LJVz9wtvAvDIhSP4dbaTHH0AqdtfaBIUKvQTLkQRl0qOdhJTOY9MBuHDi4YTr2wlD4/nvHtn8IsXzwfg3VuWsPLlzVJyHgZKSy14vX5yc5NCrtladxkMOsaMySItzURBQQ27d5fT2tp3E0DsdidOpyukV8+bm1vw+XpnnGJpaQV5efndek1tbS1yuZz4eGkLm6TvSAm6pF8RBIGMjAxKS0uDHUrYUCqVZGVlcejQoV4/lyZKzZm/Hc+lT51NY4mNt29czIHlxUFbbXbTjoBAPqNQCT+M4fLiBkBB5yP75IKcTIbQioNmOpqc+dx+vn56NSPOyyd9bHLvBh/mXl7bhMff8//djXN+izwyBsfGD7v0fN/YK3jxxRf53e9+R2V9E9fmBbh7hJ+JpgAKQUrUQ43xzF+ReM3fkF36OwSFkjIO4cdHynGax8mVMgbPyuLy587j7Lum0VRh483rF7H87xuksWlhoqmphZoaK0OHpvabbuOCIJCYaGTChFwiIzXs2FFCYWENXm/vJKU/Vl5uITk5dFfPzz//KtLTxzBu3Fls3nz8Zq2no7a2ntTU1G69prS0lMzMzLC/OSQJL/3j004i+ZH09HRsNhvNzc3BDiVsZGdnY7fbe20VXSYXGDE/n6v+uYDIOB3v3/EF697YjscZ3IY5PryIiFRSRJv4w/vFigUlKnREnfD1scQTgY4i9h5pVGWramblvzYx99bJRJmkcSzHU9rkZskeR68cW6bUEDlqHu0FGwi4Tp6EybXR6MdfiNVq5a1X/8dD2+WsqZMxMynAw2P9nJPiJ0opJeqhxp0QR80ZOVRQQDp5aATtka9pDRomXD6CX/33IkZdMITdXx3ijd98ysZ3dtFmlZqIhguXy8PBg9Xk5SWh1Xa/63aoUyjkZGcnMHZsNi6Xl82bC6mqaiLQSzes7fY2WltdpKTE9srxT5fH42H9+i1cf/31JCYmce65V7B8+ZoeO77X66WuzkJyctdvnjc3N2Oz2UhLS+uxOCSSrpASdEm/o1KpSE5OllbRu+HHe9F7msVi4fLnz2PYWbl8++xavvjrSuw1LT1+nlNhJgUDcRSwi40swy12XLwrUOLHf9I75i3YMZOMnSb2suVIqXvBmjIK15Uz765pyBTSx+xP/WN1I72weH6ENn8qos+Dq3Jfl54fPeUKAFyl22gu3sEGi4wndsl5q1BGaiQ8NMbPVTl+8qIDCFL5e8iotK5HLteQTj6CTCBlRAJzbp3ML/99IebsWJY+v5b3bv2c/UuL8Hl6tumkpHcFAgH276/CbNZjNkcHO5xepdWqGT48ncGDU6ittbJtWzFWa89XeJSXh/be84KCEgKBAJdddhlr1qxFo9Gwd++BHjv+wYNF+Hy+bnVwLy0tJSUlBZWq82o6iaQ3SE3iJP1SZmYm69atY8iQISiVymCHExaysrIoLi6mqamJ2NjTv8Pe2trK3r17sVqt7P22kL1fFRDozazsFGiFSMaKZ2KlY8xaBUXkiMNw0koE2k5fJ4oiu1hPIx29DmTIsFDNPrYwSByNQlCy9tWtXPz4PKb8agxrXtnaV99SyNtX62LZod4tL1ZExyPTROFtKIPckzd+k6m1RI6cR+uub1CZMr9/VOCQQ+CQA8wakcnxAa7OCRAQYVujwJZGGbVOqeQxWDyWUtr2r2TEZX9gisHM4InJCDKBwjVlvH/7F9hrpAqqcFZcXI8oimRnJwQ7lD4TExOFwRBJTY2VAwcq0eu1ZGcn9Ej1gN3eRktLO0OGdK+8uy99880KIiMjmTx5MgqFgvb2diIje64KbdeuvQiC0OVmb16vl8rKSqZOndpjMUgkXSUl6JJ+yWg0otfrqaysJCsrK9jhhAWVSkVWVhYHDx5k8uTJp7zfyuv1UlBQQElJCWlpacyePZvn57/Ww9H2DFEU2cNGGqhBTQTlHEJHFHaaiKPzC0MbFhqpZRCjUaBiL5vIZxRF7MFGA/niKMzeZL5+eg2XPXMOtQcsFK2Xxv8BvLiq95sBCoKAXB+Hp7HrP/OYs27AOOs6ZKpjm41ZXAKLyuUsLhfJM4iMjxO5Y5gfiwu2NMjY3ijQ7JWS9b6iV4oMjmpk0gt/Izk1nX01Hpb/ax1VO2qk6Qn9gMXiwGKxM2ZM9oCbxiKTCaSkxBIfH01ZmYVt24pJSoohPd10yivfHZ3bO/aeK5WhuXoOsG7dJmbMmIFa3XFDQqPR4PH03NjDtWs3M2hQPpGRkV16fkVFBXq9HoPB0GMxSCRdJSXokn4rMzOTgoICqblHN+Tk5LBs2TJqa2tJSkrq1mtFUaSiooIDBw4QFRXFmWeeiV6v76VIe0Y7bVioRoESNx3l7S6cKFAQoPPxX7rv56ericBJKwICSWRgIomD7GA3GzCJSQyqG8Oyv63nrDum0mxpw1LU1CffV6jaXNbGprK+6ZqtzZ2EY+OHBLy3IFOefAVKkMkRjpOcHxZwt9FauImd0Wb2m7OIiIhgZKzIeJPIgrQABc0CO5sE9tukZL036JUiQ4wio2JF8vQih2rSWPzx2+yyyRFSRpIck4o5UB3sMCWnqbnZyaFDNQwenEJExMAtK1YqFeTmJpGYGENxcR2bNxeSmRlPQoKh29czjY0tOJ1uhg0L7X3UxcXlXH75FKDjekIul/dI4zy/388TT7zIBx8s4umnn+7SazpuapSRl5d32ueXSE6FlKBL+q2kpCT27t1LY2NjUGZ8hyOlUsmQIUPYt28f8fHxyOVdu9ve1NTEnj178Hq9jBw5koSEhLC4KVJDKQICkziLIvYiIpJCNlUUo6TzrRFqQYNMlNNGM9WUEksCckGBHAUjxclYqOYQO9jGStxb2ol+L4r598/goz9+TYulrQ+/w9Dy4qq+G+XnbapEHqFHkPXMipF12X9p27vsyL8rY1NxnPV7NqeNwKASGRMnMtEU4LIsqGmDfXaB/TYZFa0gEvq/C6FGQCQtEoYYAww1iCTpoLwF9thkvFcsw9YSRf3+Cjz1xbBzGYornyQiP4OoQ2XBDl1yitrbPezdW0Fmppm4uBM36BwoIiM1jBiRTlNTC8XFddTUWMnOTsBg6FrpdyAQoKSkjszM+JDde36Yy+U+srptsVhoaWkhKyv9tI5ptdr41a9uZt26zTz++OPcddddXXpdQ0MDHo+n2wsVEklPkRJ0Sb8ll8tJT0+npKREStC7IS0tjdLSUoqLi09699jpdLJv3z7q6+vJy8sjOzu7y0l9sNnEBso4RDZDUQsRDGU8ATHAfrbiwU3sCUrcAZSoKGIvMuQMYdyRxwVBIJ4UokQDu1jPZpZTuvggkfE3cP6fZvLxvd/ibuu5sr1w8d2hFvbW9t28X1fFbggEaN2zjMgRc087UXeVbSdq/M+IHDYbT30xrXuWUf/BA5h+dh/kTuS7GoHvamToFCKDDR2rvdcP9uMPwH57x8r6QYeAyy8l653RyEUGRXf87IYYReQCHLALrKiVccAu4PT98LOTqbUkXP0srrKdWBY+jL/FiuXsyajrm1DZQ6MJpaTrvF4/e/eWYzZHh/SM7mAQBIG4OD0xMZFUVTWxd28FMTGRZGXFo9GcuMqgqqoJhUJOQoKhb4I9DXp9FA0NHVug9u/fD0Be3rHjE3+qtbWNqqoarFY7drsDq9VGfX0jGzduY8OGLUREaFmxYgVnnnlml2MpLS0lPT09bK5nJP2PlKBL+rWMjAyWLVuG0+lEq+286ZfkB4IgMHz4cDZs2EBqaioREceW/fp8PoqKiigqKiIpKYnZs2cf93mhzIoFBUoyGHTksToqqKOCYUzAKJz4pk4audRQxmDGYhCObaqnFSKZKM6hjgoK2cPfXnmeB+95iHP+OJ3Fj35HwNd5CX1/4w+IvLSm71bPAfQTLsZ5aC3Wb/5B6+5viTv3dpRxp9cgSaaMQGXORGXORDdkBo2Ln6Jx8VPEX/4Y6uSO91GbT2Bro8DWRpAhkhEFQ40Bzk4N8Mu8jtX10hbhyD82DzAgV9hFYtSQESmSGdXxT5IO6tthv03g1UNyylogcIKfjSBX0F6yFUGhJiJnAgGliroLZpDy9hfI/APn9yvcBQIB9u2rICJCTXZ2eFRfBYNMJiMtzUR8vIHS0nq2bCkiNTWO1NS4486Id7u9VFQ0MmxYWlj8TMeNG8n69esAOHDgAEqlkszMzsvyi4pK+ec/X+ODDxbhdB49PtFgMDB+/DgeeOBBfvGLX3Rr9rnT6cRisTB8+PBT+0Ykkh4gJeiSfk2r1RIfH09ZWRlDhgwJdjhhIzY2lvj4eA4cOMCYMWOOPC6KItXV1ezbt4+IiAimTJmC0WgMYqSnzocXBcqjLlyE75OBSopxiy7Shc4rCNKFPNI5cYWBTJCRRAZaMYqtgRW8/uw73PTYb5h1w0SWvbihZ76RMPD53mZKGvu2aiB64kVET7wId/VBGr98gbq37yL+F4+jMp9a08iApx2Z+oebUIJcQez8O7F8+ACWjx8l4epnURoTj34NAiUtUNIiZ0kFGFQdiWhGlMiMpABXaaHVd3TCXtUGfjH0L6a7Sy6IpOg4koxnRolEKqDK2fH9L6+RUdIi4PB073tXmrMQfW5q/ns9Sdf9E3d8LI2zJmBeurGXvhNJTxJFkYKCGvz+AMOHp4dFIhlsarWSQYNSSEpyUlRUR12djaysBEwm/VE/v9LSemJiIo+5CzkAAL2NSURBVLtcDh9sjY1WDIaO64mKigpiY40oFMdPU2w2O2eddRlqtYa77/4jc+bMITY2ltjYWAwGw2lN7ykrK8NsNkuLOpKgkhJ0Sb+XmZnJtm3byM/Pl8qVumHo0KF89913ZGZmYjQasdvt7NmzB6fTyZAhQ0hJSQnriyknLURw9IVLPKm04qCcAhw0kSrmIBNOv4uwQYglRjRT4S7i87+u5JIn5jH+suFs+XDPaR871Hl8AV5e27er5z+mTh5E4i+fpf69+6j/4AESfvEEythTWEkP+EE4+vNDplRjuugB6t68g8YlT5Nw5VMI8s7/rNo9AjuaBHZ83ytQKRNJ+z5pzdGLzE0OoJFDowvq2wXq2jv+t+Mf8AZC//dNJRMxR0B8hEh8hEjC9/8/TgMu/w83I1bXyqhoO/3vKXL4bBzr38Pf3EDA1YpMFYFj9CB0hRXoymp66LuS9Jby8gbsdidjxmQedxVY0jm9Xsvo0ZlYLA6Ki+uorraSk5NAVFQEzc1OGhqaGT8+J9hhdonL5Wbduk088sijAMyYMYMnn3ySVavWM2PGlGOe/+ijz+Lz+TlwYCfx8fE9Foff76e8vJyxY8f22DElklMhJeiSfs9kMqFUKqmpqelWmdNAp9VqycnJYdeuXej1empqasjOziY3N7fTu9rhJIZ4itiLU2xBK3Q0JJIJMtRixyppLiN6JDk/LJF09rGFemstnz+2gov/Oo+WhjYOrijpsXOEoo92OKhtPv1OvKdDptZhvuxR6t+7F8vHj5J4zd+RKTXdOoagikD0uY95XB4RRdz5d1H3zt3Y172Lcfovu3xMb0CguAWKWw4nqR1l3wkRIvERkKAVyYsOEB8BWgU0fZ+4W1zg8Ai0eKDZC81egWYPOH2925BOQESrAL2qo6u6XglRKohWiZg1HYl4rKYjjvrvby6UtghstAjUtQtY3R1H6dGYZHLkuhjUiXko9D9sS/HGRIOUoIe0ujo7VVVNjB6diUp16iueA5kgCMTHG4iLi6KiopGdO0sxmfS0tblJTY076R71ULF9+27a213MnTsXgLlz5zJz5kyuueZWvv76ffLzcxBFkfr6Bv7xj1d5/fX3+ec//9mjyTlATU0NKpVK6lskCbrwv8qWSE5CEAQyMzMpLS2VEvRu8Pv9CIKAw+FAEARmzpyJThcepXJdkUIWVRSzg7WMECcRJRhwiU6K2YeZ5BOWt58KMymUU8AeNhFRruOrp1Zz3r0zaGlso3pPfY+eK1Q4PQH+tyE0RsvJtdGYLryf2tduxr7mbWJmXdet1yui4vBaj5/wqZPyMUy9Evvqt4jIGI0m7VT3LnYksVa3wH77jx8XiVJyZEXapBFJ1YlEGcTvk2WIUIA/0JGwt3ihxSvgCYAvAN4f/a9XBF9AQOSHeeEzEwMIAigFUMpAIfvhf1UyiDqcjCtBLoN23/c3Bjwd52n2wD6bwPKajtX+Fm/H99IXxIAfT30xusHTj35cIa3GhjKbrZXCwhqGDUtDp+vezTLJseRy+fdj2Izs319Ja6uLuDg9gUAgLGbJ22x2AJKTk4GO7+eTTz5h6tSpzJ9/FbGxRioqqmhvd6HT6Xjssce4/vrrezyO0tJSaTSvJCRICbpkQEhLS+PAgQPY7XYMBkOwwwlpoihSV1fHvn37kMvl5OXlUVFRgVp98lnS4UQuKBgjTmcHa9jOapLFTKopRYmKfEb3wvnkDBfPYDPLOcA25LsUrP7vZs65ezof3/sttipHj58z2N7abMXm9Ac7jCOUMclET/o59rXvYJhyBTJ11284qVOG4Dy0DtHvRZAfu9qnn3gx7aXbafz8WZKufQmZJrIHIxeOJN1Fzcd/hkrWkcQfXt2OVHYk2R2JtohS6Ei4I77/d438hwTdHAFu//cJfACc/o4k/vC/t3qFI6v0zd4QK7UXZCiiYnFX70cct+DIhbXYQ+P1JD2vrc3Fvn2V5OYmYjT25O+JRKWS4/H4SEuLo6HBQV2dnezseGJjo0I66WxtdQIcte/bYDDw1Vdf8fDDDxMZGUlGRgYZGRlMnjy5x1fOAex2O83NzdJCjiQkSAm6ZEBQKpWkpqZSWlrK6NE9n3z1F83NzezduxeHw8HgwYNJT++YQdrY2EhhYSGDBw8OcoQ9K0LQMUKczHZWU00pJpLIZhhqoWdWdNrEFgrZhY1GshlGmpDDYHEse9lEGrkc+E5AHx/F+Q/MZOEfv8Zp77sxZL3N3u7nrS22YIdxDO3gadjXvIWrch/anAldfl3kyHm0bFtCe+l2tDkTj/m6IJMTN/9Oal65AduqN4idd2NPhn1SnoBAkxuaulhGrpaLPDWh4+bJByUy3GE6/k0QBKKnXUXT58/SXrIVbfZ4QFpBD1Uej5c9eypITo4lISE8G4yGsoqKRjQaFRkZZjIyzNTW2igoqCEyUkN2dkLIVisUF5eSkJBwTJVeamoqr7zySp/EcLjK8nQazEkkPUX6CyYZMDIzM6mqqsLjGXgzqE/G4/Gwe/duVq1ahV6vZ86cOWRkZCAIAoIgMGzYMIqLi3E6ncEOtcdFCnqmcR7TOZ8hwrgeS87dYjubWU4zdjREUEEBoihiJhkFSko4gEd0s+m9XdTst3D+g7PQRIXHfsGueGV9E63u0Bt1pTAkIo8ydcxJ7waVKQNlbCrthZs6P7behGHKL2jd9Q0+R//cthCKdENmoE4ZQvPmT448Jq2ghx6v18fu3eVER2vJyJD2+PY0l8tDVVUTOTkJR/52JyXFMGFCLlqthu3bSygsrMXrDW5PkOOprq4lNTUlaOf3eDxUVVWRmZkZtBgkkh+TEnTJgKHX6zEajVRUVAQ7lJARCAQoKSlh2bJltLW1MWPGDIYNG3bMHWSj0UhycjL79u0LUqS96/DFTE8SEfHjw0wS+YzChZMm6pAJMgYzlmasbGY5bWIL3720geb6VhY8NAe1LvyT9PpmLx/usAc7jOMSBAFN+nBc5d1L0AE0GaNpL92OKIqdPidy1DkISjWt+1acTpiSbhAEAbnWgPCjLvvSCnpo8Xr97N5dTkSEivz85JAutw5XxcX1mM3RREVFHPW4QiEnJyeBsWOzcbk8bN5cRHV10wk/x/pafLyZ8vLgXZuVl5djNBrR6/VBi0Ei+THpL5hkQDncLC4QCL2Vvb5msVhYuXIlpaWljB07lkmTJhEVFdXp8wcPHozFYqGxMXgjs8KJRtCSSg51VGLEjA49tXRcgMQLKUxkDnLkbGUFtb4Kvn5mDa1NbSx4aDYqbXiX2L28tgm374eLv/byXdS+dSct278IiYtCdcpQvJZSAt7ubSnQ5p6Bv6URd/XBTp8jU2lQGBLwt0i/J33J19yAItp85N/FMGiMNVD4fH727ClDrVYyeHAKMpmUnPc0u70Nm62VzExzp8/RatUMH57OoEHJVFdb2bq1GJuttQ+jPJYoinz66Ze8+eaHTJ8+/eQv6AWBQICysjJp9VwSUqS/YJIBJTExEUEQqKysDHYoQdPa2sqmTZvYsmUL6enpzJw5s0sNVzQaDXl5eezZsyckkqxwICDgw4uFKtpoJoIfGuBoBC3jmEk0sexhExt9S1n01Ne0O9pZ8OAslBHhmaSXNXlYvOeHhneiKGJb/l88NYewLv0XthV9s5/wRBRRcYCIr5Ou7J1Rpw1DHhlL2/6VnT7H73TgbaxAZc46vSAlJ+Us3kLFc5fQ+MXzeOqLUSX8MPNZVEgl7qHA5+tYOVcqFQwZkhIWHcXDjSiKFBXVkpZm6tK4utjYKMaNyyYx0cC+fZXs3VtBe3twtv598MEirr32ViZMmMBLL70UlBgqKysRBIHExMSgnF8iOR6pSZxkQJHJZOTl5VFQUEBqauqAuljwer0UFBQcaYQyZ86cbndmz8rKory8nPLycjIyMnon0H4kiQzqqWQPHfuWaymnQaxlArOQCwqUgopRTMEuNrKPLWzxrUT1pIbz753FggdmsvjR7/C6Qm+/4Im8tLoB/4/u33gbyvA2lBF3/h/wWEpp3rII48xf90mJq8dSQuue5Yie9iOPBVyttJduR64zIovoXgdpQZChzZ+Ms2hzp89xHlwDoog2f8opxy3pGk9dEaLXhatsB/KoWHRDzjzyNWkFPfg6Vs7LUSrlDB06sP7e9qXaWht+v0hKSkyXXyOTyUhJicNsNlBWZmHr1iKSk2NJS4tD0Uc3t1pb23jiib8zf/55LFnyeZ+c86cCgQAFBQXk5+dL709JSJHejZIBJyWloxFJVVVVkCPpG6IoUl5ezvLly7HZbEybNo2RI0ee0tg0uVzO0KFD2b9/Py5X/+k43lsihWimcC7TOA8zybhx0UYzjdQd9TyDEMcopuLCSYW3iC+fXI3X7eP8B2ah1ITPfdT9dS6WH/qhZNK67D/Uv3cvglKNJm0EMrUWmVp7THIu+r34mhsJuJ0dc60bK2j47Emq/30drqoDpxRLy/YvqH3jdpwH1+JpKDvyj7+9Gf3Ei0m67l8o9J2Xg3ZGkz4Kv6Meb+OxVThiwE/Lji+JyJmAXBt9SnFLukYUA+gGT0dQqlGnDCXl968dNTZPWkEPLr/fz549FcjlMik570Uej5fSUgvZ2Qmn9DNWqRTk5SUxenQmzc1Otmwpoq7O1idVco8++iwWSyPPP/9Cr5+rM1VVVQiCcOS6UCIJFeFz5SeR9BCZTEZubi4FBQWkpPTvkjur1cru3bvxeDyMGDHiSIn/6UhMTKS6uppdu3YxYcIEqdnPScgEGWoiyBaH4cOLiHhUqfthOiGKWDEBC9WkeXL58vFVnHf/DObfP5Mlf/kOnzt05ol35sWVDRy+rBMDflq2LUadPITYs29GHmkk0N6CLOLoPgeuqgM0ff7MMV3PZZpIZGodDYseI+X61xAUXS/5F8UAtlVvoDAkkPh/f0Om7LnRQhGZo5HpDDRvXUTs2TcfedzX3Ejj4qfwNlYSe/YtPXY+ybFEUaT+3XtAkGGccQ3WpS/Tlj8F3aCpPzynH3+uhzq/P8CePRXIZAJDh6b167+xwSSKIgUFtRiNOuLiOu8f0xWRkRGMHJlBY2MzxcX11NT8P3t3HR7XeSV+/HtnNKQRMzOTLbJlSbZMgSZNk1LSlLbttt0mu5uUtpgUNltusmVIu2m7/RXTbtNwYmbZAouZmRmG7++PsRW7ZlvSjGbez/PosTxw75nRwD33Pe95p0hMDMfX99LvqtUwMTHJL37xW77zne+QlJR07TusgfOj5ykpKeI1Kjgd8YoU3FJ0dDSyLDM4OOjoUNbE8vIylZWVnDx5kvDwcPbs2UNERMSqJdPZ2dlMTU257PO3FvSSN3nSDvKlMnyky5ci+hPEHPbRC4vJyktfPwzA3V/YiYfauUcEK3qXKO+5YBk+SQIkNJFpqIKiAbCZl7HMjDL4i48x+coPkG1Wpl77EQqtF8Fve5ygt3yWgDv/nZAH/ovIh35N8Nsfx7Y4c8NLokmSgoDbH8IyNcjQLx/CPD28ao9T8lDjU3AfCw0HMI33AGCZn2Dsr/+JZW6M0Ae/hiYybdX2J1xqsX4fxoEmjP0NzJ75Gx4BkUzt+xnW5bmV28hK536/uCqr1UZDg70ZZlZWDEqlOMxcK2Njs8zNLZGcvDpzpyVJIjjYl8LCJAIDvamr66W5eQCj0bwq27/Q9LS9T0lubu6qb/t6DQ4OIsuyGD0XnJL45BTc0oVz0V2p4ZnFYqG1tZUDBw4gSRJ79uwhNTUV5SofrGo0GjZt2kRdXZ0odV9FWjyxYcWC/YDIYrTy4tcOofRQctfny1CqFBjlZbrlZubkKQdHe7EfHBlf+d3QW8fgzz8CyHDB+8tn6zvwK3032uhMFupeZ7njDJKHGqVvCJqoDPTp2/HedAe6uM0o1FpUQbEodD5X7Zp+JV6Zuwj/0I+QlCqGf/0I04eewbKwOs+Zd/6bUQVEMfr7zzF9+NcM/c+/YluaIeQdX0Ibk7Mq+xAuzzTWxdS+n+GVczuRH3sGhVqHZWoQ29IMsyf+sHI7WSSG6+58ci7LMtnZIjlfSyaTmY6OEZKTI1CpVrcYVqlUEBsbwpYt9pHtM2c66OkZw2pdndVvjEYj3/zmD9Dr9Q5L0GVZprW1VYyeC05LvCoFtxUdHY3NZnOJUeDz1QAHDx5kZGSE4uJi8vPz0el0177zTYqIiCAkJIS6ujqXOsnhSF74IaGghTfW2jYbLLzwxEFUWg92f3YLVerDdNJIFUedJkk/2DZP/ZD9RI1stTB14GmUWm90iVvQRGWuPBaVXxi+2+4n8M5/x8M/nOWeGvSZu1huO8XADx60j6pf8FqSJAlNRCrGoRtP0AHUwXGEvfc7eOe9mfmaVxn82T8z+coPWO6pQbbefPM9hUpL6Lu/iTZ2M3On/4KHVwDh//wT0bl9jZkn+xn942OoAqPx3/svePiGEPbe76A697wvNh5eef2IEfT1ZbXaaGzsx2aznRs5F8//WrmwtD04eO3W7T6/LF5OTixTU/NUVHQwNjZ7S9/3Z8/Ws2PHvbz44j6efvppAgKuv7HdahoYGECWZaKjox2yf0G4FpGgC27r/Fz01tbWDZ1gzszMcPz4cerr60lLS2PHjh3r9qWXnZ3N5OSkS5zkcAZ6yZtstjLGIOXso09uxyAvMbTcx+NffQybp5mvfuU/2aO/Dz3etHDW0SFjk2V+fPSNNb/nTv8V80Qfnpk7We48w/jf/ou+b7+Fsb98FVl+YwRGG52NcbAZhfaNxl4Lda+z3Flx0fY1URkYB5uxmW6uUkPp6Yt/2T8R9fCv8Ct5kOWeGsb+9BjDv/r3W0rSlVovgu/7HJEf+x9C3/MtlNob6wgv3LjpQ8+g0OoJeeAJFCp7k0uFWkfQmz8J2JsNnidG0NeP2Wyhrq4Xq9VGdnbsunUBd1fj43OrWtp+Lb6+nuTmJhAXF0Jn5wi1tT3Mzy9f+47Y53n/9a8vsn//UaanZ3jwwX/By8uXyspK3v3ud69x5JdnP8Eh5p4Lzk28MgW3FhMTg9Vq3ZAJptFopKamhuPHjxMYGMiePXuIiYlZ16Zt50vd6+vrRan7KgmRIsmnDD3etFPHcV6mlpNYlm08/+WDKOfVvPsb95EdlM8c0yzLiw6N98WGOTon3lhDd6njNJ5ppeji80DpgYd/BCBjHGkH6xuN7jz8IzCPdTF98H/QJRfh4Wc/2LTOjWEcbmP68K+xGZfwTC1FNhtY7jh9S3EqNHp8t91P5Mf+h5B3fhXzZP8lJwNuhodvKErd2o1iuRvz9DCG/oaLLrMuzzFz/Hcsd1bgW/LuS55vdXAcYe9/itB3f3Pl80+MoK8Pg8FETU0PKpWSnByRnK81k8lCe/vwmpS2X40kSYSF+VFYmISPjyc1Nd20tg5iMl39JOeHP/wJPvzhT/DYY9/glVcOMDY2wfPPP092dvY6RX6pwcFBrFarGD0XnJro4i64tQs7ukdGRm6IjuQ2m42uri5aW1sJDg5m165d6PX6a99xjURERDA4OEhdXR2FhYUb4jl0dn5SEH4EYZQNzDKJDj1e+CKZJV759lHKPlrIx775QYae6KK29yQp8iYCpBtbMmxU7seKlQgp7qbjNFtlfnps4qLLPHxDsc5NoA6KIfD2f2Xyle8D2Nc+P9eJXbZZUXrZqzwktQ595i4klRbzSAeeqSXMnvoz81UvYB7vIfgdX0ITmc5C48GL1rm+WZIkoUvIRx2ewkLta3imbLvlbQqrY+zZr7DcVQmAX9kHUAfHsVC/n6WOcpBlfLc9cMXXgCY85eILxAj6mltYMFBf30tgoDfJybe+QohwdbIs094+tOal7Vfj4aEkISGU8HB/OjtHOHOmndjYYCIjAy4ZjZ6ZmeXvf3+VgoICqqurOX78NJmZGURGRjokdhBzz4WNQ7w6BbcXExOD2WxmaGjI0aFclSzLjIyMcPDgQfr7+9myZQtbtmxxaHJ+Xk5ODpOTk07/HG40GklLiBSJt+T3xsigTebwz87Q+HoH3/j6N8jITKeao9TKJ1mS569ru7IsU89pmqhkTL756pFnz84wPHfxCIomIg3jSDs2sxGQ8b/tY3gX3Is+bfvKbWaO/i+TLz2FKjgOXUIBE899g4m/fxNdYgFKvT9eObcBsNxVyezxP+CVcxuGriomXv4+xsGWVZmSos8oY7m35qZL54XVZxzpQBUYjc+2+5k58mvG/vIVzJP9+O/4J6Ie/g1+O96HJF3fYYsocV9bMzOL1NR0ExERIJLzdTI+Psfs7BJJSetT2n41Op2arKwYMjOjGR2dobKyk8nJ+Ys+m48fP43NZuMzn/kMNpuNqqpagoKCHRg1DA0NYbVaiYmJcWgcgnAtYgRdcHtKpZKUlBRaW1tXdSmy1TQ/P09DQwMzMzOkpaURGxvrVGd/NRoNOTk51NXVERgYiFa7eutOC5dX+Ww9i1NL/Mfjn+YvP3iB507+mVO8TrScRBypqKU3/gZG2cAS89iwoUKNxBuv8UG6CeHGRzSWTDZ+eXIS8+QAc1Uv4JmyDV3cZtSh8WA1M/7c1zF0VaGNzyf0/q9edF+F1r5mr3m85431zyUF489/h9AHv44qOB6lTzDWuXFmT/6BsA/+EP89H2Hu9P+xWL8Pj4BIfPLfglfuXTf9ftXG5YL1FxgHGtEl5N/UNoTVpQlLYrmrEuVwEJrIdHxL34M2dtNN/Y1FifvaGR+fpaVliKSkMMLD/R0djls4X9qekhKOWu08h+7+/l7k5ycyPDxNS8sg3t46EhPD0Os1HDp0guTkpJURc5tNRqPROCzW86PnycnJTnX8JAiX4zzvckFwoJiYGNra2hgeHiYiIsLR4awwmUy0trbS09NDXFwc+fn5qNVqR4d1WZGRkQwNDYlS93XUfKCTpRkDb//Umwn3j+D5l56nhxb66SBQDgUk5pnGyOVHieNJY4Cum9r3/6uYYmrJylJ7OQtnX2Lh7EsEv+1xNFHpABi6qvDwDcXQXc1yfwPaiFSMA80s1L2ObLPg4ReGZWYEZBmFpx8h7/wK4399gpHffoqID/+M0Hd9jYkXn0Sh0qHU6PEpuBfvvDdj6K1joX4fU/t+is20hG/RO28qflVgNCg9ME8PoUMk6M7AZ9sDyDYrkocKQ389U6/9iOC3fhF1SDwAS+2nUXoHoglLuua2xAj62hgYmKSnZ4yMjCgCA70dHY5buLi03dfR4VxCkiQiIgIIDvalt3eM6upOwsP9OXPmLHv33sbo6OjK7UJCbmwq1moaHh7GbDaL0XNhQxAJuiBgH0U/39E9PNzx5Xo2m43e3l5aWlrw9fWlrKwMHx/nb0SVk5PDwYMHGRoacug8M3fSWzXI37+8nzc/tgvvQD1HfnuaUbmfUQZQoiScOLzxwwsfFChZZI5RBvHECxVqzJiQZfmGXvMzy1b+98w0ALLZgNIrAFVQLNMHf0nEh3+C0jcU28IUltlRFDofxn7/OYLu/RzmyX4Wmw7bN6JQok0owMM7iIXaV1EFRhH81i8w8ttPYRrtQhuVTvj7nrxov5JCiS4+F118LmNmo71p2E0m6LJpCawWFBrHTxER7LRR6WgfeAIA8+Qg43//BiP/79ME3/t5lD7BjP/tawBoojPxyty9MhXicsQI+uqSZZnu7lFGRmbIyYnFx8fT0SG5jfOl7QUF1z4x5UgqlZKkpHDCw/1pbOzlM5/5PF5eXoyMjKBUKjEYjA47Lrhw9FwsAShsBOIUsyCcExsbi8lkYnh42KFxjI+Pc+TIETo7O8nNzWXbtm0bIjmHi0vdjUajo8NxG6Ptk/z186+RXBLHXY/uIlaVQoG0k1xpO0lSFqFSFHrJB52kJ0gKJ1MqIF5KQ4293NCM6eo7+AfPnJpkwWhfMk3pHYh1cQb/3f+MZXaU+aoX8Ct5ENlqRp99G/rMPQBYpgbxKbgXdXiyfSM2K+axLrRxmwHo/+/7Gfntp+xXGReuGYNlZhhVQNQNxX2h5W77EnXq6xiNFdaXabyHsb9+BfPUIB7+kUzt/xmzx3+Hh28Iftvfi7GvfqWZ3JWIEfTVY7PZaGkZZHx8js2b40Vyvo7e6NruXKXtV6PXa2ltreOHP/whnp6e+Pv7k5eXy/DwqMNGr4eHhzGZTMTGxjpk/4Jwo8Q3mCCco1QqSUpKoq2tzSHroi8uLnLmzBnOnDlDVFQUu3fvJiwszOGj+TcqMjKSoKAg6urqHB2KW5kZmucvn3uVgGg/3vyFnah0qmveR4d99HiEPmyy9Rq3thudN/On6pmV/yu03iDbUHoFokssZProb9HGbkIbu4nF+n0sd5SjTchHm1CIQuNJ2PueIvCuT4BShSokHm1UJt6F9+GVczt+ZR8k+O2Po0souGYcSn0Altmx64r5H9mMS0wf/CXa+Hx7qbvgFEyjXUy8/H1G/veTWKaH8fANxWZaxjIzwlLbSTzTd+Cz9e0oPH1XluW7EpGgrw6LxUpDQx9LS0Zyc+Px9HTcHGJ34+yl7Vdz+PAJJAn27t3L0NAQn/jEJ/nUpz7F7bffvu6xiNFzYSMS32CCcIG4uDgMBgMjIyPrtk+z2UxTUxOHDh1CrVazZ8+eDd/EJCcnh4mJiQ25vvxGtjRj4G+PvY4sy9z/7Tvxj7p65YUXvgQTQRu1HOMl2uRaTLK98kGWZQzyEtPyOGPyECNyPzPyJD86MIjR8sYJLIVaB4Cxv8G+VrnVzELDQUIe+C9CH/wGmohUDL11jPz2k8yWP4skSXhl7yHmU/9H6Du/ytTBXzJf8RwLta9inR/HM2nrdZ2U8sq5DUNvDQt1r9/w8zR9+FfYDAsE3vGvG+4EmCubPvIbFuv3IVvsFR225TmsM8MrybgqMBrTaBe2pVl0idc4iaNQIIu/7S1ZXDRQXd0FSGzaFIdafe2TfsLqcaau7TequbmdwsItKJVKGhsbeeihhwgI8Ke5uZmmpibMZvO6xTIyMoLRaBSj58KGsjHqZQRhnVw4F32tR69lWaa/v5+mpib0ej2lpaX4+fmt2f7W0/lS99raWvz9RZff9WQ2WHjxa4fZ+mAO7/zWnRz44Sk6y/sve1tJkthEMQvyLMP0MkAXg3TjJfuyyBwWLj2IOvvvtfjv+SieqSVgtbDcYy8VN02+sY+Futfw3XY/2phstDHZ+O/9F+ZO/ZmZI7/BwycEfUbZyntL6fnGyNBS+2kCbvvYdT1OfUYZhr56Jl//KargeDTnS+evYbmnhoWaVwi4/WE8fB3XsEi4lGVmCEmtQzYZ8Np0h/21ZVpCl1DAfPULePiGwrnXjaS8drIoKxVIluurDBEuNj4+S2vrEJGRAcTFhYgTWevMYDA5Zdf26yHLMr29/SQmJgL275nZ2VlKS7eTkZFBfX09fX19ZGRkEB0dvebHWWL0XNiINta7XhDWQWxsLO3t7YyOjhIWFrYm+5iamqK+vh6j0Uh2drbTLu92KyIjIxkfH6eyshKFhwKbxebokNyGbJMp/10to+2T7H2kmNCUIE79vxpk2+WnbnhJviSTQ6ycSi+tGFkmiHC88METbzxQoURJz21ZjPYeZOLv30QTnYVlahDr4jR+Oz+AzbC4sj3r7BjGwSa0UZkAKHXe+O36EJb5CaYOPI0u0V7uDhCw96P4bHkbSy1HUYUk3NDjDNj7L5jGuhj785fwyr0L7013XDPpnjv9V9ThqXhtftMN7UtYe6qAKCzTw2hisgm889/sU41sVlAo8c5/Mx7+EcgWIwqdDyO//xy+2+7Hr+TBK25PVipBJOg3RJZlurpGGR6eJi0tkqCgjdH/xJXYbDaamgYIDvbZcKXtAOPjkywtLRMfb1994Vvf+haPPfYYcXFxAJSWljI0NERjYyPd3d1kZ2cTEBCwJrGMjIxgMBhW9i0IG8XGraEVhDXi4eFBUlISLS0tqz4XfXl5maqqKk6ePElYWBi7d+8mMjLS5ZLz87Kzs7HZbBS/P9fRobil7jMDPPuZV4nNj+QtX96N1ufq80fVkoZkKYcsaSvxUhrBUgR6yRuNpKUtdJKR9pcJuvuTBL/tcWSLEV3yViI+/FN8t74Dr013gMI+QqH0CmTuzN+QZRs20zKz5X9hat9PUer9sC3NslD72kX79fAJwmfL29Cdaxh3vSQPFSHv+DKeKdtYOPsSw7/5OMs9NVhmR5na/3NG//wlpvb9DNNEHwCWuQkMvbV4bbrDZd9zG5l3wb0AaMJTAPvIm6T0QJIkVAH2z0mFSkvgnf+OOiSO2eO/wzTee8XtiXnoN8ZkslBX18vU1AJ5eQkiOXeQrq5RZFkmKWltBgjWWlNTKwDJyfaqpsDAwIsSZEmSiIyMZPfu3YSGhnLy5EmqqqpYXl5e1TjOj54nJSWJ0XNhw5FkR3TDEhxubm4OX19fZmdnN0yH8PVktVo5cOAAaWlpq9J11Gq10tHRQXt7O2FhYWRmZqLT6VYhUue3uLjIS39/mYM/LqfzVJ+jw3FLKq0Hu/9tG2EpQbzy7aOMdUze0P1NXjqOLv4BbBZ8t78Xv+J3Xf52Y12Yp4fBZmXi+e+gic7EMj2EzbBgX/d83r5f3y1vw7f4gVt+XBeyLs8x/tw3MPbVA/bmdZqodEyj3ViXpon8yM+Zr32N+aoXiHr4Nysj+O5Ko5T59hb76PJnzigxWh1/wkKWZQw9NWgiUkG2sdBwEO+8u5EUlx5c24xLDP3q37EZFgh951fRRKZdcpu4nz6Lan7xkstd1bNT37jp+87NLdHU1I+PjyepqREioXGQ8fFZ2tqGyMtLRKdTOzqcm/Lxjz/G0aOn6ezsuq4TocvLyzQ2NjIyMkJKSgqJiYmr8vrr6+ujpaWFPXv2iNfzFYhcwHmJEndBuAylUklmZib19fWEh4ejUt1ccxxZlhkeHqaxsRGVSsW2bdsIDAxc5Widm16v58APT7Hn37cx0TPN7PC8o0NyO2aDhde+e4zNb0nnrU/cxrH/qaRpf8d13394Vw48/1sUGj0LZ1/Gd+vbLzsHWB2SgPp8mbosM1f5HLrELfhue6d9/vAaUup8CH3gvzD01mIzLNjL6NU6LAtTDP74/RgHW1g4+wpeObe7fXLurCRJQhdvr7aZPvQMc2f+D6XeD336jktuq9B4EvGB7zP658eZfPUHhH/gB0jKiw9pxAj69RkenqKjY4S4uBCiogJFdYmDLC0ZaW0dIi0tcsMm52azmeeff41/+ZePXffrSKfTUVBQwOTkJPX19fT29pKZmUl4ePhNvxbPN9/Nzs4WybmwIYlvL0G4goiICPR6Pe3t7Td1/9nZWU6ePEldXR0pKSmUlZW5XXJ+XtfpfpoPdPKm/9iBUi2+LB2l5vlmXvzaIYreu5ldD29Fqbr2V8BcVhLGtDSUXgFIah3WhSkMvddeQk+fUUb4+/+bwDv/bc2T8/MkhRJdfB769B0r3eWVej9QeDDxwnewGRfxzr9nXWIRbp7NbGCx5TgA04d/jc24dNnbKbReBN7x75gn+lhqPXHJ9SJBvzqbzUZr6yDd3WNkZcUSHR0kknMHsVptNDX1Ex7uv6GnFnR39zE9PcNtt912w/cNDAykrKyMlJQU6urqOHnyJLOzszcVR3t7O15eXkRERNzU/QXB0cS3lyBcgSRJZGdn09XVxeLi9ZdJGo1GamtrOXr0KH5+fuzZs4fY2Fi3P/A5+b/VmI0Wdnz42mtcC2tnsGGUP3/qZQJj/Xnb127HK/DKo8kWvY7xXYVIkoTPlrdhnZ8AJJReG6czvyQp0GfuQh2eTMj9/4nKb2PO63R1NrMB6+IMsiwzX/k81sUpQt75VWyGeab2/+yK91OHJqAOTWSpvfyS62QxcnZFBoOJmppuFheN5Ocn4u+vd3RIbq2jYxilUkF8/PqczFwr/v5+AExPT9/U/SVJIjY2lj179uDn58exY8eora3FaDRe9zYWFxfp6uoiKyvL7Y+7hI1LlLgLwlX4+fkRFRVFY2MjW7ZsueptbTYb3d3dtLS0EBQUxK5du/Dy8lqnSJ2fzSrz2neP8cBTdzHUNEbr4W5Hh+S2FiaX+L8vvs6ODxfywFN3ceinp+m6zFJsY7dvw6azN5bzzr8HdXgKSq+ADZfkBt31qKNDEK5iqb2ciRe+i2w2nFtmbRldyjZ0CfkE3P4wky8+aa+MyNh52fvrkouYO/M3bGYjCtUFjRDFCPpljY/P0dY2RHCwD0lJYSgU4nlypJGRGSYn58nPT0Sh2NgJZXBwICEhwdTW1vL2t7/9prejUqnIzMwkNjaWxsZG9u/fT1paGvHx8dd8vTY2NhIVFeUyy9YK7kl8KgvCNaSlpTE+Ps74+PgVbzM6OsqhQ4fo7e2lsLCQrVu3iuT8MhYml9j33yco++gWAmI23vIxrsRmsXH4Z6c5+osKdj9cxN5HilF7vjGvfD49nsXkNxokSgol2qiMDZecC87NujTLxItPoY3NIegtn8G36J2EvPOrBN/zHwDo00oBMA62XHEb+owyZIuJufK/XHS5GEG/mMVipaVlgLa2IZKTw0lJiRDJuYMtLBhobx8mLS0Kjebmet04m8zMFGpra1dlW15eXmzdupXCwkJ6e3s5dOgQo6OjV7z9+WO19PT0Vdm/IDiK+GQWhGvQarWkpqbS0NCAzXbxWt7z8/OUl5dTVVVFfHw8O3fuJCTk6uswu7u+mmFqXmjmTf+xA5VWFPE4WvvxXv7w8RfR+Wp58HtvJio7DIunlrE9Wx0dmuDiZNnG1Os/ASDwTY+iT9+B77b70SXkI3nYm2SZp4cB+yj5laj8I/Dd+nZmy5/FNNb1xvbFCPqK6ekFKis7MZmsFBQkEhIiTpA6msVipampn+joQAICXOeEfkpKIu3tbau6zZCQEHbu3El8fDxVVVWUl5czP39xw1mbzUZ9fT2pqaloNFdfUlQQnJ349hKE65CQkIDVaqW3177mrtlspqGhgcOHD+Pp6cnevXtJSEgQoxHXqeJP9SxMLbHr4SsfdAvrZ3FqmReeOEjVXxu46/NlFH7hDpRe4gBHWFuW6WGWWk/gmVKMzbSMbLNiGutirvLvTLz4JIstxzEN2ddUVgfHXXVbvsXvQhUYxcQLTyJbTIAYQQd787GOjmEaG/uJiQkiOzvGZUZqNzJZlmlrG0KjUREbG+zocFaVyWRek+0qFAoSEhLYu3cvnp6eHD58mIaGBsxm+/56e3ux2WwkJCSsyf4FYT2J4StBuA4KhYKsrCzOnj2L1Wqlvb0dHx8fysrKxNqRN0G2ybz+1Ane9dRdZN2RTMNrN9cpX1hdDa+10zKn4I6HCvm00srvOpT0LW7sOZGC8/Lwj0CbkM9iw34WG/a/cYVShco/nMXGQ2hjNyF5qJl6/ScEv/ULV9yW5KEi6J5PM/ybTzD2f1/DK3sPRnkZd259Nje3TEvLACqVkvz8BHQ6cdLNWQwNTTM7u0R+fqJLNTKTZZlDh07wpjfdvWb7UKvV5OTkEBcXR319Pfv37yc5OZm2tjby8vLEQMkNkGXZ0SEIVyASdEG4TkqlEqvVSmtrK3l5eYSFhbnUF+t6W5418NqTx7nn8d2MdUwy1jnl6JDcnlWroSt3M60NSnZHyPx7ppUDQwpeH5SwyeK1LqwuSZIIecdXsM5PYp7oxWZaRqnzQROZhuShZuLl77PccRqv3LuYr3weWbYhSVc++FYHxxF4x78y+coPMHRXMSV5sFkuJkByr2lHNptMX984/f0TxMYGi+XTnMz8/DJdXSNkZ8eiVrvWYXhHRzc9PX3cdddda74vHx8fiouLGRkZobq6GlmWxZrnN2hiYsLRIQhX4FqfDMINE2fPrm1paYnGxkZGR0eJi4uju7sbvV4vDnhWwVDTGBV/ruPO/9jBnz71MsZFk6NDcmvje7Zg9bKvH75/SKJ5RuJ9yVYy/eG37UrGDOI1L6wuSZLw8AnCwyfokuv8Sh9kqeUo8xXPoYnMuGpyfp5X9l48U7Yhm02MP/3vjJoHCMB9EvTFRSMtLQPIskxubjxe597PgnMwm+3zzmNjQ/Dzc736jr///VX0ej27d+9el/1JkoRer8dmsxEfH8/p06cJDQ0lMzMTT88rLyEq2I//29tF9aKzEnUgbm5yctLRITgti8VCc3MzBw8eRKlUsnfvXrKysoiLi6OhoUGc3Fgl1c81Mdk3w20fL0ba4EvMbGQLiVHMZyZedNngksR365S0z0l8OsdKWZgNCfG6F9aHh08I4R/6MUH3fo6Qd375uu+n0OhRevmDJOE2nygSDAxMUl3diZ+fnry8BJGcOxlZlmlpGUCv1xIdHejocNbE3/72Evfee++6JceyLNPQ0EBcXBxZWVns3bsXpVLJwYMHaW5uxmKxrEscG9HExAQLCwuODkO4ApGguzlx9uxSsizT39/PgQMHGB8fp6SkhLy8PLRaLQCpqanMzs5edakP4QbIsP/7J/EJ86b0g/mOjsYtWTVqxm7fdtnrLLLE871Kft6sZEe4jU9kW4nRiyRdWB8qvzD0aaUoNDc22ijLNkymWfS4frfykKRA3vmtOxkcnCQ7O5bERLG2ubORZZmOjhEMBjOpqZEuWYHX1NRGU1Mb73rXu9Ztn6Ojo8zOzpKamgrYV93Jy8ujpKSE8fFxDhw4QH9/vxhQuYzW1lbi4+MdHYZwBeIT3M3Nzc2JOSgXmJ6e5tixYzQ1NZGZmcn27dvx9/e/6DZqtZq0tLTLLrsm3BzjookXnjhIcmksOW9OdXQ4bmdiVyFW76snQJ3zEt+sVdI0LfHvmVbuT7Di6SEOegRnJeGh0rPInKMDWTNabw27HtrKW//rNnoqBykoSHLJsmlXMDg4xfj4LNnZMahUrjlP+rXXDuHl5cUdd9yxLvuzWq00NDSQlpaGWq2+6Dp/f3+2b99OZmYmTU1NHDt2jOnp6XWJayOYmJhgdnaWuLg4R4ciXIFI0N1cfHw8ra2tjg7D4QwGA9XV1Zw4cYLg4GD27NlDVFTUFc9yx8bGolAo6Orquuz1wo2bH1vkxa8fpujdm4nfEuXocNzGYlwEcznJ13Vbs03i1QEl36xV4quCxzZbKQ4RZe+C85EkiYDgzQzTg0k2ODqcVSUpJDJvT+a9P34Lnn46/vDoi1T8uR6lWPfdKU1MzNHdPUZWVixarfrad9igyssr2bat6JJkea10d3ejVCqJjY297PWSJBEVFcWePXsIDg7mxIkTVFdXYzC41ufBzWhtbSUxMRGVSiy56KzEp7mbi4uLY2Zmxm3nolutVtra2ti/fz9Wq5Xdu3eTnp6Oh8fV+ycqFAqys7NpbW0VH/araKx9kv3fP8ltHy8hJNk15+g5E5vag7E7i2/4fpNGiV+0Kvldh4I9kTY+mW0lxksk6YJzCYkqwYqVCVxnOlJosr2cPe+tGez7/kle+sZh5kbFPFJnNTe3RHPzIOnpkfj4uG5PAFmWOXPmLCUlpeuyP4PBQGtrK1lZWdeczuHh4UF6ejq7d+/GarWyf/9+2trasFqt6xKrs5mcnGRmZkasF+/kRILu5tRqNQkJCW43ii7LMsPDwxw8eJChoSGKioooLCy8ocYmwcHBBAcH09LSsoaRup+u0/2c/n0tb/7CTrxDRLnmWhrfWYjFx+um7984o+AbNUoaphX8W4aVBxKs6EXZu+AkJLX23G8b/zWp9daw6+Gt3Peft9FdMcDvH3mB3qpBR4clXMXysomGhj7i40MICvJxdDhramZmlpmZWTIzM9dlf83NzSvHYNfL09OTwsJCioqKGBoa4uDBgwwPD7vd/PSWlhYSEhLWrdJBuDkiQRdITExkenqaqSn3WId6bm6OkydPUlNTQ3JyMmVlZQQFXbrEz/XIzMxkYGCAmZmZ1Q3SzdW+2EL78V7ueWwXGr34ElkLSzFhzG1KueXtWGSJ1wYUfLNWiZcKvphrpSRUlL0LTsBDgydeTG7gEXRJIZF1h72cXeej5fePvkDFn+uxmkX/E2dmNltpaOglJMSXqCjXrwYbGrK/x0JDQ9d8XzMzMwwODt70yYCgoCDKyspITk6mpqaGkydPMjfnur0qLnR+9DwxMfHaNxYcSiToAmq1mvj4eJcfCTaZTNTW1nLkyBF8fX3Zu3cvcXFxt9RNVa/Xk5CQQH19vdudhV1rx39VxezwAm/67A4UHuKjajXZVB6M3lkCq9hJeMoo8T+tSv5fu4JdETY+lW0lTpS9C47koSSKRMYYwCgvOzqaGxaWGsQ7v30nm+/N4PXvneDlbx5hfmzR0WEJ12Cz2Whs7EOn05CYGObocNZcZ2cPTzzxJAEBAWzatGlN9yXLMvX19SQkJKDX33yFnSRJxMXFsXfvXnx9fTly5Ai1tbWYTKZVjNb5tLa2itHzDUIc9QoAJCUlMTU15ZKj6Dabja6uLvbv38/y8jK7du0iKytr1ZpjJCcns7S0RF9f36psT7CTbTKvPXUMtU7F7oeLHB2OS5nYkYfFz3tNtt00o+CbNUrqphQ8nGHlw6lWIjxFoi6sP1mpJJxYJBRUcoQ5eWN0cQ6M8+Ouz5fxli/voau8nz88+gJ91UOODku4DrIs09o6hM1mIz39yo1mXcHQ0AgPPvgvFBTcRnl5NT/+8Y/x8VnbUv6+vj6WlpZITr6+xqbXolKpyMrKYufOnSwvL7N//366urpccoWe88f4YvR8YxAJugC47lz0sbExDh8+THd3N/n5+RQVFeHldfNzbi9HpVKxadMmGhoaWF7eeKM0zsxitPLi1w4RkRnClgdyHB2OS1iODGE2L31N92GRJV4fVPDEWSWTBvhElpV/SrYSohWJurB+ZKUClaQmiSzMGGmi0tEhXZV/lA93fKqUd3zzTuZGFvjtQ3+n8i8Nopx9A+ntHWd2domsrBiX76r/pS99i+rqBp555hlGRkbWfP3z5eVlGhoa2LRp06p3H/f29qaoqIj8/Hy6u7s5fPgwY2Njq7oPRxOj5xvL1VtVC24lMTGRffv2MT09fcna3xvNwsICjY2NTE5OkpqaSnx8/DU7fd6KsLAwwsPDqampoaioyKXPmq+3pRkDL/7XId7+jTuYG1ug5ZBY2u5m2TyUjL5pdUvbr2beLPG3XiUHh2Vuj7TxmU1Wzk5IvDqgYNIo3iPC2pKV9vWmY6RkFuV5ZnHO1Up8wrzYcn82ScWxNB/s5P89/HcWp8TJ3o1mZGSagYFJcnPjUatde/mq5WUDzz33Ct/5znf44Ac/uOb7k2WZmpoawsPDCQtbu2kDoaGhBAcH093dTUVFBUFBQWRmZq76wM56m5qaYnJykry8PEeHIlwn1z69J9wQjUaz4ddFN5vNNDY2cujQIbRaLXv27CExMXFNk/PzsrKymJ2dpb+/f8335W6m+md55VtHKfvoFiKz174JjauaLM3FHOC77vudNUk8263k6zVKZODzm63cn2DFTy1G1IU1dMEIppFltDjXMldeQZ7semgr7/7em7HZZH73yAscebpCJOcb0PT0Au3tw2RmRqPXa699hw2ura0Tq9XKtm3b1mV/fX19zM3NkZWVteb7UigUJCYmsnfvXrRaLYcOHaKxsRGz2bzm+14rbW1txMfHo9FoHB2KcJ1Egi5cJCkpiYmJCaanN8ZcvfNkWaa3t5cDBw4wMzPDjh072LRp07p+GKnVajZv3kx9fb0odV8DA/UjHHn6DG/6zA78o9Y/ydzoDOFBzBRkODSGKaPE7zuVfLtWiVZp7/j+tjgr3iqRqAurT74gQVfigQWLA6N5g6eflu3/XMB7f/QWVFoP/vjJlzn4o3LRAG6DWlw00NjYT3JyBP7+G3uk9Xrp9fYlaXt7e9d8XxeWtq9nebZGo2HTpk3s2LGDmZkZDhw4QG9v74ZrCDw9Pc3ExARJSUmODkW4ASJBFy5yfhS9ra3N0aFct8nJSY4cOUJbWxs5OTkUFxfj6+uYBC4sLIywsDBqa2s33If4RtByqIu6l1q55/FdePq5/ijFapramg3rUElyPcYMEv/bruS/65X4a+DxXCv3xFjxFGuoC6tIM/JGSbsWHUYce+JU662h+P25vO+n9+EV5Mmzn3mV1//7BDND7rHEkysymczU1/cRFRVIWJifo8NZN0lJ8ZSWbuVHP/rhmu5nvUrbr8bX15fi4mJycnJoa2vjyJEjTE4653SZy2ltbRWj5xuQcxytCU4lMTGR8fFxp1/be2lpicrKSk6dOkVERAS7d+8mIiLC4fO/s7OzmZmZEaXua+TMH+sYahzjLV/ag9ZbNDu5Xv5nGsDJThoNLdmXZvtho5IIT/hKnpW3x1kJFs3khFXg3dz9xu/4s8wiXXITVnl9R9J9w73Z8eEC3v/z+wiI8eNvj73OK986ymTfzLrGIawus9lCXV0vfn6exMYGOzqcdffQQx/k+PETHDhwYM320d/fz+zs7LqUtl+NJEkXHWeeOnWKyspKlpaWHBrXtczMzDAxMSE6t29AIkEXLqHVaomLi3PauegWi4WWlhYOHjyIQqFgz549pKSkoDzXEMjRzpe6i67ua+fgj08xOzLPW768F41eJOnXQzc0jndDp6PDuKz+RYmft9gTdU8P+NwmKx9JtZLiYwNEsi7cOM3oJOrpN0amQ4kijBi6aaacfSzJC2seQ1R2GHd/YSfv/v6bUevVPPf4Pl78r0OMdbrecqbu5nxyrtNpSEmJdPjAgCPceecu9HpPjh8/vibbX15epr6+ns2bNztN53GlUklKSgp79uxBoVBw8OBBWlpasFicY/rMP2ptbSUuLg6tVlQcbjQiQRcuKykpifHxcWZnZx0dygpZlhkYGODgwYOMjY1RXFxMXl4eOp1zNf4Be6l7aGioKHVfIzarzGtPHWdhYpG3fHkPak/X7pi7WoKOVKIwmBwdxhX1L0r8tkPJV6uVDC7BP6XY+OwmK0UhNlQK8T4Srp/XBaPnYB8Bs2BGRsaChTpOrclns1KtJH1PIg9+727u+FQpE93T/O+/PMf+758UibmLsFis1NX1otGoSE+PQqFwv+QcoKqqlsXFJcrKylZ927IsU1tbuzJt0NnodDry8vIoLi5mdHSUgwcPMjAw4FTHezMzM4yPj4u55xuUSNCFy9JqtcTGxjrNKPrMzAzHjx+nsbGR9PR0tm/fTkBAgKPDuipR6r62bBYbr373GMuzyyJJv04eSwYCTtQ4OoxrmjNLvNyv5CvVSo4MK9gZbuMreVbuirbiIxrKCdfBu6XnkssM5+agx5LMArNM88Y6x1bZwpx8881R9f46tj64iQ88/VY235NGzQst/Pqjf+P0H2pZnBaVVK7ifHKuVnuQkeG+ybnBYOR733ua6Ohotm/fvurb7+/vZ2Zmhuzs7FXf9moKCAhgx44dpKen09DQwPHjx51memhrayuxsbFi9HyDEuugC1eUlJTEgQMHmJ2ddVjTNYPBQHNzM4ODgyQmJpKcnIyHx8Z42arVajZt2sTZs2cJDg52ypH+jc5msfHKt49y1+fKuOfx3Tz/1QOYDc5ZauYs/KqbmctJxhTs7+hQrslskygfs/+k+MrsDJf5cp6Vs5MSh4cVDCy658GxcHXaoXFUc5eWsPvgj4yNKBIZpo8WzhIqRzHPLDNMYMFMmpxLlHT98zVDEgPYdE86ScUx9NcO89pTxxmoG1nNhyM4ifPJuUqlJDMzel2Wb11vRqORmZk5pqZmmJ6eISQkiKSk+JXrZVnmlVcO8pWvfJve3gF+9atfrfr0wvNd2/Py8pymtP1qJEkiOjqa8PBw2tvbOX78OJGRkaSnpzssOZ6dnWV8fJy9e/c6ZP/CrZNkZ6rHENbN3Nwcvr6+zM7O4uPjc8Xb1dXVYTAY2LJlyzpGB1arla6uLtra2ggODiYzMxO9Xr+uMayWqqoqzGYzW7dudct5agC3Kd65pttXqpXc/fkyPNQevPDEQZGkX8NSdBiDD97p6DBuSohWZnu4ja3BMgOLcHJUQd2UhMnmnu+tm6VRynx7ixWAz5xRYrS6zvMXdOAM/lVNV73NvDxDBw3MMYU3flixMMsUcaSRJF29IZVK60H81miy7kgmKM7/3OoSLcwMza/mw7hhz059w6H7d2VWq5W6uj6USomsrBiXSs5HR8f5+Mcf4/TpaqanZy65PiMjlbe+9U2UlGzlO9/5EYcOnWDPnj1873vfW/XmbbIsc/r0aVQqFfn5+au67fWyuLhIY2Mj4+PjpKSkkJCQsO49ks6cOYNOp7tmBcL15gLC+hMJupu63jfl8vIy+/fvp6ysbF3evLIsMzIyQmNjI0qlkqysLIKDN3Z3VJPJxMGDB8nMzCQ6OtrR4TjEWifoAB5qJXd/cScKpYIXnjiIxWhd831uZMP3lLGQHn/tGzopnVKmKERma4iNAA3UTklUjku0zUrIuE6yuVZcNkG32Yj/2bN4LFy7rNwmW5lnBhmZsxzHjyA2UYxCujT5khQSUdmhpJYlkFAUzfz4Is0HOmk+0Ilx0Tn6OogEfW1YrTbq63uRJHtyrlS6TnIO8NGPfoqDB0/wyCOPEBsbS2BgIAEBAfj7+9Pa2sqzzz7L888/z8LCAtHR0fz0pz/lrrvuWpMBh76+Ppqamti9e/eGGD2/mvHxcRoaGrBarWRmZhIWFrYugzRzc3McPXqUPXv2XLNyUyTozmtj1AoLDqPT6YiNjaWlpWXNR9Hn5uZoaGhgdnaW9PR0YmNjXWLE+R9L3cV8oLVhMVl56euHueex3dz9hZ289LXDWEwiSb+S4EMVLCZGIas35tz9ZavEoWH7T6QnbAm28b4kG1agalyiYkLB8NLG//wQboxucOy6kvMleZ4GzjCHfd65F75ks/WS5Dwwxo/UXQmkbI9DUki0H+vh/774OhPdNz9fXdg4rFYbDQ19AC6XnMuyzF//+iLPPvs8v/jFL/jwhz98yW3S09O57777WF5epry8nLy8vDWb8ni+tD03N3fDJ+cAwcHBlJWV0dvbS01NDb6+vmRlZa15Itzc3ExMTIyYVrnBiRF0N3UjZ80MBgMHDhxgy5YtazKabTKZaGlpobe3l7i4OFJTU13iw/kfVVVVYbFY2LJli0uceLgR6zGCfp5K68E9j+/GYrLw0tcPYzXb1m3fG83UliwmdxY4OoxVo0Am1U+mMFgmO0BmbBkqxxVUTUjMmd3rPXctrjqCHvz6Kfxqrt3ctEtuoosmksnBC198CcRDso9ZePrrSNkeR+rOePwifOg+3U/LkW76a4aRbc57yCRG0FfX+eRclmWys2OcZinX1fDSS/v45jd/SENDM3fffRd///vzDn18rlDafjUmk4nW1lZ6enqIjY0lLS1tTY5zx8fHOXPmDHv37kWj0Vzz9mIE3Xm5zqlAYc1otVpSU1NpaGjAZlu9ZMdms9HV1cX+/ftZXFxk586dZGdnu2RyDvau7tPT0wwMDDg6FJdmNlh44YmDqLQq7vpcGQoP8TF3Jf6VTagmnWcpxVtlQ6J5RsH/tit5rFLJ0WEFGf4yX8mz8rF0K/lBNtRiuTbXZbPh1dZ7XTeVkVGhJoZkAqVQtFoNKTviuOfx3fzT028lNj+C2hdaeOaDf+X1/z5BX/WQUyfnwuqy2Ww0NvZjs9nOjZy7TnJ+8OAx3vvehwkNjeDw4cO8+OJLDn98AwMDG6Jr+81Sq9VkZ2ezc+dOFhcX2b9/P11dXat+TN3Q0EBqaup1JeeCcxMl7sJ1SUhIoKenh97eXuLjb33e6tjY2ErCn5+fT2ho6CpE6dxEqfv6MRssPP+fB7n3y7u567M7ePlbR7FZxEj6P5JsNoIPnGbo/tsdHcqqM1olTo9LnB4HP7VMQZDMbZE2HkiAlhmJxmmJphmJeTGy7jJ0fSN4LBmu67Z+BDHtN0xifiSphUlEbwpnfnyR1iPdHPpJOQuTS2screCszifnFouVnJxYPDxcJzkH+O53f0pxcTH79u1zimo+g8FAfX29y5S2X423tzdFRUWMjo7S0NBAT08P2dnZq1Kd2tvbi9VqJSEhYRUiFRxNJOjCdVEoFGRlZXH27FkiIyNv+kN0cXGRhoYGJiYmSE1NJSEhwaW6oV5LeHg4g4OD1NbWumWp+3oyL5vtSfpX9nLnp7fz6nePiST9MvQ9Q+jbellMiXV0KGtmxiSxf8j+E+kJmf4yxaE23pUIA4vYk/VpBf2LiAZzG5h3c/fVbyBBSGIgcQWRxOZHEBTvz0D7EMNVk1T8qZ6JHjGv3N3ZbDaamgYwm10zOf/2t3/IqVMV/OEPf3CK4w9ZlqmtrSU0NJTw8HBHh7MuJEkiLCyMkJAQurq6OHPmDEFBQWRlZd30akXnp4rm5ua61TG1KxMJunDdQkND8fPzo7W19YbLkMxmM21tbXR3dxMVFXXd82NcUU5ODgcPHmRgYMBtu7qvF9OSmee/eoB7v7qXOz5VymvfPYbNKspU/1HwwQqW4iORVa7+lSAxuASDSxKvDyrQe8hk+Mlk+MuUhVux2KD53Oh6y6zkMvOy3YLVetnydpVORczmcOLyI4nJi8BDraTv7BB1L7XyfNWzGOZMbJKKHRCw4GxsNpnm5gGMRjM5OXEul5zLssxPfvJrHnroIR544AFHhwPYS9unp6fZvXu3o0NZdwqFgqSkJKKjo2lububQoUMkJCSQnJyMSnVjzVtbW1vx8/Nzi2pUd+HqR2PCKpIkiczMTI4cOUJcXBze3t7XvI8sy/T399PU1ISXlxelpaX4+fmtfbBO7Hype3V1Nf7+/nh5eTk6JJdmXDTx/Ff3c+9X9nLX53fy6neOiiXY/oFqbgH/0/VMleY6OpR1tWiRqJiQqJgAhSQT7w2Zfjbuirbx/mTomj9XCj8tMWYAxOi60/LsGUJptC935hfhszJKHpERyszQHL1Vg7z25DFGWsZXTtKpZE+GGUSWZacYTRQcx2q10tQ0gMlkIScnFpXKtZJzgMnJKWZn55ymem9hYYG6ujry8/NdvrT9ajQaDZs3byYuLo6GhgYOHDhARkYG0dHR1/V3mpubo6enh507dzrF31VYHaKLu5u6lc6N9fX1LCwsUFRUdNUPg6mpKerr6zEajWRlZREeHi4+PC7Q0NDA+Pg4O3bscHiDlrW2nl3cr0TtaW8ap9J68MJ/HcIwZ3R0SE7FplTS+8/3YfG79ok3dxCgkcn0t4+wJ/vKLFmgZ16i+9zPwCJY5I37eeYqXdw9JJkoPeQMdBLnryAsNRiNXs1gwwg9lYP0VA0yP7aIRbYwRDf+BOMt+QHQJ7fTQQO7uM8lvptEF/ebYzJZaGjoRalUkpkZ7XIj5+fJsszdd7+H2dlFampqbniUdjVZLBaOHTtGSEgImZmZDovD2ciyzNDQEI2NjWg0GrKzswkICLjq7U+dOoW3t/dNNdgTXdydlxhBF25YamoqBw4cYHR0lLCwsEuuX15epqmpieHhYZKTk0lKSnL5BPRmZGRkcOLECerq6sjNda+RS0cwLdnnpN/2aDHv+MYdPP/EQeZGFhwdltNQWK0EHzzD8Nv2ODoUpzBllDg2InFsBFQKmWg9xHnLJPjI7Im0oVNC/yJ0z0sribtYym3t+ahk4r3tP3He9r/LsgXGlj0YaR6j5vlmxjqnsJourpIZZ4g2alHiwQ75zSglD+aYxhNvl0jOhZuzvGyivr4XLy8taWmRLj1/V5IkvvnNL7Jz51v56U9/yiOPPOKwWOrr6/Hw8CA9Pd1hMTgjSZKIjIwkLCyMjo4OTp48SXh4OBkZGZdd13x0dJTZ2VkKClxnuVTBTiTowg1Tq9WkpaXR0NBASEjIyhea1Wqlo6OD9vZ2wsPD2bNnz2U/UAQ7hUJBQUEBhw8fpq+vj5iYGEeH5PJsFhuvPXWc0g/k845v3MELTxxivGvK0WE5Da+Ofjw7B1hKjHJ0KE7FbJPomreXvNvJBGpYSRTviLIR7gnTxnMJ+4I9YR9aAtsGHmV3NIUkE+Fpf57jvOzPtb8Ghpbs1QzHRxR0z0sY6vuIeO7wVbdlw56wW7GwxAJa2ZNxhogheR0eieCM5ueXqa/vJSTEj8TEULc4UZOTk8n7338/X/rSl3jwwQdXpXv4jert7WVkZISdO3e69AmRW6FUKklNTSUmJoampiYOHDhwyYDX+WXV1mpNdcGxRIIu3JTY2Fi6u7vp6uoiMTHxopKc4uLiq5bkCG/Q6XTk5+dz5swZ/Pz8RInRepDh+K+qWJhc4q1P7OXV7xyjr2bY0VE5jeCDp+mLDUd20TLP1SExaYRJo0TlhP0SjVIm1uvcPHZ/mbujbagVMG6A0WWJ0WX7vyPLEmPLYLK5fjJwvdQKmRAdhOlkQnUyoToI1ckEa8FkY+WEx+lxid6FS5v3hV2rezv2dc8BJCTUaBmmDxtWokhck8ckOLepqQWamvqJjQ0mOjrI0eGsq8ce+wR///srfP7zn+eXv/zluu57dnaW+vp6tmzZIgZwrsP5Y8TzU0Z7e3vJzMwkIiKCrq4ulEolsbGuuwKLOxMJunBTFAoF2dnZnD59mqGhIZaWlm6oqYXwhpCQEJKSkqioqGDHjh0OnRfmTmqeb2ZpZpk3fbaMwz87TeuRax/kuwP19Dx+FY1Mb8txdCgbitEq0TYr0TZr/7+EfbQ37IKEM8nHRqgn6D1gyngucV+CkWVpJYlftLju56fe443nIkwnE+pp/z1AA4tmGF22Pxdd8xLlY/aTGdPGqy99J5nM6Dv7r7pfm2xFhX2ESYWaKo4QRQIyMh7iMMjtjIzM0N4+REpKBKGhfo4OZ90FBQXyhS98gs9+9j/5yEc+wtatW9dlv2azmYqKCpKSkggJCVmXfbqKgIAAduzYQX9/P/X19XR2djI3N8fWrVtFFYKLEt9Mwk0xGo0MDg5itVqxWq3s2bNHJJa3IDU1lampKWpra8nPzxcnOdZJ29EelmYMvOkzO9AH6Kj+W5OjQ3IKAadqmc9MwOIjVhi4WTISU0b7XPammYuv8VZx0UhxbqBMqM6GnwYWLTBngjmTxJz53O9m6dy/MH/u92UrOEdXeRmdEnzU4K2S8VWDt8o+V9xHDT4q8FHbf9d72KcBnD8ZUT8lsW9ZwegSLFjgZh6PvrMfheXSVRnm5RnaqMWEkUXm8ECNAiUSEsss0Ec7AEss4I3frT0FwoZgX1Vmgr6+CbKyYvD3d9/Ptw996EF++9tn+dd//VdOnz695n2CZFmmpqYGT09PUlNT13RfrkqSJGJiYggPD+f48eNYrVYGBwfx8fFx22WLXZlI0IUbYrPZ6OrqorW1leDgYIqLizl9+jSLi4tuv3zarZAkifz8fA4fPkx3dzcJCQmODsltDNSN8LfH93HP47vRB3hy/FdVyDb3XtxCYbESdKiSkXt3OjoUFyQxfy7R7pi7+BqN0l7WfT659T6X3MZr5YsSXrXSXvo9fy5pnzNJGKxgtoHFBmYZLDYJs42Vnzcut///wnOAyT4yIOOhAJWE/d8LfjwU8kWX6zzsybiPCrzVoFaAycrFJxTM9kS8Y+78yQaJ8WUwrnJpv3dzz2UvH6aXacYJJoIoEjFjQoFEGLHMMEEDpwHwQJxYdgeyLNPRMcLExBybN8fh5eXe5dVKpZLvfOfL3HnnAzzzzDN85CMfWdP9dXd3MzU1JZYCWwWLi4ssLi5SXFxMV1cX+/fvJzU1lYSEBDGa7kJEgi5cF1mWGR0dpaGhAYVCwZYtW1aaiyQkJNDQ0EBJSYn44L0FGo2GgoICTp06hb+/P/7+/o4OyW1MdE/zl8+9ylu+tIc7AnTs+94JrGabo8NyKO/WHmZ7h1iOjXB0KG7DaLUv33b1kWQZjfL8yPS5ZF4FWg9QSfYkW6cED5VsT66l80m2vRv9+f+rLxgwe0usDZMVLLK9Id75JN7+/zeS+mULzMkShsXzSfgbI/tGB4zoKwwmPLsHLnudD/Y+KMFEECHFXXRdGNGoZQ0mjOgk/VqHKTiYzWajuXmQxUUDmzfHo9OJhloAW7fmsXt3Kf/3f39d0wR9enqapqYmtm3bJkZ6b5Esy9TX15OQkEBwcDDBwcGMj49TX19PT08P2dnZhIaGOjpMYRWIBF24pvn5eRoaGpieniY9PZ3Y2NiLztIlJydz4MABhoaGiIyMdGCkG19gYCCpqalUVFSwc+dO0ZlzHc2PLfLXz7/Gm7+4k7d8eQ8vff0wpiWzo8NyqOD9p+n7wL2gFGflnYeE0QrjVnsDuptNii9cB/3J+o25Drq+ow+F9fIn0kKJYopRmqlCL/vgK13cuDRAEnNg3YHZbKWxsQ+bTSY3Nx6VShz2XqiwMJdf/vL3yLK8JgMsJpOJiooKUlNTCQwMXPXtu5uhoSEWFxcpKipauSw4OJidO3fS29tLVVUV/v7+ZGVl4e3t7cBIhVsljrqEKzKZTNTX13P48GH0ej179+4lPj7+khIalUpFRkYGjY2NWK2XzgUUbkxSUhK+vr5UV1cjy+5dar3eDPNGnvvyfkxLZt7+9dvRB3o6OiSH0kzO4lfd7OgwBOGyvK/SvV2SJNLIwxs/GjiNRXbvk23uyGg0U1PTjVKpYNOmOJGcX0ZycgKTk5PMzc1d+8Y3SJZlqqur8fX1JSkpadW3724sFguNjY1kZGRc0vNJoVAQHx/P3r170ev1HD58mPr6ekwmk4OiFW6VSNCFS8iyTHd3NwcOHGB+fp6ysjJycnKuOpobHR2NRqOho6NjHSN1TZIkkZuby/z8vHg+HcBitPLyN48w0jbJO755BwHRvo4OyaECTtSgXFhydBiCcBHFkgHP3qGr30ZSkMVWjBjopHGdIhOcweKigbNnu/Dx0ZGVFYNSVAFdVn//IGq1ek2q9To6Opifnyc3N1dMf1wFnZ2daDQaoqOjr3gbtVpNTk4OZWVlzM/Pc+DAAXp6esRgzwYkPrGEi4yPj3P48GE6OzvJzc1l27Zt17U2tyRJZGdn097ezvLy8jpE6trUajUFBQW0trYyMTHh6HDcjmyTOfSTcpoPdPL2b9xB/JYoR4fkMEqTmaDDlY4OQxAu4tXei3QdzRw9JS8SyaSfDmblqXWITHC0iYk5zp7tJizMn5SUCJEcXsVf//oS73jHO1Z9TfKJiQlaW1spLCwUU/VWwfLyMu3t7WRnZ1/X69nHx4dt27aRm5tLR0cHhw8fZnx8fB0iFVaLSNAFwN4V8syZM5w5c4aoqCh27dpFWFjYDX2xBQQEEB4eTlOTWKpqNfj7+5OZmUllZSUGg8HR4bilM3+s4+BPyrnt4yVsfXATksI9D/R8mrrQ9o86OgxBWHGl7u2XE00SnnjTTJUYSXJh9uq/UVpaBklNjSAuLkQk51cxMzNLY2MLt91226pu12AwUFlZSWZmpljdZ5U0NjYSHh5OQEDAtW98jiRJhIWFsWvXLqKiolaO8RcXF9cwUmG1iATdzVksFpqamjh06BAqlYo9e/aQnJx802tiZmRkMDw8zNSUGKlYDXFxcQQFBVFVJQ4sHaXzZB9/+eyrJJXE8uYv7kLj5Z6jASH7y8Hm3p3tBeegXFhG1z9y3bdXSAp06DGyjIx4Dbsis9lCfX0f4+Nz5ObGExzs3lOTrsd//ueT6HQ6br/99lXbpizLVFVVERQURFxc3Kpt151NTk4yMjJCRkbGTd1fqVSSnJzMnj17UKlUHDp0iObmZiwWyypHKqwmkaC7uUOHDjE5OUlpaSm5ublotdpb2p5OpyM5OZn6+nqRUK4CSZLYtGkTBoOBlpYWR4fjtqb6Z3n2M69gNVt54Lt3ERTvfkvgacan8a1pdXQYgoBXWw/SDX6/KFCgxweFdHMnnwXnNT+/THV1FwqFRF5eAnr9rR3HuIM//OH/+NWv/sB3v/tdIiJWbynNlpYWDAYDmzZtEtULq+D8smrJycm3PA1Bq9WSm5tLaWkpExMTHDhwgIGByy9TKTieSNDdXEZGBqWlpatahpSUlITRaKS/v3/VtunOVCoVhYWFdHZ2MjY25uhw3JZpyczL3zpC47523va120ndGe/okNZd4LGzBOjds4JAcB5X695+IatsYVQe4Ix8EBmZGSaYksVnqCsZGZmhpqaH8HB/MjOj8fAQJ2Cuxmaz8bnPPcHDD3+WD3zgA3zsYx9btW2Pjo7S2dlJYWHhJV3GhZvT19eH2Wxe1S74fn5+lJaWkpmZSWurOOnurESC7uYiIyNX/SynUqkkMzOTpqYmzGaxtM1q8PHxIScnh6qqKpaWREdth5Gh6q+NvPKto2z/UAE7PlqIwsN9PkaVRhP/cUeqo8MQ3JjH3CLawetLshs4Qz3lzDHFNGPo8KKXtjWOUFgPNpuN9vYhOjtHyMyMJiYmWIzYXoPFYuFf//VzPP30b/nxj3/MM888s2rP2dLSEtXV1eTk5FxXY2Hh2sxmM83NzWRmZt70tNMrkSSJqKgoysrKVnW7wupxnyNLYV1FRETg4+NDY6NY2ma1xMTEEBERQXl5uTjx4WD9tcP86VMvE5YSzFufuA19wOp2wHVmDxREsylKzO8UHMOrtZvrSSmW5AXGGSKVzRRzJ1as6PFmkhEW5fk1j1NYO0ajmdraHubmlsnPTyAgwMvRITk9s9nMRz/6KZ599nl+97vf8fDDD69acm42mykvLyciIoKYmJhV2aYADQ0N+Pj4EB4evmb78PDwWLNtC7dGJOjCmpAkic2bNzM4OCjKsldRdnY2Op2OiooKbKJhl0PNjy/y1y+8xszgHPd/9y4iMkIcHdK6UCgkvnpvFmKwSnCE6+3ePs8MAL4E4il54Yk3KtSo0NBPx9oFKKypmZlFqqo60ek0bN4cj1Yrptxcj1/96g88//xrPPvsszz44IOrtl2bzUZFRQU6nY7s7OxV2667GxsbY2hoiM2bN4vKEDclEnRhzXh6epKZmUlNTY0Y8V0lCoWCgoICjEYjdXV1ohGfg1lNVg786BRn/lTHPY/vJufN7lH+vTnaj3fmu+/a8IJjeMzMox2ZuK7bBhGGDi9qOI5RNhBIKNOME0kcI/SJz84NRpZlBgYmqa/vJS4uhNTUCJRKcQh7PWw2G08//Vve8Y538Na3vnXVtivLMrW1tRiNRgoKClAoxN9jNZjNZs6ePUtmZiaenp6ODkdwEPFuEtZUbGwsXl5eotR9FalUKoqKihgdHaW9vd3R4QhA42vtPPfl/eTdl8ltHy/BQ+P6jYo+e2cavjrRCEhYP14dN9Z4VIsOE0YWmSOUKAwsYcaEBTNGltcoSmG1Wa02WloG6e+fYNOmOCIiAsSo4g3Yt+8InZ09PPLII6u63fb2dsbGxigqKhJN4VZRY2Mj3t7exMbGOjoUwYFEgi6sKVHqvjZ0Oh1FRUW0t7eLZTKcxGjbBH/61Mt4BXryjm/eiW+Ya8+LDPTS8MnbUhwdhuBG9NdI0JfkBc7Kxzguv8xh/s404ySTQ4AUgp8UhC+BDGLvAL/M4nqELNyi5WUjZ892YTSayc9PxMdHjCjeiLq6Rh5++LPs2LGdbdu2rdp2BwYGaG9vp6io6JaX/xLeMDY2xuDgoChtF0SCLqw9Ueq+Nnx9fSkoKKCmpobJyUlHhyMAy7MG/v6V/fTXDnP/d+8ipcy1l2J7b1Es6eGiY6+wdozD7cye/BMsLKAbGLnqbTuoZ55ZQok+1xzuDmKlN04iJZAOgD/B+OC/pnELt0aWZUZHZ6iq6sLf34tNm+JQq0VDqxtRXV3Hvfe+n8TERJ577u+rlvBNTExQU1NDYWEhvr6iYehqMZvN1NTUiNJ2ARAJurBOYmNj0ev1otR9lYWGhpKVlcXp06eZnxediZ2BzSpz4tfV7Pv+SUo/kMed/7EdrbfG0WGtCaVC4j/vzXR0GIILm3j+28wc+y3jf3wMrJdvjLkkL3BSfo0xBkkii2QpmygpEU/J+6LbBUph7OZt5LEDpSSSPWdlNltoahqgs3OEtLRIEhPDxGjiTfjIRz5FSkoq+/btx99/dU5Izc/Pc+bMGbKysggJcY/GqOulsbERLy8vUdouACC+oYR1IUkSubm5HDp0iIiICPHBvori4uJYXFykvLycHTt2oNE4XzK4z/aso0NwCKPRSG1tLZm7Uti8eTNhYWGODumW3aZ45yWXed+9nfnMRAdEI7gym2EBy8wICk8/liY7sJGF8jKHLd20YGCJNPII5+oHtwpJjEs4s8nJeVpbh/D11VFQkCRGzW+SwWCkq6uHL37x8VUb5TYajZSXlxMXF0dcXNyqbFOwO1/avmvXLnEySgDECLqwjjw9PcnIyBCl7msgIyMDPz8/Tp8+jdVqdXQ4wjkajYbCwkIyMjKoqqpy2dd+0OFKFEaTo8MQXIyk1qH0Cca2NINe8r3iqHcokcjYaOUsFRyiRT7LtDy+ztEKt8JisdLaOkhz8wCJiaFkZESL5PwqZFm+6koEr756EIDU1NVZWcRqtXL69Gn8/f1JT09flW0KdqK0XbgckaAL6youLg69Xk9TU5OjQ3EpkiSRl5eHJElUV1eLJYSciCRJxMTEsGvXLhYXFzl8+LDL9QzwWFwm4GSto8MQXIykUOJX+m4ADPKVm7oFSeGU8CbSyEWHJxMMc5ZjzMnT6xWqcAvOr21uMJgpKEgkNNRPjCJehcVi4W1v+yClpfdQXV130XULC4v88pe/49FHv8jb3/52iouLb3l/sixTVVW1Ugkp/jarq7GxEb1eL0rbhYuI05PCujrf1f3QoUOEh4eLUvdVpFQq2bJlC8eOHaOpqYnMTDE32Jl4enpSXFxMV1cXp06dIj4+nrS0NJRK11iSza+qibnsZExBfo4ORXAhnmnbWTjwGwKNfgDYZBtWLKgk9cptrLKVJRaYZZpJRtHiiQIltZxki7wHjaR1UPTC1dhsNrq7xxgamiI+PpTISLF82vVoa+vi8OETANx22zu5557bsVisTE5O0dTUxuLiEu94xzv4+c9/virPZ1NTE3Nzc2zfvt1lvq+cxdjYGAMDA+zevVu89oWLiBF0Yd3p9XrR1X2NaDQaioqK6Ovro7u729HhCP9AkiQSExMpKytjYmKCI0eOMDs76+iwVoVkkwnef9rRYQguRqHSsEV7D+nkIcsytZzkOC8zIY9gk61Uyoc5xN+o5ijTjBFBHAaWsGHFyDL1lIuKIic0P79MVVUXs7OL5OcnEhUVKBKU6zQ2Zp++0draylNPPUVf3wgWi4KUlEweffTjdHd388c//nFV5p53d3fT19dHUVGRU/a32chEabtwNWIEXXCIuLg4hoaGaGpqYtOmTY4Ox6V4eXmxZcsWTp06haenJ6GhoY4OSfgH3t7ebN++nba2No4dO0ZKSgpJSUkoFBv7nKln3zBeLT0spMU5OhTBRajHp9HMLYEkMSB3MskIPvhTw3FUqDFjIpXN+BCAD/5IkkSoHE0t9hHGGSZYYgE93tfYk7AeZFmmr2+Cvr5xoqODiIkJRqEQifmN6O8fAiAqKopHH32URx99dE32MzIyQmNjI8XFxXh5ea3JPtxZU1MTer1eNNwTLksk6IJDXFjqHhERQXBwsKNDcimBgYHk5uZSWVlJSUkJfn5+jg5J+AcKhYK0tDRCQ0Oprq5mZGSEvLy8DX8gFPrqcfSd/SykxrIUF4nsIUoihZun7+wHwCAv0UYdkSSQRi5D9GBgCT3ehEkxF93HVwqgVL6bWSaZZwYtYnTKGSwtGWlpGcRqtbJ5czze3jpHh7Qh/exnv6GsrGxNR11nZmaorKwkNzeXgICANduPuxobG6O/v190bReuSCTogsPo9XoyMjI4e/Ysu3btQqVSOToklxIZGcnS0hLl5eWUlZWh04mDIWfk7+/Pzp07aWpq4vDhw2RmZhIXF7dhv7QVJgs+jZ34NHZiU3uwmBDNQkosiwmRyGrxHhdujL7DnqDPMIkNK4lkIkkSkcRf9X4KSYE/wfgjTv46mizLDA1N09U1Sni4H/HxoSiVG7tayJH6+wf5p3/60Jptf3l5mfLyclJTU4mMjFyz/birC0vb9Xq9o8MRnJRI0AWHio+PZ3h4WJS6r5GkpKSVNdJLS0vFSRAnpVQqyc7OJiwsjLNnzzI8PExOTs6GH01XmCx4t3Tj3dKNzUPJUnykPVlPisamUV97A4JbUy4sox2yz7c1YUCBEhXidbORLC8baW8fZmnJRFZWNP7+G/szzRlERoYzMDCwJts2m82cOnWK8PBwkpKS1mQf7k6UtgvXQ5zCFBzqfKl7f38/4+Ni3drVJkkSOTk5aLVaKioqsNlsjg5JuIrg4GB27dqFXq/n8OHDNDc3Y7FYHB3WqlBYrHi19xH20jESfvhHIv6yD5+6NhRLBkeHJjgpfVc/5+tIlllEi27DVpa4G6vVRnf3KJWVneh0agoKEkVyvkoiI8Pp7+9f9e3abDYqKirQ6XRkZ2eL99oaGB8fp7+/n82bN4vnV7gqkaALDne+1L2mpsZlkhFnolAoKCgowGQyiSR9A1CpVGzatInS0lLGx8c5ePAgw8PDLtWJWrLZ0HcNEvrqSRJ+/Cci//gqvtXNKBeWHB2a4ETOl7cDTDOOL4EOjEa4HrIsMzExR0VFB9PTi2zeHE9ycgQeohfFLZmYmOTpp/+XO+54gCNHTjI9Pb2q2z+fnJtMJgoKCjZ8w1JnZDabOXv2LBkZGaK0XbgmUeIuOIX4+HiGhoZobGwUpe5rQKVSUVxczMmTJ6msrBRfwBuAn58f27dvp6+vj5qaGvz8/MjOzt7wZe//SJJlPPtG8OwbIXj/aQyRISykxLKQEovF17Ueq3D9JLMFz56hlf+r0TLJCF1yM5HEoZFETw1ns7RkpKNjhIWFZRISQgkN9ROjhDeho6Ob6uq6le/oF154jZde2o8kSbzpTW/ihz/8CHffffeq7c9ms1FZWcny8jLFxcViKtwaOV/aHh9/9f4ZggAiQRechCRJ5Obmiq7ua0itVlNcXMyJEyeorq4mLy9PJOlOTpIkYmNjCQ8Pp7m5mcOHD5OQkEBKSgoeHq738S0BusExdINjBB+qwBAWuJKsmwNufU1fYePw7B1GYbGu/D+NXHpooYcWumnCVw4kkFAiiEcjaR0YqWC12ujrG2dgYJKwMH/S06NQqcSI+c2wWq08+OC/0NHRvXJZUlIS3//+93nggQcICgpa1f3ZbDaqqqpYXFykpKQEtVr0eFgL50vbRdd24Xq53hGesGFdWOq+a9cul0xAHO3CJP3s2bPk5eWJL4sNQK1Ws2nTJmJjY6mrq2NgYICsrCzCw8Nd+u+nHZlEOzJJ0NFqjEF+LKTGsZASiynY39GhCWtM39G38vuA3EUbNUQQTx7bWWCOSUbooZVBusmVS9FLPg6M1j3Zy9nn6ewcQaPxEEunrYLm5nY6Orp5+eWX2b59O1arFW9v7zU5mS7LMtXV1czPz4vkfA1ZLBZqampEabtwQ0QGJDiV86XuTU1N5OTkODocl6TRaC4ZSXflJM+VnC977+/vp7a2lp6eHpfo9n49NBMzaCZqCDxRg8nfZ2Vk3Ri+uiNKghOQZfSdb3Sp7qYZJR6M0McAnUgoABkVGgwscYrXKZJvx0sk6evGXs4+zMKCQZSzr6Ly8irAvkzqWn6un0/O5+bmKCkpQaPRrNm+3F1jYyM6nU6Utgs3RCToglO5sNQ9JCSEsLAwR4fkkrRaLSUlJZw4cYKamhrRUXQDkSSJmJgYwsLCaGlpcfmy98tRT88RcLqegNP1mH30K8m6ITIExOt4w9OMTOCxuLzyfzMmwogmlCgkFCwwi4TEKAOYsK8CMMEwXogEfa1ZrTZ6e8cZHJwkPNyfjIxo0QBuFZjNZp566md885s/4AMf+ABZWVlrti9Zljl79iwzMzMiOV9jIyMjorRduCnucTQnbCh6vZ7NmzdTXV3Nzp078fT0dHRILkmr1a6MpNfW1rJp0ybxBbKBqNVqcnJyVsreDx486BZl7/9INbeIf2UT/pVNWPQ6FpJjWEiNZTk6DESPhQ3Jq+PiJaQ0aBmihyF62MVbCZBCAIiSE5lnBgUK9CI5X1Pnu7Pby9nV5ObG4+UlytlvhtFopL9/CK1Wy9zcPK+/fohf/vJ3DA4O88QTT/DFL35xzT7DZVmmtraWqakpSkpK0GpF/4a1srS0RHV1NZs3bxal7cINEwm64JSioqKYnJykoqKC7du3i2Zma0Sn01FSUsLx48epq6sjJyfHrZI7V+Dr60tpaSn9/f3U1dXR09NDVlYWPj7ul7B4LC7jV9OKX00rVp2GhaQYFlJiWY4NRxajfBuG/h8S9FRy6aOdKUYxYUCH/WBXkiR8EP0I1triooGOjhEWFw0kJIQRGuorviduUmtrB3ff/R4mJ6dWLtNoNLz73e/m4x//+JpO7ZNlmbq6OiYmJigpKUGnEydY1orVaqWiooLIyEiioqIcHY6wAYkEXXBaWVlZHDt2jIaGBjEffQ2dT9JPnDhBfX092dnZ4uBrgzlf9h4eHk5LSwtHjhwhIiKC1NRUt5iffjnKZSO+9e341rdjVatYTIpmISWWpfhIZJX46nNWHjPzaMYvXuM5SApDI2s5zSgmjCsJurC2lpaM9PaOMzExR3i4P5mZopz9VtTXN/GBDzyCLMO+ffuwWq14eXmRkZGBv//anmiSZZn6+nrGxsYoLS0Vyfkaa2xsRJblNZ2qILg2cZQiOC2lUklhYSGHDx8mMDCQyMhIR4fksjw9PVdG0iVJIisrSyTpG5BKpSI7O5vExETa2to4dOgQUVFRpKamuvVUEaXJjE9TFz5NXdhUHizGR7KQGstSQhQ2jehc7Ez0nf2XvVyNvRT3/JxzYe0YDCZ6e8cZHZ0lNNSXwsIktFrxPrlZsizzs5/9mq985btkZGTw0kuvkpaWtq77b2hoYGRkRCTn62BwcJCBgQHKyspQKsUJLeHmiARdcGp6vZ68vDyqq6vx9fV129HA9fCPSXpmZqZI0jcoT09PNm/eTFJSEq2trRw4cICYmBhSUlLc/uBMYbbg3daLd1svNqWCpbgIFlLiWEyKxqYTzZIc7R/nn5+nxH6ga8WynuG4FaPRTF/fOMPDMwQH+1BYmIhOvCduycDAMJ/4xOPs33+ERx99lG9961vr2pRNlmUaGxsZHh6mpKTErU/UroeFhQVqamrIy8sT886FWyISdMHphYeHExsbS0VFBTt27BBnJNeQXq9fKXeXJImMjAyRpG9gXl5e5Ofnk5ycvJKox8XFkZycLDr3AgqrDa/OAbw6B5AVEksx4SykxLKYHINV794nMhxBYTSh6x+57HWLzAHgifd6huQWTCYLfX0TDA9PERDgTX5+Anq9aB52M7q6eqmoqKG3t4+DB09w+nQVISEhvPzyy7zpTW9a11hkWaapqYnBwUFKSkpEwrjGLBYLFRUVxMXFER4e7uhwhA1OJOjChpCRkcGJEyeoq6sjNzfX0eG4NC8vr5WRdIVCQVpamkjSNzgfHx8KCwuZmZmhpaWFffv2kZCQQFJSEmq1KF0FkGwy+p4h9D1DyK+fwhAVurJ8m8VHHNiuB8/uQSSbfNFlE/IwPbSyyDyA6Na+isxmC/39kwwOTuHn58nmzfF4e4sTUzfDarXygx/8km984/uYzWYCAwMpLi7mN795hHvvvRdfX991jUeWZZqbm+nv76e0tFRUH66D+vp6PDw8SE9Pd3QoggsQCbqwISgUCgoKCjh8+DB9fX3ExMQ4OiSXdj5JPz+Svp7z5YS14+fnR1FREVNTUyuJelJSEgkJCahUKkeH5zQkQDcwim5glKCDZzCGB60k62Z/kSCulX/s3g7QRTNmjPgThD8hKCVRQXWrLBYrAwOTDAxM4u2tY9OmWHx8XKv0WZZlfvSj/+Ho0XLuvHMX//zP71mzfXV19fLQQ5+hsrKGT3/60zz22GN4ezu20qO1tZW+vj5KSkpEcr4Oent7GRkZYefOnWLVIWFViARd2DB0Oh35+fmcOXMGPz8/t1xGaj15e3uvrJMuSRKpqamODklYJQEBARQXFzMxMUFzczNdXV0kJSURHx+Ph4f4WriQBGiHJ9AOTxB0pApjSMBKsm4K8nN0eK7DakPfOXDxRbKVOaZIJodYKcVBgbkOq9XG4OAU/f0TeHpqyMqKwc/PNatDxscn+dKXvkV6ejqf/vRXyMxMo6gof1X3Icsyv/rVH3j88W8SFhbO0aNHKSkpWdV93IzW1la6u7spKSlx+IkCdzA7O0t9fT1btmxx+x4vwuoRR2LChhISEkJSUtLKfHQx6re2fHx8LhpJT0kRB8muJCgoiNLSUsbHx2lubqazs5Pk5GTi4uJEr4cr0IxNoRmbIvD4WUwBvvZkPTUWY2igo0Pb0HSDoyiNposuU0pK/OVgxhkiFuf97LHJNswY0UjOeXBus9kYGpqmr28CrdaD9PQo/P31Lj11aW7OPiXihz/8IXfccQfNzW2rlqD/4Q//x759R6isrKW/f5CPfvSjPPnkk04xUt3W1kZXVxclJSViEGMdmM1mKioqSEpKIiQkxNHhCC5EJOjChpOamsrU1BS1tbXk5+e79EGGM/Dx8aG4uJiTJ09iMplEd3cXI0kSISEhBAcHMzIyQktLC+3t7cTFxREXF4dWK5pFXYl6apaA8joCyusw+3qtjKwbIoJBvEduyOXK2wGiSaKOU0zIw/gSyBSjBBOJQnKeMtJWzjJIN6nyZoKJYIkF/Al2+OekyWRhaGiKoaEp1GoPUlLCCQz0dnhc18NmsyFJ0k3H+rOf/Qa9Xk9WVhaRkRH09Q2uSlwHDhzj4Yc/y7ZtRdx//7u45557KCsrW5Vt34rz3dr7+/spLi4Wyfk6kGWZmpoaPD09RYWhsOpEgi5sOJIkkZ+fz6FDh+ju7iYhIcHRIbk8X19ftm/fzqlTpzAajeTm5op5Vi5GkiTCw8MJCwtjfHyczs5O2tvbiYyMJDExcd2bHG00qtkF/Csa8a9oxOzlyWJKDAspcSxHhYB4r1yTV3vfZS8PJoIAQmilhhAi6aUNHXpi5BQiiEUpOf4wxowZgFZqaKUGgEDCyJK3oJLWvwnjwsIyAwNTjI3N4uenJy1t44yYG41GfvCDX/CLX/yOubl5oqIi+PjHP8J73/vO697GiROn+Z//+R0//OEPCQ0NpahoG6++epAvfelTN/QcWK1WAJRKJbIs86c/PcfnPvdflJWVcejQIad5Pq1WK2fPnmVmZobt27c7xUi+O+ju7mZqaoqdO3c6zWtBcB2SLMvytW8muJq5uTl8fX2ZnZ3dsGdaJycnOXXqFCUlJfj7+zs6HLdgMBgoLy9HpVKxZcsWMcXAxc3Pz9PV1UV/fz/+/v4kJCTwT9GPItvE18b1snhqWUyOYSEllqWYMHCSqQMapcy3t9gTkM+cUWK0Ou4AUz0xTewzf7/i9QvyLOXsA0CJB4GEMcYAGnQkkkk4sQ49QJ6XZzjDAXwJJJxYVKhpopIgwsmStqxLDJJC4ictn2NgYJL5+WVCQ/2IjAxEr98Yyyn29w/x6qsH+d3v/kJzczsf/vCHSU1N5Te/+Q2SZGX//r9c97buu++fMBisnDx5EoVCweuvv84dd9zBq6/+ia1b8656X1mW+e1vn+X551/l9OlqzGYLCQmxKBQKGhtbeN/73sf3v/99pznmMJvNnDlzBovFQlFRkVg+c51MT09z4sQJtm3bRmDgxp3e5Aq5gKty/KlnQbhJgYGBpKamUlFRwc6dO8VyUetAq9VSWlpKRUUFJ06coKioSJRAuzBvb282bdpEeno6vb291NXV8d4fv4Xal1poPtCFedns6BCdnseSAd/aNnxr27Bq1CwmRduT9bgIZJX4CgbQdwxc9XovyZcQOZIxBlGhJkcqYkleoIMGmqikjw5S5BwCJMfMAfWW/IiWkxigi0wK0Ul6LLKZJioJk6MJktZuTWSVTkXGnkRy7k6lo2OYiIgAMjOjUW2A11ZnZw9//OPfePXVQzQ0NOPh4UFZWRnHjj3Dli32ExsBAQG8733v4+TJCoqLC6+5TXvZcQOf+cxnV6q89u7dS1BQEIcOHb9mgv7DH/6SL3/529x2216++MXH0Ol0dHR0MDc3x3/91ze47777bvlxrxaDwcCpU6fQarWUlJSIBp/rxGQyUVFRQWpq6oZOzgXnJkbQ3ZSrnDWTZZkzZ84AsGXLFlFmtE5sNhs1NTVMTk5SVFQkOsW6CZvNxr+WfYbN96QREO1L0/5O6l5uZW50wdGhbTg2lQeLiVEspMSymBCFrF7fahRnGkGP+n8voRsav+pt5uUZKjhILKkkSpkrl8/IE7RTxyxTBBJKOHEEEYaHtL7Pp0U2c4rX8caPzVKJPVHkBAvMUMTtq17q7hPqRc5dqWTsTWSqf5aaF1r42t//BYViY3wHnjpVyQMPfAQPDxV33XUX99xzD3feeeclU2ksFgu7du2krq6OF1/8HdnZV19j+oknnuKpp37K8ePHL+qovn17KeHhgTz99JNXvG9//xCFhbfzb//2b3z3u9+9lYe35ubn5zl16hRBQUFs3rxZTDlbJ7Isc/r0aSRJcoljTlfJBVyRON0mbGiSJJGbm8uRI0fo6OggOTnZ0SG5BYVCQW5uLs3NzRw/fpytW7cSEBDg6LCENaZQKOg40UvHiV5CU4LY9OY03vPDe+ipGqT2xRaGGsccHeKGoTBb8G7pwbulB5uHElOgH7KHEtlDic1DiezhYf9d5bFyuezhce66c7+rLrjdBfe5+H72f52VcnEZ7TWSc7CPUu+U77ukOZyfFESBvIsxBumhlQZOA+Ahq0gll3ApZk3i/kcekooUeRP1lDMhjxAkhZEu53GK12mnjgwKVmU/EZkhbHpzGnH5kXSW9/P3rx5ktG0CYEMk57Is8+c/P88nP/k4W7cW8fzzz191zrSHhwcvv/wKO3fuZNeut5KamsTmzZls2pRFbm4WOTkZaDQaRkfH+f73n+anP/01Tz755CXLnSUlJdPQUHPRZT09fcTGRq8kWd/73s/x9fXly1/+8qo/7tU0NTXF6dOniY2NJT09fcMniRtJR0cH8/PzlJWVieddWFMiQRc2PLVaTUFBASdOnMDf35+goCBHh+QWJEkiIyMDrVbLyZMnKSgoICwszNFhCetktG2C1586jlegJ9l3pXDXZ8uYH1+k9sUW2o71YLPYHB3ihqGwWNGOTq7Z9mW4OMFXKVF5aWHLHQCE/+0QRisXJ/kqJTYPj6ucGLjw5MClJwautzGevnOA6z3MvVLndkmSCCWKUKJYlheZYowpxmjkDMgy4VLsde7h1oQQiTd+DNJNEGFoJU+S5RxaqCZUjiJQurnPR4WHgpTtcWx6cxrewXoa97Xz219WsjC5tMqPYG11dvbwyCNf4OTJCt71rnfxzDPPXNe60d7e3uzfv59nn32WqqoqqqoqefbZFzCbzWg0GtLTk2lsbEWlUvGtb32LT37yk5dsIysriz/96Y8sLi7h6anj05/+Cs8883seeeQjfOUr/8Hi4hJ/+csLPPLIo05dETYyMkJlZSUZGRmiQe46m5iYoLW1lZKSEjGlUlhzIkEXXIK/vz8ZGRlUVlayc+dOMS96HSUkJKDVaqmsrCQ7O5vY2PU5GBacw8LkEqd+W0PFn+tJ3ZlA/tsyKX5/Lq1Humk93M1Ez7SjQ3R7EiBZrGCxcn4sXWUwrFzv2TuMapX7CcgK6aIE3568K5GVFyf5mrGpVd2vTtITSTwRchwS9s7qgXIYaunWm2fNyBMM08ckI1ixEkY0CWSslK9LkkSYHEMHDZhlEypJTSTxjDFAM9UUybfdUOl9UJw/qTvjSS2Lx7BgovbFFloPd2ExWm/5sayG+vpm7rrrQbKzM/jlL58iIuLyJyBkWeY3v/kTX/zi1wkPj+D111/ntttuu6F9+fv789GPfnTl/yaTidraWk6ePEllZSXvf/+H+OAHP4ifn99l73/ffffx6U9/mldeOUB8fAzPPPN73vrWt/KDH/yC4eFRmpraMJnMfOhDH7qhuNZTb28v9fX15OXlERER4ehw3IrBYKCyspLMzEynaRAouDaRoAsuIz4+nqmpKaqqqiguLhblR+soIiICtVrNmTNnMBgMpKSkiOffzViMVhpfa6fx9XaissNI25nA275+O/NjC7Qc7qbtaDeLU8uODlNYJ5JNRmkyg8kxjQQlSSJF3sQ4w7RRS6ZceEufSdPyOFUcQYsnIUQiITFAFyP0kykXrDSC8yUQGRtLzONLIJIkkS7nU84+ajjOJrnkqvPR9QE6UnbEk7YzHu8QL7rK+3n9v08wUD9iL4VwIs8++zxarY7u7n4+97kn+N///fFF18uyzPHjp/nP/3ySysoaPvzhD/Pf//3fq7IMmFqtprCwkMLCazeOA0hMTGTPnj184hOPk5AQS2BgIH/+85/5yU9+wo9//CP0ej2nT58mPj7+lmNbbbIs09raSldX14bvGr4RybJMVVUVQUFBxMXFOTocwU2IBF1wGZIksWnTJo4ePUpraytpaWmODsmtBAUFUVpayqlTp1heXiYnJ0c0rnFHMgzUjTBQN4LqaQ8StkaTujOeovdsZrBhlNYjXXSV92M2WBwdqeDi1JKWNDmXJioxYyJSjscTL/T4XJKsy7KMjHxRGb1FNrPEPB6oaaYaXwIp4I01j2PkZJqpopaTpMq5hBPLML0oUOCN38p2dJKePHk7NZygiiNskovRSfqV61VaDxKKokktSyAyK5TB+hGq/tZE92nnfJ/YbDaOHj3F/v1HyczM5OGHH+aBBx7g5Zf3c9ddewGor2/in//5E7S3d5GXl8ehQ4fYuXOnQ+N+7rnn+Ld/+ze6u7t46qkf4OHhwSOPPMIjjzzi0LiuxmazUVdXx+joKKWlpaKRlwO0tLRgMBhcoimcsHGILu5uypU7N87NzXH06FEKCwsJDQ11dDhuZ3l5mVOnTqHX68nPzxdLv7iY2xTvvKn76f11pOyII7UsAd9wb7pO99NyqIuB+hGxrroDqHQq/uX3DwDw83f/yaWXzBuTB2mkAiv2ZFeNBn+C8cYPGzZMGBhjEBNGlHigwj7CbeCNOd4SElvZi5d0cZdxWZZppYYBOlGhxoKZeNJJkDIuiWNBnqOG41ixEqmIIz+nkMKduSQWxTI7PE/rkS7ajvawOH1zlSbPTn3jpu53JVarFZvNhkplL8ufnJziV7/6A7/97V/o6xsgLS2Nr3/969x3333ce+9bOHPmNKdOvUxf3yD33fdPJCQk8uSTT7Jjxw5xsvYmWCwWqqqqWFxcZNu2bdc1X19YXefn/O/YscPljpXBtXOBjU4k6G7K1d+Ug4OD1NTUUFpaesmyLcLaM5lMnDlzBpvNRlFRkWio4kJuNkG/UGCcH2llCaTsiAOg7WgPLUe6mOyZueVtC9fHnRJ0sCfSZkwsMMMU40wxxiJzKPHAAxWBhOKNH2ZMmDEiA174oMcbEyY88MBPunwDUlmW6aeDOaaJJx29dOUmYz6xeiJ2+pK/IxcZmZNHTjF72MJ03/wtP8bVTNCHhka46653MzExyZYtuVitNiorawCJ+++/n4985CNs27ZtZURxaGiIzMxMSkoKqatrJCwsgn379ovv35tkNBo5ffo0CoWCLVu2iO9QB5iZmeHEiRNs3ryZyMhIR4ezJlw9F9jIRILuptzhTdnW1kZ3dzc7duwQZ54dwGq1UlVVxfz8PNu2bcPT09PRIQmrYDUS9PMkhURUdhipO+NJLIphdmSe1sO3NoooXB93S9AdSe+vI6XM3uzNN8ybzvI+Wg530VTXTKXtENEkkSzl3PJ+VjNBf/Ob30Nf3zAPPfQQJ0+exNPTk02bNvHRj370iiul/O53v+N973sfISEhVFRUEB0dvWrxuJOlpSVOnTqFt7c3+fn5KJXOu0yiq1peXubo0aPEx8eTkpLi6HDWjDvkAhuVqD0VXFZycjJLS0uUl5dTWlq6UqYnrA+lUklhYSF1dXUcPXqUbdu2idEU4SKyTaa/dpj+2mGO/PzMyjzcovfmMtgwSveZfnoqB5kfX3R0qIJwQ7yD9cQVRBK/Jdo+r7xhlLPPNdF1wbxyH/yJJZVeWomX02+ow/taOnHiNCdOnOFPf/oT999//3Xf7z3veQ+33XYber0evV5/7TsIl5idneXUqVNERESQnZ0t5jw7gNlspry8nNDQUJKTkx0djuCmRIIuuCxJksjJyaG8vJzKykq2bt0q5sGts/N/A51Ox/Hjx9myZQvBwcGODktwQmaDhdbD9qXZ9AE6kkvjSNwWQ+mHCpgZmqO3apCeqkFGWsaxWUXhl+BcFEqJsLRg4vIjic2PxC/Ch+HmMXoqBznww5NXXMEgkni6aaaZatLlfDyk6z8sk2WZacbxwX8luW9r6+QXv/h/LC8vEx0dSWRkGFNTM3R19bK0tMzdd+/ljjt2o9Veedm5Rx99jO3bt/O2t73txp4EICQk5IbvI9iNj49z5swZkpOTSU5OFsm5A9hsNiorK9FqteTk5Ii/geAwIkEXXJpCoaCwsJDjx49TV1fHpk2bxAfuOpMkiZSUFLRaLadPnyYtLY3ExETxdxCuaHFqmZrnm6l5vhm1p4roTeHE5Udy56e3o/BQ0Hd2mN6qQXqrhzDMGx0druCmtD4aYnMjiCuIJCY3AqvZSm/VEGf+WEd/7TCmpWtPG9BKnmTKW2ihigpmyZO3o5Gub0rWED00U4WEggA5mPe85yFeeeUAYWFhxMREs3//cUZHR/Hy8iIpKRGQ+MAHHsHX14ddu0p45zvfwpvetOeSz2JPT08SExNFg891IssynZ2dtLS0kJOTQ0xMjKNDckuyLFNXV4fBYKC0tFQM6AgOJT59BZenUqkoKiri6NGjdHR0iJIlB4mJicHb25szZ84wMzPD5s2bxQGgcE2mJTOdp/roPNUHEoQkBRKXH8mmN6ex59+3MdYxSU+lfXR9onva0eEKLi4o3p+4/EjiCiIJSQpkonuanqpBzv69mbHOyZtaqzxcisFH9qOaY5SzD41sT9C1eKJDjyde6NBjw4YWz5Ul3PpoJ4AQgohggiGGhsZ5+umned/73odGYx8hNxqNqNXqlSS8tbWV3//+97zyysu85z0PUVq6lc997hFKSrasxLN37w6eeeYP/OhHPxKl6mvMYrFw9uxZpqamKCkpwd/f39Ehua329nZGR0fZsWOHmBIpOJxoEuem3LExxOzsLMePH3fpjpwbgdFopLKyEqPRyJYtW/Dy8nJ0SMINWM0mcbfK019HbJ59BDN6UzimJfNKKfxA3YhTriHtLESTuOuj0noQlRNGXEEksXmRqD1V9NcM03OugmNpFZsZLsuL9NOBfUV2G8ssscwCyywiX5D56/FGgZJ5Zihg50p3+X22Z697X7Is8/LLL/PFL36B2to6du8u5RvfeIyUlET6+gbYvHk3P/nJT/jYxz62ao9PuNj8/DwVFRVoNBoKCgpWTqoI629gYIDa2lq3W/nHHXOBjUIk6G7KXd+Uo6OjVFRUsG3bNgIDAx0djtuy2Ww0NzfT09NDXl4e4eHhjg5JuE7OlKBfSOGhICIjZGV00ztYz2DDKP11I4y0jjPWOYXVZHV0mE5DJOiXp1QrCUkMICw1mOicMCKzQpkfX1yp0hhqGsNmsa1rTLIsY2BpJSkfZQAZKyFEESK9cbL5RhL082w2G3/729/4zGc+Q39/Pw899AH+4z/+lUce+QJVVQ20tbWJxHENDA8PU11dTVxcHOnp6aKc2oEmJyc5deoUhYWFhIaGOjqcdeWuucBGIBJ0N+XOb8ru7m6am5vZsWOHGL11sPPr1SckJJCWlibmpW8Azpqg/yO/CG9i8yOJyAghPC0YjV7NeNcUI60TDLeMM9Iy7tZLuYkE3U4foCMsNZjwtGDCUoMITgjAuGhiuGWcoaYxeqsGmRm69TXK18PNJOjnGQwGvvOd7/D1r38db28vUlMTOX78NC+99BJ33XXXKkbp3mRZprm5me7ubnJzc4mIiHB0SG5tYWGBo0ePkpGRQVxcnKPDWXfunAs4OzEBVHA78fHxK8uvbd++XYwOOFBkZORF89Lz8/NRq9WODktwATND88wMtVD7QgsAPqFehKUFE54aRME7swiM8WNhcomR1glGWsYZbhlnsndadIh3YQqlRGCsvz0ZP5eQewV6Mtk3w0jLOHWvtDHSMs7c6IKjQ113Wq2Wxx9/nPe+9708+eSTPPfcc+Tl5bJt2zZHh+YyTCYTlZWVLC0tsX37dpEQOZjRaKS8vJzY2Fi3TM4F5yZG0N2Uu581k2WZyspKDAYDxcXFKJVKR4fk1sxmM9XV1czNzVFYWIifn5+jQxKuYKOMoF+LSutBaHKQPWlPCyIsNRiFUsFo+wQjreP2xL11HMO8ydGhrgl3GEHXeqsJSw1eGSEPSQrEarEy2jbBcIv9xMxo+4TL9Cq4lRF0YW3NzMxQUVGBr68vubm5ogmZg1mtVk6cOIFOp6OgoMBtq/fcPRdwZmIEXXBLkiSRl5fHiRMnqK6udusPaGegUqnYsmUL7e3tHD9+XCw1I6w5s8HCQP0IA/Uj9gsk8I/0PTe6GkTJP+XhF+HDzNAcI60TTPbNMD0wy9TALPPjizfVrVtYIxJ4B+sJiPLFP8qXwBg/wlKDVv5+w63jtB7p5vDPzzA9OCv+dsK66uvro66ujpSUFLG+uROQZZnq6uqV40Dx9xCckUjQBbelVCrZunUrx44do6mpiczMTEeH5NbOr5fu5+dHZWUl09PTZGdni+Y5wvqQYXpglumBWZr2dwD2EdjQlGDCUoIITw8m47YkfMO8sVltzAzOnUvY7f9OD84yMzS/7g3E3InCQ4FfhDf+Ub72ZDzSB/8oX/wifVAoFcwOzzE9MMdU/yzHf13NaJvrVkAIzs9ms1FfX8/Q0BBbtmwhJCTE0SEJQFNTE7Ozs2zfvl1UTwpOSyToglvTaDQra6Tr9XoxD8kJhISEsHPnTs6cOcPx48cpLCxEp9M5OizBDRnmTfRWDdJbNbhymUIp4RPmfW601p4gJmyJwi/SBw+1krnRBabOJfrTA3Pnfp9zyRLytaLSqfCP8rnoOQ6I8sUn1AuLycrMoP15neyboeNkH1MDs8yNzIv+AYLTWF5epqKiApvNRllZGZ6eno4OScDeJLi3t5cdO3aI/kOCUxMJuuD2vLy82Lp1K6dOnUKn07ndMhvOyNPTk+3bt1NbW8uRI0coKCggKCjI0WEJAjarzMzgHDODc3D6gisk8Ar0XCmz9o/yJX1PIgFRvuh8tSxMLDI9NMfi1DJL08sszRjsv8/YfxanljEtuX4Sr/ZUoQ/Q4eln/7H/rsXT3/67f4QPXkF6lmcNKyc3ButHaXiljamBWRYml0SJuuDUJiYmqKysJDQ0lJycHDFK6yRGR0dpbGxk27ZtYgUfwemJBF0QgMDAQDZv3kxlZSWlpaX4+vo6OiS3p1Qqyc3Npaenh/LyctLT00lISBDzxQTnJMPCxBILE0v01QxfdJXWW4N/lA9+ET72RNRfR1hqEHp/HZ7nflQaDyxGC0szBnvCPn1BIn/+9+llFmcMLM8anKqUXuGhQOerRX8u0T7/GFcSb//zCbkWD40HZqPF/lgueIzTg3MMNowyM2QvUzfMGx39sAThhsiyTFdXF83NzWRlZREbGyu+r5zE7OwslZWVbN68mcDAQEeHIwjXJBJ0QTgnKipqZfm1HTt2iLJqJyBJEvHx8fj6+lJRUcH09DSbN2/Gw0N8dAkbh2HeyHDzOMPN41e8jUqnQu9/LsH1O5fU+mvxCfUiPC3YnuAG6PD01QJgs9qwmKxYzVasJuvK7xaT7dy/5647//uFtzFbLxqFLnhHFpIESpUSD7USpfrcvyrlG5eplHioFSjVHnioFCjVb1ynUCqQbTLL80aWzlUFLE7b/50emmNp2n7SwZ6UG0S5v+ByLBYLNTU1TE5OUlxcTEBAgKNDEs5ZXl6mvLyc5ORkoqKiHB2OIFwXcZQrCBdITk5eSdJLS0vFUihOIiAggLKyMiorKzl69CiFhYV4e3s7OixBWDXmZTMzy2ZmhuavejuFUkLrrbkoiV5JptVKPM4n1ZoLr1NcdJ1Gr0ale+OzzdNPi2nJjNVsxbhkwmqyYjW/cQLAYnwjsbearBedADif/BvmjWIOuOCW5ufnqaioQKPRUFZWhlardXRIwjlms5ny8nJCQ0NJTk52dDiCcN1Egi4IF5AkiZycHMrLy6msrGTr1q2ii7iT0Gq1FBcX09zczJEjR8jIyCA+Pl6UEApuxWaVWZox3PJ2VDoVKdvjADj6y0oxqi0IN0iWZbq7u2lqaiI+Pp709HRxvOBEbDYblZWVaLVacnJyxLGCsKGITxJB+AcKhYLCwkIMBgN1dXXIshgVchYKhYLMzEyKioro6Ojg1KlTLC8vOzosQRAEwY0sLy9z6tQpOjo6KCoqIjMzUyTnTkSWZerq6jAYDBQUFIi/jbDhiFesIFyGSqWiqKhopeunSNKdS1BQELt27UKn03Ho0CH6+/vF30gQBEFYU7Is09/fz8GDB9HpdOzatUusMOJkZFmmsbGR0dFRioqKxFRFYUMSJe6CcAU6nY6SkhJOnDiBJElkZGSIEiknolKpyM3NJSwsjJqaGkZGRsjJyRFrmwqCIAirzmg0Ultby9TUFHl5eYSHhzs6JOEfyLJMU1MTg4ODlJSUiGa/woYlRtAF4Sq8vLwoKSmhv7+flpYWMUrrhMLDw9m9ezc2m41Dhw4xMjLi6JAEQRAEFzIyMsKhQ4cA2LVrl0jOnZAsyzQ3N9Pf309JSYlY61zY0MQIuiBcw/kk/fxIelpamqNDEv6BRqNhy5Yt9Pf3///27uM3rmxv9/uzi6mYijkVMymSEpOYQ5FFtlqncS+OBwbu9dQeXMAzDzww/D/YBgzD8PSObQ99L3Bgv91qic0oRjHnHJWYQ5FFcnvQh3xbp1t9pG6Jexfr+wEaFDR6zqHI2s9ev7WWhoaGlJmZqbKyMkbbAAB/mN/v1+TkpDY3N1VRUaHs7Gwm6WxqdnZWa2trlHPcC6ygA58gNjZWHo9Hy8vLmp2dtToOfoNhGMrJydGTJ090cnKiFy9e6P3791bHAgAEoPfv3+vFixc6OTnRkydPlJOTQzm3qdnZWS0vL8vj8XAFK+4FCjrwiVwul1paWrS0tKS5uTmr4+AjoqKi5PF4VFBQoN7eXk1OTurq6srqWACAAHB1daXJyUn19vaqoKBAHo9HUVFRVsfCR8zNzWlpaUktLS1yuVxWxwG+CEbcgc/gcrnk8XjU3d0th8OhBw8eWB0Jv8EwDBUWFiolJUXDw8N6/fq1amtrFRcXZ3U0AIBNHRwcaGhoSA6HQ+3t7azG2tz8/LwWFhYo57h3WEEHPlNcXJw8Ho/m5ua0uLhodRz8DpfLpba2NrndbnV2dmpubo6D/gAAH7i+vtbc3Jw6OzvldrvV1tZGObe5xcVFzc/Py+Px8PId9w4r6MAfEB8fr+bmZvX09MgwDBUUFFgdCR/hcDj08OFDpaWl3a6mV1dXc4gMAEDHx8caHh6W3+9XS0uLEhISrI6Ef2JpaUmzs7Nqbm5WfHy81XGAL44VdOAPSkhIUHNzs6anp7W8vGx1HPwTCQkJam9vV3x8vF68eKHl5WVW0wEgSJmmqeXlZb148UIJCQn65ptvKOcBYHl5WdPT02pubub7hXuLFXTgT0hMTFRzc7N6e3tlGIby8vKsjoTfERoaqoqKCqWnp2t4eFg7OzuqrKxUdHS01dEAAHfk5OREY2NjOjw8VGNjo1JSUqyOhE+wsrKiqakpyjnuPVbQgT8pMTFRTU1Nmpyc1OrqqtVx8AlSUlL07bffKjIyUs+fP9fMzAwnvQPAPXd1daWZmRk9f/5ckZGR+vbbbynnAWJ1dVWTk5NqampSYmKi1XGAr4oVdOALSEpKUmNjo/r6+m7v44a9hYWFqaqqSrm5uRobG9P6+rrKy8uVnp7OXbcAcI+YpqmdnR1NTEwoPDycveYBZm1tTePj42pqalJSUpLVcYCvjoIOfCHJyclqbGzUy5cvZRiGsrOzrY6ET5CQkKC2tjatrq7q1atXSkhIUEVFBWPvAHAPHB8fa2JiQnt7eyotLVVOTg4vYQPI+vq6xsbG1NjYqOTkZKvjAHeCgg58QSkpKWpoaFB/f78cDocyMzOtjoRPcHN+gNvt1vT0tJ4/f67CwkIVFRUpNJRfkwAQaC4vLzU/P6/FxUVlZ2erpqZG4eHhVsfCZ9jY2NDo6KgaGhrYioCgwpMn8IWlpqaqvr5eAwMDMgxDbrfb6kj4ROHh4Xr8+LFycnJux95vDpVjxQUA7O9mnH18fFxOp5Nx9gC1ubmpV69eqaGhQampqVbHAe4UBR34CtLS0lRXV6fBwUFJoqQHmJux97W1Nb169Urx8fGqqKjg7nQAsLHj42ONj49rf3+fcfYAtrW1pZGREdXX11POEZQo6MBXkp6ertraWg0NDckwDGVkZFgdCZ/BMAzl5uYqIyND09PTevHiBWPvAGBD/zjOXltbyzh7gNre3tbw8LDq6uqUlpZmdRzAEjxlAl9RRkaGampqNDQ0pLq6OqWnp1sdCZ/pZuz9H097z8jIYGUGACxkmqa2t7c1MTEhp9Op1tZWxcfHWx0Lf9DOzo6GhoZUU1PD89IduL6+tjoCPoKCDnxlbrdbpmlqcHBQ1dXVHBwXoOLj4+X1erW2tqbR0VGtrq4y9g5AknRp+rWsGaUpSy6D/c534fj4WGNjYzo4OGCc/R7Y2NjQq1evVFNTw7bAOzI7O2t1BHwEBT3I7ezsyOVyWR3j3svMzFRoaKgGBgbk8/lUWFhodST8Ab8ce5+ZmdGLFy9UUFCg4uJixt6BILamea1qVjtaU6v5V4riV3R5eam5uTktLS0pJydHdXV1jLMHuMXFRc3MzKi+vp6x9juyvb2ttbU1q2PgI3iiDHJjY2PKzMzkzuc7kJaWppaWFvX19cnn86m0tJSHuAAVHh6uysrK29PeNzY2GHsHgphPp5Kkc53pSpcKVZjFie4fxtnvH9M0NTk5qfX1dXk8Hk7bvyMnJycaGRlRRUWF1VHwEQ6rA8BabrdbAwMDurq6sjpKUEhISJDX69XW1paGh4fZ/xPgbsbeHz58qNHRUXV1dendu3dWxwJwxyL1r1tdjnVgYZL76d27d+rq6tLo6KgePnwor9dLOQ9w19fXGhoa0vb2trxeL+X8jlxdXWlgYEBZWVlsJbAxCnqQe/TokRwOh4aHh2WaptVxgkJMTIy8Xq+Ojo7U19cnv99vdST8CYZhKCcnR3/5y1+Umpqqly9fqru7W7u7u1ZHA3BHclWsGMVLkpY1Y22Ye2R3d1fd3d16+fKlUlNT9Ze//IW95veA3+9Xb2+vjo+P5fV6OcvljpimqeHhYTkcDpWXl1sdB7+Dgh7kQkJC1NjYqP39fU1NTVkdJ2jcjOcZhqHu7m75fD6rI+FPCgsLU0lJib777jslJCSop6dHfX192t/ftzoagK/MYThUI6/SlKVS1VkdJ+Dt7++rr69PPT09SkxM1HfffaeSkhKFhbF1IND5fD51d3fL4XCotbVVTqfT6khBY2pqSgcHB2psbJTDQQW0M747UEREhJqbm7W6uqqVlRWr4wSN0NBQNTY2yuVyqbOzU8fHx1ZHwhcQHh6u0tJSfffdd4qJiVFXV5f6+/t1eHhodTQAX1G4EaEKo0kRBoXjjzo8PFR/f7+6uroUExOj7777To8ePeIQuHvi6OhInZ2dcrlcamxs5HDVO7SysqLV1VU1NTUpIiLC6jj4JyjokPTz2HVjY6MmJib0+vVrq+MEDYfDcXv1WmdnJ2PR90hERITKy8v19OlTOZ1OdXR0aGhoiBcxQJA7MHe1aE7qyry0OoptHB8fa2hoSB0dHXI6nXr69KnKy8spEvfI7u6uurq6lJmZqerqalZw79Dr1681MTGhxsZGthMECH46cCspKUlVVVUaHBzUwQGH3NwVwzBUWlqqkpIS9fT0aGdnx+pI+IIiIyNVWVmpp0+fyuFw6Pnz5xoZGdHp6anV0QBY4J22tKxpjakv6M9+OT091cjIiJ4/fy6Hw6GnT5+qsrJSkZGRVkfDF7Szs6Oenh6VlJRwg80dOzg40ODgoKqqqpSUlGR1HHwiCjo+kJWVpaKiIvX19ens7MzqOEGloKBANTU1Ghwc1OrqqtVx8IVFRUWpurpaT5480fX1tZ49e6axsTF+zoAgk6QMSdJ77eiNNi1OY42zszONjo7q2bNnur6+1pMnT1RdXa2oqCiro+ELW11d1eDgoGpqalRQUGB1nKBydnamvr4+FRUVKSsry+o4+Axs/sCvFBUV6fT0VH19fWptbeVQljvkdrsVHh6u/v5++Xw+FRcX86b5nomJiVFtba2Kioo0MzOjZ8+eKS8vT0VFRYxzAkEg3khSllmoDS3qXP/6gu7S9CtEoff6d/75+bnm5+e1srKi1NRUtbe3y+VyWR0LX4FpmpqdndXS0pKampqUnJxsdaSg4vf71dfXp7S0NBUVFVkdB5+JFXT8imEYqqysVEREhAYHB7mr+44lJyertbVVKysrGh0d5f//e8rlcqmhoUGtra06Pj7W999/r6mpKV1cXFgdDcBXVqIqfaP/UjnGzw/OfvNCP+k/q1f/olPz/p1TcXFxoampKX3//fc6Pj5Wa2urGhoaKOf31PX1tUZHR7W6uqrW1lbK+R27vr7W4OCgIiIiVFlZea9f+t1XFHT8JofDofr6evl8Po2NjQX9Prm75nK51NbWpt3dXQ0MDOjyksOE7qv4+Hg1NTXJ4/Fob29P33//vWZnZ+X3+62OBuArMQxDoca/Tqdd60rXutapjvRS38tn3o8zKvx+v2ZnZ/X9999rf39fHo9HTU1Nio+PtzoavpLLy0sNDAxod3dXbW1tvIS5Y6ZpamxsTD6fT/X19RzGF6D4ruGjwsLC1NTUpJ2dHS0sLFgdJ+hERkaqtbVVFxcX6unpYWX1nktMTFRLS4saGhr05s0b/fDDD5qdndX5+bnV0QB8ZRFGpMpUL0m60pW2tGJtoD/p/Pxcs7Oz+uGHH/TmzRs1NjbK4/EoMTHR6mj4im6eV/x+v1pbWznszwILCwt6/fq1mpqa2KIawNiDjt8VGRmppqYmdXd3KyoqSpmZmVZHCirh4eHyeDwaGhpSZ2enmpubOUTnnktJSVFycrLevn2rhYUFzc3NKSsrSwUFBYqLi7M6HoCvJMPIVagZplH1aFkzKlCp1ZE+28HBgZaWlrSxsaHk5GTV1tYqJSWFEdsgcHp6qt7eXsXGxqq2tlYhISFWRwo6m5ubmpub4+XIPUBBxz8VHx+vuro6DQwMyOl0ck3DHQsJCVF9fb3Gxsb0008/qbm5maJ2zxmGodTUVKWmpurw8FBLS0vq7OxUQkKCCgoKlJ6ezgMvcA+lGG61mn+V0wicF7GmaWpnZ0dLS0va29tTdnY2h78FmYODA/X29srtdquiooLPJwu8f/9eIyMjqq+v5xnxHqCg45OkpaWprKxM/f398nq9iomJsTpSULk5uC8yMlJdXV1qaGhQSkqK1bFwB1wul6qqqlRaWqqVlRWNjY1pcnJS+fn5ysnJYYQNuGcCpZz7/X6tra1peXlZV1dXys/PV319vcLDw62Ohjv09u1b9ff3q6ioSEVFRZRzCxwfH+vly5cqLy9XWlqa1XHwBVDQ8cny8/Nvr1/zer1cCXXHDMNQcXGxnE6nXr58qaqqKu61DCLh4eEqLi7WgwcPtLW1pcXFRc3MzCg3N1f5+fmKjo62OiKAIHBycqLl5WWtrq4qJiZGDx8+lNvt5jCqILSxsaFXr16psrJSOTk5VscJSufn5+rr61Nubq7y8vKsjoMvhIKOz1JaWqqTkxP19/fL4/Gwx8gCOTk5t1fgHR0d6eHDh7yxDiIOh0NZWVnKzMzU3t6eFhcX9eOPPyotLU2FhYVKTEzk3wOAL8o0Tb1//15LS0t6/fq10tPT1dzczKFvQco0Tc3MzGhpaUn19fWs2lrk6upK/f39iouLU2lp4J1ZgY+joOOzGIah2tpadXd3a2RkRLW1tZQBC6Slpcnr9aq/v1/7+/uqra1lrDDIGIahxMREJSYm6vT0VMvLy3r58qWioqJUWFgot9vNCzQAf8rV1ZU2Nze1tLSk09NT5ebm6unTpxxWGsQuLi40NDSkk5MTeb1ezhqwiGmaGh4elmmaqqmp4Vn8nqGg47OFhISosbFRP/30k6anp3lrZxGXy6X29nYNDw+ro6ND9fX13C0bpKKiolRWVqaSkhKtr69rdnb2dp96Xl4e21EAfJbz83OtrKxoeXlZYWFhKigoUHZ2tkJDeWwMZvv7+xoYGLh9/uAMFOtMTU3p4OBAXq+Xl/H3EL9p8YdERESoublZP/30k6Kiotj3YpGwsDA1NDRofn5eXV1d7AMLcqGhobel/M2bN1pcXOSaNgCf7JfXpCUlJam6ulqpqamszkFra2saGxtTcXExh8FZbGVlRaurq2pra+MF/D1FQccfFhMTo8bGRvX29ioyMpI9SBa5OTwuPj5eg4OD2tvbU0VFBQf2BDHDMJSWlqa0tLRfXdOWk5OjjIwMVsIASJIuLy+1vb2ttbU17e3tKSsri2vScOv6+lrj4+Pa3NxUQ0ODUlNTrY4U1F6/fq2JiQk1Nzdzo9I9xhMa/pSkpCRVVVVpcHBQra2trNBZKDU1Vd988436+/vV1dWl+vp6RUZGWh0LFru5pu3Ro0daW1vT/Py8RkdHlZGRoezsbKWkpLASAgQZ0zT19u1bra+va3t7W9HR0crKylJdXR0rcrh1dnamgYEBXV9f65tvvuHsAYsdHBxocHBQVVVVSkpKsjoOviIKOv60rKys2+vX2traKIUWioqKktfr1ejoqDo6OlRXV6fk5GSrY8EGIiIiVFRUpAcPHujw8FDr6+saHh6WYRjKyspSVlYWL9iAe+7g4EDr6+va2NiQ9PPnt9fr5Wcfv/Lu3TsNDg4qNTVVjx8/Zp+zxc7OztTX16eioiKu2A0CFHR8EUVFRTo5OVFfX59aW1s5OMRCISEhqq6u1srKivr6+vTo0SMVFBSwSgpJP4+/x8XF3V7L8u7dO62vr6uzs1PR0dHKzs5WZmYmL9qAe+Ls7Eybm5taX1/XycmJMjIyVFNTo+TkZLZC4VdM09TS0pKmp6dVVlamvLw8nh8s5vf71dfXp7S0NBUVFVkdB3eAgo4vwjAMPX78WH19fRocHFRjYyMf/BYyDEP5+fmKi4vTwMCA9vb2VFVVxb5jfMDhcCg1NVWpqany+/3a3t7W+vq6pqamlJycrOzsbParAwHoZl/5+vq63r17p+TkZBUWFiojI4MX6Pioy8tLvXr1Su/fv5fH4+Geexu4vr7W4OCgIiIiVFlZycuSIMFTF74Yh8Oh+vp6dXV1aXR0VFVVVfwisVhiYqLa29s1ODiozs5O1dfXc6gIflNYWJhycnKUk5Ojs7MzbWxs/OZ+dQD29I/7yqOiopSdna3q6momYvBPHR8fq7+/X+Hh4Wpvb5fT6bQ6UtAzTVOjo6Py+XxqbW1l4SuIUNDxRYWFhampqUnd3d0aGxvjbZ8NOJ1OeTweTU1NqaOjQ7W1tUpPT7c6FmwsMjLyo/vVPf9NtWZfLOv92r7VMQFISsqJV8mTAv3Lv/yLTNO83Vfucrn4/MUn2dnZ0dDQkHJzc1VaWkoRtIGbcv7+/Xu1tLQw+RJkKOj44iIjI9XS0qKuri6Nj4+roqKChwSLORwOlZeX317F9uDBA5WUlPB9we/6x/3qb9++1ej/N63/6n/+t9rfOtTsi2XNda7odO/M6qhAUIlKiFSxN08l3+Qr3u3SUt+6qqqqlJKSQrnCJzNNUzMzM1pcXFR1dbUyMzOtjgT9/H0ZGxvT27dv1draygRMEKKg46v4ZUk3DEPl5eWUQRvIysqSy+VSf3+/9vf3VVNTo/DwcKtjIQA4HA6lpaXp+/+tW2HOUBU256jkm3w1/9fVejP/TitDm1oZ3NT71X2rowL3UlJevPJqM5VXm6nUomRtTb7W6H+e0WLvmvy+S/2P/+t/b3VEBJCLiwsNDQ3p5OREbW1t3HtvE6ZpamJiQq9fv6acBzEKOr6aqKgotbS0qLu7W4ZhqKysjJJuAy6XS+3t7RoeHlZHR4caGhq4Ygefxe+71MzzJc08X1J0QqRyazOVW+tW7b8v1/nJhVb/XtY3xnZ0eXFldVwgIIVGhCirIl15dZnKrc1URHS41ke3Nf3jkv7f/6VTJ0yu4A86ODhQf3//7fMA49P2YJqmJicntb29rZaWFu6dD2IUdHxV0dHR8ng8tyW9tLSUkm4DYWFhamho0NzcnDo7O/X48WNlZ2dbHQsB6GTvTFM/LGjqhwU5Qh3KLEtTXl2mWv9DnWKSorQ5saOVwU2tDG3q6M2J1XEBW4tNjf55lbwuU5nl6Tp+f6rVoU39+H/0aXPyta4vr62OiAC3vr6u0dFRFRUVqbi4mGcymzBNU1NTU9rc3FRra6uio6OtjgQLUdDx1cXExHww7v7o0SM+EGzAMAyVlJQoPj5eQ0ND2tvbU3l5OfsX8YddX15rfXRb66Pb6vyPg4p3u5RXl6nC5hy1/oc67W8d/ry6PrSpnZm3ur4yrY4MWMoRYij9YYry6rKUV+tWXIZLW1OvtTq0pc7/OKT9rUOrI+KeuL6+1sTEhDY2NlRfX6+0tDSrI+HvTNPU9PS01tfXKeeQREHHHbkp6d3d3XI4HHr48KHVkfB3aWlpam9vV39/v7q7u1VXV8eeJ3wR+1uHevWfDvXqP00rPCpM2Y8zlFebqX/7P3gVEhaitZEtrQxtanV4S77Dc6vjAnfC6YpQbo1bebWZyql268p/pdWhLb38P8e0Prqti1O/1RFxz5ydnWlwcFBXV1dqb2+nANrM7Oys1tbW1NLSwlW4kERBxx2KjY39YNy9pKTE6kj4u+joaHm9Xo2Pj+vHH39UZWWlsrKymHTAF3Nx6tdi75oWe9ckQ0p9kKS82kw9/i8e6ul/16w3C+9vR+HfLe9ZHRf4opLzE25XyVMfJOnd8p5WhjY18v9M683ie4lhEnwFpmlqY2NDY2NjcrvdqqioUGgoj/52Mjs7q5WVFXk8HsXGxlodBzbBTynulMvl+uDguOLiYqsj4e9CQ0NVXV2t9PR0jY6Oant7W48fP1ZERITV0XDfmNKb+fd6M/9e/f/XmKISIm9XFGv+XZkuTv1ae7Wl7em32p55+/OYLwUGgcKQEjJdSi9JUcajFOVUuRUeFab1V9ua/H5Bf/uffuJqQnx15+fnGh0d1e7urmpqapSRkWF1JPyDubk5LS0tqaWlhVP08QEKOu6cy+X6YCW9qKjI6kj4hYyMDCUmJmp0dFTPnz9XVVWV0tPTrY6Fe+x070zTzxY1/WxRjlCH3KWpyn6coYdPCtT+39br8uJKO7PvtD37Vjszb/Vm4b38vkurYwOSpDBnqFIfJCn9YYoySlKUXpKs0PAQvV54r53Zd/rhf+/R1tQbDnjDndnZ2dGrV6+UmJioJ0+e8KLdhubn57W4uCiPx0M5x69Q0GGJuLg4eTwe9fT0yOFwqLCw0OpI+IWIiAjV19drfX1dQ0NDyszMVFlZGVex4Ku7vrzWxtiONsZ2JEmOUIeS8xOUXpKsjJIUVfybIkUlROrdyp52Zt7+XNxn3uroLSfE427EpkQr42GK0h+mKL0kRcl58TrZO9POzFutjW6p//8e07uVPQo57pzf79fExIS2trbYqmZjCwsLmp+fl8fj4Zpb/CbDNE0GB4PQ4eGh4uLidHBwYOmbu729PfX29urhw4cqKCiwLAc+7vT0VCMjIzo9PVVNTY2SkpKsjoQgd3Z2pt3d3dv/Dg4OFB4ersTExNv/4uLiFBISYnVU2/L7/frb3/4mSfrrX//Ky7ePuLq60sHBwQf/3i4uLhQXF/fBvzcO1oTV3r17p5GREUVFRam6upo7tG1qcXFRs7Oz8ng8io+PtzSLXboAfo0VdFgqISFBzc3N6unpkWEYys/PtzoS/kFUVJQ8Ho+WlpbU29ur/Px8PXz4kPIDy0RGRiozM1OZmZmSpMvLS+3v72t3d1fv37/X/Py8Li8vFR8fr8TERCUkJCgxMVFOp9Pi5LA7n8+n3d1d7e3taXd3V/v7+woNDb0t4oWFhYqLi+OgLdjG1dWVZmZmtLy8rEePHqmgoIBVc5taWlrSzMyMLco57I1PGFjupqT39vbKMAzl5eVZHQn/wDAMFRYWKjU1VcPDw+ro6FBtbS2jWbCF0NBQJScnKzk5WdLPJxefnJzcrnjOzs7q8PBQUVFRSkhIUGxsrGJjYxUTE6Po6GheNgWhq6srnZyc6OjoSMfHxzo6OtLe3p5OT0/lcrmUmJio3NxcVVdXKzo6msIDW9rf39fw8LBCQkLU3t7OKeA2trKyounpaTU3NyshIcHqOLA5CjpsITExUU1NTerr65NhGMrNzbU6En5DbGysvF6v5ubm1NnZqeLiYj148EAOh8PqaMAtwzAUExOjmJgY5eTkSPp5pHtvb0/7+/s6OjrS9va2jo+PdX19raioqNvC/svyzth34PP7/bcF/Jdl/PT0VA6H4/Z77nK5lJOTo4SEBL7vsL3r62stLCxobm5ORUVFKioq4nPYxlZXVzU5OammpiYlJiZaHQcBgIIO20hKSlJjY+NtSb95sIa9OBwOPXz4UGlpaRoeHtbOzo5qamoUExNjdTTgo8LCwpSamqrU1NTbvzNNU2dnZx8UuLW1NR0dHeni4kJOp/M3i3tERAQrqjZimqbOz89/s4j7fD6Fh4fffu+Sk5OVn5+vmJgYRUZG8n1EwDk+Ptbw8LD8fr9aWlpYjbW5tbU1jY+Pq6mpiTN88Mko6LCV5ORkNTY26uXLlzIMQ9nZ2VZHwkckJCTom2++0dTUlF68eKGysjLl5eXxwIuAYRiGoqKiFBUV9UFxl/Srwrezs6P5+XmdnZ0pLCzsg+J+89XpdDIu/xVdXV3J5/N9UMBv/uz3+xUZGXn7/XC73R+8UAECnWmaWllZ0eTkpHJzc1VaWsrvG5tbX1/X2NiYmpqabrdgAZ+Cgg7bSUlJUUNDg/r7+2UYhrKysqyOhI8ICQlRRUWF0tPTNTIyop2dHVVVVXGiMQJeRESEIiIifrXicXl5+UE53N3d1erqqk5OTmSapsLCwhQRESGn0/nRr06nU2FhYbzM0s+lw+/3y+fzyefz6fz8/KNf/X6/DMNQdHT0ByviN3/m4DbcV2dnZ3r16pWOjo7U2NiolJQUqyPhn9jY2NDo6KgaGhoo5/hsfJrBllJTU1VfX6+BgQEZhnF7WjPsKSUlRU+ePNH4+LieP39+e/8qcN+EhoYqPj7+Vyfw3oxZ3xTKm1J5fn6u/f39D/7+6upKhmH8bon/5ddAXCW7urr63bL9y6+maSokJOT25cXN/3aXy/XBS42blya82EAw2djY0NjYmNLT01VXV8cZCQFgc3NTr169UkNDw6+ms4BPQUGHbaWlpamurk6Dg4MyDENut9vqSPgdYWFhqqmp0dbWlkZHR7Wzs6PKykqFh4dbHQ346m4Kt9Pp/Ke3G1xeXv5mUT07O9Pe3t4Hfy/9PKnicDi+6FfTNG/zbG9vyzAMXV9f6+rq6ot9lfSbLxx+WbxvvrL6DXzo4uJCY2Njevv2raqqqngGChBbW1saGRlRfX095Rx/mGH+8lMaQePw8FBxcXE6ODiQy+WyOs7v2t7e1tDQkGpra5WRkWF1HHwCn8+n0dFR7e3tqbq6WmlpaVZHAgLO9fW1Li4u5Pf7/3BJvvnzP/79zai+pNt7vX9Z4m/+/EdfAtyM+rPaDXy+169fa2RkRAkJCXr8+LGcTqfVkfAJbp5X6+rqlJ6ebnWcfyqQukCwoaAHqUD7odza2tLw8DAlPYCYpqm1tTVNTEwoKytLZWVlrJIBNuH3+/W3v/1NkvTXv/6VsVnABi4vLzU5OamNjQ2Vl5crJyeHl1wB4qac19TUBMy0Q6B1gWDC0zICws0vu6GhIVVUVHBPegC4uc8+JSVFIyMjevbsmcrLy+V2u3ngAADg70zT1NbWliYmJhQTE6MnT54oKirK6lj4RKurqxofHw+ocg57o6AjYLjdboWHh+vly5fy+XwqLi6m6AWAqKgoeTwebWxsaHx8XCsrK6qsrFRsbKzV0QAAsNTR0ZHGxsZ0dHSksrIyZWVl8WwTIEzT1NzcnBYWFrhKDV8UBR0BJTk5Wa2trerr65PP51NlZSUfZAHg5k779PR0zczMqKOjQ/n5+SouLma0FgAQdPx+v+bm5rS8vKy8vDw1NDTweRhATNPU2NiYdnZ25PV6GRHHF+WwOgDwueLi4uT1evXu3Tv19/ffnhYM+wsLC1NFRYXa2tq0t7enH3/8UZubm+IoDABAMDBNUxsbG/rxxx+1t7entrY2lZeXU84DyNXVlfr7+/Xu3TvKOb4KCjoCUlRUlLxery4uLtTT06OLiwurI+EzuFwutbS0qLS0VOPj4+rp6dHh4aHVsQAA+GoODw/V09OjiYkJlZWVqaWlhXIXYH753On1ejkrAF8FBR0BKzw8XB6PR+Hh4ers7NTp6anVkfAZbsbenz59qri4OHV0dGhiYkJ+v9/qaAAAfDF+v18TExPq6OhQXFycnj59yl7zAHR6eqrOzs4Pnj+Br4GCjoAWEhKihoYGJScnq7OzUwcHB1ZHwmcKCwtTeXm52tvbtb+/rx9//FEbGxuMvQMAAtrNOPuzZ8+0v7+v9vZ2xtkD1MHBgTo7O5WcnKyGhgaFhIRYHQn3GIfEIeAZhqHKyko5nU51dXWpsbGRkzQD0M3Y++bmpiYmJrS6uqqKigrG/wAAAefw8FBjY2M6Pj5WeXm5MjMzWTEPUG/fvlV/f78ePHjADUK4ExR03AuGYaikpEROp1N9fX2qrq5WZmam1bHwmQzDUFZWltLS0jQ7O3t72ntJSQkrDgAA2/P7/ZqdndXy8rLy8/PV2NjI51cA29zc1MjIiCoqKpSbm2t1HAQJCjruldzcXEVERGhwcFA+n0+FhYVWR8IfcDP2npOTo/HxcT179oz7YQEAtnUzzj45OanY2Fi1t7czARbgFhcXNT09rfr6eqWlpVkdB0GEgo57Jz09XS0tLbd3pZeWllLqApTL5ZLH4/lg7L2yspKHHgCAbdyMs5+cnDDOfg+YpqmpqSmtra2ppaVFCQkJVkdCkKGg415KSEiQ1+tVb2+vfD6fqqur5XBwJmIg+uXY+9zcnDo6OpSXl6eHDx8yNggAsIzf79fMzIxWVlZUUFDAOPs9cH19rZGREe3u7srr9SomJsbqSAhCNBbcWzExMfJ6vTo6OlJfXx/XdwW4sLAwlZWVqb29XYeHh3r27JnW19c57R0AcKdM09T6+rqePXumw8NDtbe3q6ysjHIe4Px+v/r6+nR0dEQ5h6Uo6LjXnE6nWlpaJEnd3d3y+XwWJ8KfdTP2XlFRoampKXV3d2t/f9/qWACAILC/v6+uri5NTU2poqJCHo+HbVf3gM/nU3d3tySppaVFTqfT4kQIZhR03HthYWFqampSbGysOjs7dXx8bHUk/EmGYSgzM1PffvutEhIS1NXVpYGBAR0eHlodDQBwDx0eHmpgYEBdXV1KTEzU06dP2Wt+TxwfH6uzs1OxsbFqampiEgKWo6AjKDgcDtXU1Mjtdquzs1O7u7tWR8IXcDP2/vTpU4WHh6ujo0NDQ0O8hAEAfBHHx8caGhpSR0eHwsPD9fTpU5WVlSk0lGOc7oPd3V11dnbK7XarpqaG84pgC/x2QdAwDENlZWVyOp3q6elRXV2d0tPTrY6FLyAyMlKPHz/WgwcPNDc3p+fPnys7O1vFxcWKioqyOh4AIMCcnp5qdnZWGxsbysrK0tOnT/k8uWd2dnY0ODio0tJSFRQUWB0HuEVBR9ApLCyU0+nU4OCgKioqlJuba3UkfCHR0dGqrq5WUVGRZmdn9ezZM+Xm5qq4uJj9ZACAf+rs7Ezz8/NaXV2V2+3WkydPOCzsHlpdXdX4+Liqq6uVmZlpdRzgAxR0BKXMzExFRETo5cuX8vl8Ki4uZh/ZPRITE6Pa2loVFRVpZmZGP/zwg/Lz8/XgwQNFRERYHQ8AYDPn5+ean5/XysqKUlNT1d7ezuFv95Bpmpqbm9PCwoKampqUnJxsdSTgVyjoCFrJyclqbW1VX1+ffD6fKisrKen3jMvlUkNDg/b39zUzM6Pvv/9ehYWFevDgAYfAAAB0cXGhxcVFLS4u3j4XxMfHWx0LX4FpmhobG9POzo68Xi8vYGBbFHQEtbi4OHm9XvX29qq/v181NTUUt3soPj5eTU1N2t3d1fT09G1RLygo4PsNAEHI7/draWlJCwsLio+Pl8fjUWJiotWx8JX4/X4NDw/r5OREXq+X8wRgaxR0BL2oqCh5vV4NDAzop59+UkNDg2JjY62Oha8gMTFRLS0tevv2rWZmZrS0tKSioiLl5eVxIi8ABIHLy0utrKxofn5eMTExamhoUEpKitWx8BUdHR2pv79fTqdTra2tCg8PtzoS8Lt4IgUkhYeHq7m5WdPT0/rpp59UXV0tt9ttdSx8JSkpKUpOTtabN280PT2thYUFFRcXKzc3VyEhIVbHAwB8YVdXV1pdXdXc3JycTqdqamqUmprK1rZ7bmtrSyMjI8rPz9ejR4/4fiMgUNCBv3M4HCorK1NCQoJGRka0v7/PL/N7zDAMpaWlKTU1VTs7O7dFvaSkRNnZ2dyFCgD3wPX1tdbX1zU7O6vQ0FA9fvxY6enpfLbfc6Zpanp6WsvLyyy6IOBQ0IF/4Ha7FRsbq/7+fu3v76u2tpaTv+8xwzCUkZGh9PR0bW5uamZmRvPz8yopKVFWVhYPcQAQgEzT1MbGhmZnZyVJpaWlyszM5Hd6EDg/P9fQ0JDOzs7U1tbGtkUEHAo68BtiY2PV1tamkZERdXR0qKGhgVNd7znDMJSVlSW3262NjQ3NzMxobm5Ojx49UkZGBg91ABAATNPU1taWZmZmdH19ffuylamo4LC3t6eBgQHFx8erra2Ng2ARkCjowEeEhYWpvr5eCwsL6urqUkVFhXJzc62Oha/M4XAoJydHWVlZWl1d1fj4uKanp1VYWKisrCwOkwMAG7q8vNTGxoYWFxd1eXl5e64IxTx43Hxml5SU6MGDB7xYR8DiSTPIHR4eWh3B9tLS0uRwODQ4OKiNjQ2VlpZykFiQSEpKUkNDg7a2tjQxMaHBwUHl5OQoNzdXkZGRVscD/jC/36/T01NJP38OsMqEQHV2dqbV1VWtra3J6XQqPz9fbrdbISEhOj4+tjoe7sDV1ZUmJyf1+vVrVVdXKzk5WUdHR1bHsj06gH1R0INUeHi40tPTlZ2dbXUUAAAAABbgnCX7MUzTNK0OAWv4fD5dXFxYHQMAAADAHYuIiKCg2xAFHQAAAAAAG+DkDAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwgf8fcaPfZaw5Zl0AAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#proj = EASEGrid2South()\n", + "plt.close(\"all\")\n", + "proj = ccrs.LambertAzimuthalEqualArea(central_latitude=-90)\n", + "\n", + "antarctic_extent = [-3000000.0, 3000000.0, -3000000.0, 3000000.0]\n", + "#np.array(map_extent)+np.array([-1e6,-1e6,1e6,1e6])\n", + "\n", + "fig = plt.figure(figsize=(10,10))\n", + "ax = fig.add_subplot(111, projection=proj)\n", + "ax.set_extent(antarctic_extent, proj)\n", + "ax.add_feature(cfeature.LAND)\n", + "ax.gridlines()\n", + "ax.coastlines()\n", + "\n", + "gdf.to_crs(easegrid2_epsg).plot(ax=ax)\n", + "ax.imshow(grid, interpolation='None', extent=map_extent)\n", + "#ax.scatter(x, y, c='r', transform=proj)\n", + "#plt.imshow(grids['count_segments'], interpolation='none', extent=map_extent)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "id": "af974942-2526-469b-9a77-244006e758c2", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Affine(900000.0, 0.0, -9000000.0,\n", + " 0.0, -900000.0, 9000000.0)" + ] + }, + "execution_count": 109, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "geotransform = (upper_left_x, width, 0., upper_left_y, 0., height)\n", + "fwd = Affine.from_gdal(*geotransform)\n", + "\n", + "fwd" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "id": "0de2593c-08e0-457b-bd46-389f03606f5b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "x, y = list(zip(*[fwd * (c+0.5, r+0.5) for r, c in zip(*np.where(np.isfinite(grid)))]))" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "id": "be473daa-51cf-42a5-85b7-e07935856bd6", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "((-450000.0, 450000.0, -1350000.0, 450000.0, -450000.0, 450000.0),\n", + " (-450000.0, -450000.0, -1350000.0, -1350000.0, -2250000.0, -2250000.0))" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x, y" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "id": "519a7680-a4e6-416f-9aa1-cd3123d3acb7", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "37b55720fc94458eaeff8d9593b604bc", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAPoCAYAAABNo9TkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hkZf0+/nsmM+nJpEx6733Te9uGIApYVqSpSxepIigqP6qiIHxUVFBQQJCvVBWUurvJZje9J5uySTa9956ZTDu/P9YdWbbvJjmTmft1XXPBJpOTd5Ip5z7P87wfiSAIAoiIiIiIiIhIVFKxCyAiIiIiIiIiBnQiIiIiIiIik8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyAQzoRERERERERCaAAZ2IiIiIiIjIBDCgExEREREREZkABnQiIiIiIiIiE8CATkRERERERGQCGNCJiIiIiIiITAADOhEREREREZEJYEAnIiIiIiIiMgEM6EREREREREQmgAGdiIiIiIiIyAQwoBMRERERERGZAAZ0IiIiIiIiIhPAgE5ERERERERkAhjQiYiIiIiIiEwAAzoRERERERGRCWBAJyIiIiIiIjIBDOhEREREREREJoABnYiIiIiIiMgEMKATERERERERmQAGdCIiIiIiIiITwIBOREREREREZAIY0ImIiIiIiIhMAAM6ERERERERkQlgQCciIiIiIiIyATKxCyDxqNVqaDQascsgIiIiIqINZm1tDVtbW7HLoM9hQLdQarUaISEhGBsbE7sUIiIiIiLaYN7e3ujt7WVINzEM6BZKo9FgbGwMg4ODcHZ2FrsckyUIAo4cOYKenh4kJibC29tb7JJoA83MzKC7uxtTU1Pw9/dHWFgY7O3txS6LaE1otVp8+umn+MIXvgC5XC52OUQXZGVlBd3d3RgaGoJSqURYWBjc3NzELos20NjYGJqamhAaGorw8HBIJBKxSzJpCwsLCAgIgEajYUA3MQzoFs7Z2ZkB/RT0ej0aGxsxPT2NL3zhC1AoFGKXRBtAEARMTk6iq6sLc3NzCA4ORm5uLt+8yOxotVrY29vD2dmZAZ02PWdnZ3h7e0OtVqO7uxutra1wcXFBREQEPDw8GNYsgLOzM7y8vFBVVQUASEpKgpWVlchVEZ07BnSik1Cr1aiurgYAFBQUMJxZAEEQMDo6is7OTqhUKoSGhiI9PR3W1tZil0ZERGfJ1tYWcXFxiIiIQG9vL+rq6mBvb4+IiAj4+PgwqJs5hUKBgoICVFdXo6ysDBkZGTyHo02HAZ3oc+bn51FVVQV3d3defbUABoMBQ0ND6Orqgk6nQ3h4OIKCgiCT8eWRiGizsra2RlRUFMLCwtDf349Dhw6hvb0dkZGR8PPzg1TKjYzMla2tLXJzc9HQ0IADBw4gKyuLs0VpU+EZKNFnjI2Noa6uDuHh4YiMjOSVdjOm1+sxMDCArq4uSKVSREREwN/fnxdkiIjMiEwmQ1hYGIKDgzE0NISOjg60t7cjIiICgYGBfM03U1ZWVkhNTUVnZycOHjyI1NRU9hGiTYMBnQhHpzd3d3fj8OHDSE5Ohp+fn9gl0TrRarXo6+tDd3c3bGxsEBcXB19fX16MISIyY1ZWVggKCkJAQABGRkbQ1dWFjo4OY3hnHwbzI5FIEBUVBUdHR9TW1iI6OhphYWF8vyeTx4BOFs9gMKCpqQnj4+PIzc2Fq6ur2CXROjAYDOjr60NHRwccHByQlJQELy8vvlETEVkQqVQKf39/+Pn5YXx8HJ2dnThy5AiioqIQHBzMqe9myM/PD/b29qiqqsLi4iISExP5dyaTxoBOFk2j0aC6uho6nQ6FhYWws7MTuyRaY4IgYGxsDK2trZBIJEhOTmYwJyKycBKJBN7e3vDy8sL4+DhaW1vR09ODuLg4eHt78z3CzLi6uqKwsBBVVVUoLy9HRkYGm8CSyWJAJ4u1uLiIqqoqODs7Iysri03BzNDs7CxaW1uxuLiI6OhoBAUF8ao5EREZHQvqnp6e6O/vR2NjI5ycnBAXF8cZdWbGzs4OeXl5qK+vx4EDB5CZmQknJyexyyI6ARMJWaSJiQnU1NQgJCQEMTExvFJuZlZWVtDe3o7R0VGEhoYiMzOT6wuJiOiUpFIpQkJC4O/vj66uLpSVlcHHxwcxMTGwt7cXuzxaIzKZDOnp6Whvb8fBgweRlpYGT09PscsiOg4DOlmcnp4etLW1ITExEQEBAWKXQ2tIq9Wiq6sLPT098PHxwfbt23liRUREZ00ulyM2NhbBwcFob29HUVERQkNDERERwQu9ZkIikSA2NhZOTk6orq5GXFwcQkJCxC6LyIgBnSyGwWBAS0sLhoeHkZOTAzc3N7FLojViMBjQ39+Pw4cPw9nZGXl5eXBxcRG7LCIi2qTs7e2RmpqKubk5tLS0YO/evVwqZWYCAgJgb2+P6upqLC4uIj4+nn9bMgkM6GQRtFotampqoFarUVhYyFFVM3GsAVxbWxsAsAEcERGtKRcXF+Tm5hrfa441kuN7jXlwd3dHYWEhKisrUVVVhbS0NM6UINExoJPZW15eRmVlJRwcHJCfn88XXjMxNzeH1tZWLCwscFSDiIjWjUQigY+PD7y8vNDX14eGhgY4OzsjLi6Os7XMgL29PfLz81FXV4cDBw4gKysLDg4OYpdFFowBncza1NQUampqEBAQgLi4OF7tNgMqlQptbW3GBnAZGRm86EJEROtOKpUiNDQUAQEB6OzsRGlpKXx8fBAbG8ttWjc5uVyOzMxMtLa24sCBA0hPT4dSqRS7LLJQDOhktvr7+3Ho0CEkJCQgKChI7HLoArEBHBERmQK5XG5sLNbe3o59+/axkZwZkEgkiI+Ph6OjIyorK3n+SKJhQCez1NXVha6uLmRmZsLDw0PscugCHGsA19HRAUdHR+Tm5nJvWiIiEt2xRnKzs7NobW3Fvn37EBUVxSVXm1xwcDAcHBxQU1MDjUaDiIgIsUsiC8OATmZFEAQcPnwYfX19yM3NhUKhELskOk+CIGB8fBytra0QBAGJiYnw9vbmMgUiIjIprq6uxkZyra2tbCRnBjw8PJCbm4vy8nLodDpER0fzb0kbhgGdzIYgCGhpacHIyAjy8vLg5OQkdkl0nj7bAC4qKgrBwcEcjSAiIpN1qkZy8fHxHCzYpBQKBfLy8lBeXg69Xs9eRrRhGNDJLAiCgKamJkxOTiIvL4/dNzcprVaLtrY2DA4OIiQkhA3giIhoU/l8I7mDBw8iICAAsbGxfD/bhJycnIwhXafTITExkSGd1h2HpGjTMxgMqK+vx/T0NMP5JjY2NoaioiIsLS1h69atiIuL48kMERFtSscayW3duhVLS0soKirC2NiY2GXReXBwcEBeXh6mpqZQX18Pg8Egdklk5hjQaVPT6/WoqanBwsICcnNzuc3JJrS6uora2lrU19cjOjoaOTk5cHR0FLssIiKiC+bo6IicnBxER0ejvr4etbW1WF1dFbssOkd2dnbIy8vDwsICamtrodfrxS6JzBgDOm1aOp0O1dXVUKvVyM3Nha2trdgl0TkQBAEDAwPYt28fDAYDtm/fjqCgIE4dIyIisyKRSBAUFITt27fDYDBg3759GBgYgCAIYpdG58DW1ha5ublQqVSorq6GTqcTuyQyUwzotClptVpUVlZCr9cjJycH1tbWYpdE52B5eRkVFRVoa2tDUlISMjIyeIGFiIjMmq2tLTIyMpCUlIS2tjZUVFRgZWVF7LLoHFhbWyMnJwd6vR6VlZXQarVil0RmiAGdNh2NRoPy8nJYWVkhKyuL65Q3EUEQ0N3djeLiYtjb22PHjh3w9fUVuywiIqIN4+vrix07dsDe3h5FRUXo7u7maPomIpfLkZWVBalUivLycmg0GrFLIjPDgE6bilqtRllZmfEqtEzGjQg2i/n5eRw4cAC9vb3IyspCUlISL64QEZFFksvlSEpKQlZWFnp7e3HgwAEsLCyIXRadJZlMhszMTNja2qKsrIx9BWhNMaDTpqFSqVBWVgZnZ2ekp6fDyspK7JLoLOj1erS3t+PgwYPw8PDAtm3boFQqxS6LiIhIdEql0vi+eODAAbS3t7MB2SZhZWWF9PR0ODs7o7S0FCqVSuySyEwwoNOmsLy8jNLSUri7uyMlJQVSKR+6m8H09DT279+P8fFx5OfnIzY2lhdWiIiIPsPKygpxcXHIy8vD+Pg49u/fj+npabHLorMglUqRkpICd3d3lJaWYnl5WeySyAxIBC56sUgLCwtQKBSYn5+Hs7Oz2OWc1uLiIsrLy+Hr64v4+Hh2+d4EtFot2traMDg4iOjoaISGhvKiCtF5EgQBOp0OWq3WeNNoNNBqtdDpdMb/12q15zTyZjAYMD4+Di8vr7N6flpZWUEul8Pa2hpyuRwymey4fx+7yWQyvk4TnSeDwYDu7m50dHQgICAAsbGxXA62CQiCgJaWFoyMjCAnJwdOTk5il3RGmykLWBoGdAu1WZ6U8/PzKC8vR3BwMKKjo3nStwmMjY2hqakJjo6OSEpKgoODg9glEZkEQRCwurqKlZWV40L12dyO+WwQPtntXPpyHFt+EhMTc1YzWz5/keBC6vzszdraGvb29rCxseFrPNF/LS0toampCUtLS0hMTIS3t7fYJdEZCIKAw4cPo6+vDzk5OVAoFGKXdFqbJQtYInbYIpM1MzODyspKhIeHIzIyUuxy6AzUajVaWlowMTGBuLg4BAYG8mSbLIogCNBqtVheXoZKpcLy8jJWVlaOuxkMBtjY2MDGxuaEoGpnZwdnZ+fThu+1fE5ptVq0t7cjJCRkTUboTjbSf7Lb8vLycf9eXV3F6uoqpFIp7O3tj7s5ODjAzs4ODg4OkMvlfE0hi+Ho6IicnBwMDAygvr4enp6eSEhIgI2Njdil0SlIJBLjBc+ysjJkZWXBzc1N7LJoE2JAJ5M0NTWFqqoqxMTEIDQ0VOxy6DQEQcDg4CBaWlrg4eGB7du3c09zMltarfaE0P3Zm06nM44IH7t5e3sf929z7cMgkUiMFxPOlV6vP+F3OTc3h5GREeOMA5lMdkKA/+yN04DJ3EgkEgQFBcHLywvNzc3Yt28f4uPjERAQwItVJiwyMhIymQwVFRXIzMxkY1w6ZwzoZHLGx8dRU1ODhIQEBAUFiV0Oncby8jKampqwuLiI5ORk+Pj4iF0S0QXTarVYWFjAwsICVlZWjhsJ12q1JwRFpVJ53Ggvg+K5s7KygpOT0ynXbWq12hNmJUxNTR13YUQulx838m5vbw9nZ2fjrASizerY1rIjIyNobm7G0NAQEhMTuYTMhIWGhsLKygqVlZVIT0+Hl5eX2CXRJsKATiZlZGQE9fX1SE5Ohp+fn9jl0CkIgoCenh60t7cjICAA6enpPAGmTWl1dRXz8/OYn5/H3Nwc5ufnsby8DBsbGygUCjg4OMDNzQ3+/v7HjdRy9GpjHRuZP9k6yWNLCz47+r68vIyxsTF0dHRgdXUVDg4OUCgUcHFxgUKhgEKh4FRh2nR8fX3h4eGB1tZWFBcXG2cZ8vXINAUFBcHKygo1NTVISUmBr6+v2CXRJsGATiZjcHAQTU1NSEtLYzMUE7a6uor6+nosLS0hKyuLU7doUxAEASqVyhjGjwVytVptDG8KhQKBgYFQKBRcprGJSCQSWFtbw9raGi4uLid8Xq1WH/c37+/vx/LyMmxtbY8L7AqFAnZ2dgw7ZNLkcjmSkpLg7++PhoYGTExMICUlhRecTJS/vz+srKxQV1cHvV6PgIAAsUuiTYABnUxCX18fWlpakJGRAU9PT7HLoVOYnJxEXV0d3N3dsXXrVo6ak0kSBAFLS0vHhfH5+XlotVo4OjrCxcUFSqUSYWFhUCgUfBybOVtbW9ja2h43xVSr1R4X2kdGRrC0tAS5XH5cYFcoFHB0dGRoJ5OjVCqxdetWNDY2ori4GKmpqfDw8BC7LDoJHx8fZGRkoLq6Gnq9HsHBwWKXRCaOAZ1E193djcOHDyM7Oxvu7u5il0MnYTAY0NHRge7ubsTHxyMoKIgnrGQSDAYDFhcXjdPTj90EQYCzszNcXFzg6+uLmJgYODs7m22DNjo3crkcSqXyuBlAer0eCwsLxsdQd3c3FhYWIJFIjgvsLi4ucHJyOqu944nWk1wuR1paGvr7+1FVVYWwsDBERUXxsWmCPD09kZ2djcrKSuj1eoSFhYldEpkwBnQSVWdnJ7q7u5Gbm3vSqYkkvpWVFdTV1UGr1aKgoIB7ZZKoBEHAwsICpqamjDcAxvAUHBxsHPXkSSqdCysrK7i6usLV1dX4MYPBYJyNMTc3Z9yxAoAx4Ht4eMDJyYkXLUkUEokEwcHBcHNzQ21tLaamppCWlgY7OzuxS6PPcXd3R05ODioqKqDX67mFMJ0SAzqJpre3F0eOHEFubi4UCoXY5dBJjI6OoqGhAb6+voiPj4dMxpcM2liCIGB5eRlTU1OYnJzE1NQU9Ho93N3d4eHhgaioKCgUCoYjWhdSqdTYCf7Y2lFBEDA/P4+pqSlMTEygvb0dVlZWxrCuVCrh4ODAxyRtKGdnZxQUFODQoUMoLi7mziomytXVFbm5uSgrK4NcLkdISIjYJZEJ4tk2iWJoaAitra3IyclhODdBer0era2tGBwcRGJiIvz9/cUuiSyISqU6LpCvrq7C1dUVHh4eCA0NhaurK0fHSTQSiQQuLi5wcXFBeHg4DAYDZmdnMTU1haGhIRw6dAg2NjbHBXaOZtJGkMlkSE5OhoeHB+rr6xEQEIC4uDgu7TExCoUCWVlZKC8vh1wu5zkWnYABnTbc+Pg4GhsbkZGRATc3N7HLoc9ZWlpCbW0tJBIJtm7dyn1Wad1pNJrjAvnS0hJcXFzg4eGBpKQkuLm5cfYGmSypVAp3d3e4u7sjKioKOp0OMzMzmJqaQk9PD+rr6+Ho6HhcYLe2tha7bDJj/v7+cHV1RW1tLQ4ePIi0tDQ4OjqKXRZ9hpubG9LT01FTUwO5XM590uk4POOhDTUzM4OamhokJyezW7sJOrbVXXBwMGJjYzlKSetCq9ViZmbGGMjn5+fh5OQEDw8PxMbGQqlUsrM6bVoymQyenp7G9zitVmvsl3D48GEsLi5CoVAYA7u7uzsvQNGac3BwQH5+Ptra2lBSUoItW7Zwiy8T4+XlhaSkJNTU1CAnJ4eDVmTEdwTaMPPz86isrERcXBz8/PzELoc+Q6fTobm5GePj49yHntbcsTW7o6OjmJqawuzsLOzs7ODh4YHw8HAolUruO05mSy6Xw8fHx7geWK1WGwN7c3MzVCoVXF1doVQq4ePjw54KtGakUini4+OhVCrR0NCAyclJbNmyhReETIi/vz+0Wi0qKyuRl5fHRrwEAJAIgiCIXQRtvIWFBSgUCszPz2/Ii8Hy8jIOHjyIkJAQREVFrfv3o7M3Pz+P2tpa2NjYIDU1lWslaU0IgoDZ2VmMjo5iZGQEGo0GXl5e8PDwgIeHB+zt7cUu0eJptVp8+OGHuPTSSzljQUQrKyuYnJzE5OQkxsbGYGNjA19fX/j6+sLFxYVhndaESqVCXV0dVldXkZaWxv4/JqajowO9vb3Iz8/fsKWFG50F6OzxEhqtO7VajfLycvj5+XFLCRMiCAJ6e3vR1taG8PBwREVF8USQLoggCJiZmcHIyAhGR0eh1Wrh7e2NhIQEeHh4sFER0UnY29sjKCgIQUFB0Ov1mJiYwMjIiLGB1LGw7urqytdoOm92dnbIzc1FR0cHDh48iLi4OAQHB/MxZSIiIyOh0WhQUVGBvLw8ziqzcAzotK60Wi0qKirg5uaG+Ph4vhGYCI1Gg8bGRszOziIrKwtKpVLskmiTEgQB09PTxlCu1+vh4+ODxMREKJVKhnKic2BlZWWcDq/X6zE1NYWRkRFUVlYaP+fr6wt3d3e+n9I5k0gkiI6OhlKpRF1dHSYnJ5GUlMSmhSZAIpEgPj7+uJDOmU2Wi1PcLdRGTGvR6XSoqKiAtbU10tPT2XDMRMzMzKC2thbOzs5ITk6GjY2N2CXRJmMwGI4L5YIgGIODUqnkc32T4BT3zcNgMBjD+ujoKCQSyXFhnc85Olerq6toaGjAwsIC0tLS2KDMRBgMBlRXV0Or1SI7O3td+wVwirvpYkC3UOv9pDz2AqPT6ZCdnc1RNBMgCAK6urrQ2dmJmJgYhIaGcgSGzhoDgvlhQN+ceIGM1oogCOju7sbhw4cRGRmJiIgInheYAL1ej4qKCshkMmRkZKzbc5oB3XQxoFuo9XxSCoKA+vp6LC4uIjc3lyd+JkCtVqO+vh4rKytITU2Fq6ur2CXRJmAwGDA5OWkMApxia14Y0De/zy4xGRkZgcFgMD5HPTw8GNbprMzOzqK2thYODg5ISUnh+mcToNVqUVpaCmdnZ6SkpKzL+y0DuuliQLdQ6/WkFAQBhw4dwsTEBJtcmIjJyUnU1dVBqVQiMTGRJ+J0WoIgYGJiAkNDQxgbG4NMJjM2qXJzc2MoNyMM6Obls00aR0ZGoNPp4OPjAz8/P3h6evK5S6el1WrR1NSEqakppKamwsPDQ+ySLJ5arUZpaSk8PT2RkJCw5s9hBnTTxSZxtKY6OjowOjqK/Px8hnMT0Nvbi9bWViQkJCAwMJAnaHRKKpUKAwMD6O/vh8FggL+/P7Kzs9k5mmiTkEgkcHd3h7u7O+Lj4zE7O4uRkRE0NDRAKpUaO8XzvZlORi6XIzU1Ff39/aiqqkJcXBxCQkLELsui2draIjs7G6WlpbCxseE2xRaEAZ3WTE9PD3p6epCXl8c9jkVmMBjQ0tKC4eFhZGdnw93dXeySyAQdGy3v7+/H2NgYPDw8EB8fD29vb06NJdrEJBIJ3Nzc4ObmhtjYWIyNjaGvrw8dHR3w9vZGcHAwPDw8ePGNjiORSBAcHAwnJydUV1djcXER8fHxfD8QkYODgzGky+VyhIaGil0SbQAGdFoTg4ODaGtrQ05ODqfJiEyr1aK2thYqlQqFhYW8WEInUKvV6O/vx8DAAPR6PQIDA7Fjxw44ODiIXRoRrTGpVGpcprK8vIz+/n7U19fDysoKQUFBCAwM5Kg6Hcfd3R0FBQWoqqpCVVUV0tLSuAxGRM7OzsjKykJ5eTmsra3h7+8vdkm0zhjQ6YKNj4+jqakJGRkZ3KZDZMvLy6isrISDgwPy8/P5hkpGgiBgcnISfX19GBsbg1KpRFxcHEfLiSyIg4MDYmNjER0dbRxVP3z4MEfV6QTHziNqa2tx4MABZGVl8SKuiNzc3JCRkYHq6mrI5XJ4eXmJXRKtIwZ0uiDT09OoqalBcnIyPD09xS7Hok1NTaGmpgb+/v6Ij4/nSRYBODpafmxtOUfLiQjgqDqdHblcjszMTLS2tuLAgQPIyMjgkjkReXp6Ijk5GTU1NVy+aOYY0Om8zc/Po6qqCvHx8fDz8xO7HIvW39+PQ4cOIT4+HsHBwWKXQyLjaDkRna2Tjap3dHTAy8uLo+oEqVSKhIQEODk5oaKiAlu2bEFgYKDYZVksPz8/aDQaVFVVITc3FwqFQuySaB0woNN5WV5eRkVFBcLDwxkIRSQIAtra2tDf34/MzExui2LhOFpOROeLo+p0OsHBwXBwcEBNTQ0WFxcRGxvLCzciCQkJgUajQUVFBfLz8/keb4YY0OmcqdVqlJeXw9/fHxEREWKXY7F0Oh3q6uqwuLiIgoICODo6il0SieCzo+Xj4+Nwd3fnaDkRXRCOqtPJeHh4oKCgAJWVlVhaWkJqaipkMkYJMURGRkKj0aC8vJxbG5shPqvonBx7MTgWAvgGLY6VlRVUVVXB2toaBQUFsLa2Frsk2mAGgwFDQ0Po6uqCVqtFYGAg4uLieCWdiNbMqUbV5XI5IiIi4O/vzwuBFsbR0REFBQWoqanBwYMHkZmZyd1iRCCRSBAfHw+tVouKigrk5ubyXNCMSARBEMQugjbewsICFAoF5ufnz3pbNJ1Oh4qKClhbWyM9PZ1vyiKZmZlBdXU1fHx8kJCQwL+DhdHr9ejv78eRI0cglUoRERGBgIAAPg7onGm1Wnz44Ye49NJLueMDnTWDwYDBwUF0dXXBYDAgPDwcQUFBsLKyErs02kAGgwHNzc0YGxvjLj4iMhgMqKmpgUajQXZ29jnNaDifLEAbgyPodFaOvQBIJBKkpaUxDIhkaGgIjY2NiImJQWhoKGcwWBCtVove3l709PTA1tYWcXFx8PX15WOAiDaUVCo1rkkfGRlBZ2cnOjs7ERYWhuDgYF7ssRBSqRSJiYlwcnJCeXk5kpKSuD+3CKRSKdLS0lBRUYHa2lpkZGTwHN0MMKDTWWlra4NKpUJ+fj6vkotAEAR0dHSgu7sb6enp3P/SgqyurqKnpwc9PT1wdnY2bmnIYE5EYpJIJPDz84Ovry8mJiaMQT00NBShoaGwsbERu0RaZxKJBGFhYXB0dERtbS2WlpYQFRXF96cNZmVlhczMTBw4cABtbW2Ij48XuyS6QAzodEYDAwMYGBhAQUEBr4yLQKfToaGhAXNzc8jPz+c0JAuhUqlw5MgR9Pf3w93dHVlZWdzzlIhMjkQigZeXF7y8vDA9PY3Ozk7s2bMHQUFBCA8Ph52dndgl0jrz8vJCfn4+qqqqsLi4iJSUFA7mbLBje9YfOHAACoUCAQEBYpdEF4BzIOi0Zmdn0dzcjLS0NHYJF4FarUZZWRnUajUKCgoYzi3A0tISGhoasHfvXqjVauTl5SE7O5vhnIhMnru7O7Kzs5GXlwe1Wo29e/eioaEBS0tLYpdG68zZ2RkFBQVQq9UoLS2FWq0WuySL4+joiLS0NDQ1NWF2dlbscugCMKDTKanValRXVyM6Ohqenp5il2Nx5ubmUFJSAicnJ+Tk5HC6oJmbn59HTU0NiouLAQBbt25Feno6XFxcxC2MiOgcubi4ID09HVu3boUgCCguLkZNTQ3m5+fFLo3WkY2NDXJycuDk5ISSkhLMzc2JXZLF8fT0RHR0NKqrq3mRZBNjQKeT0uv1qK6uhlKpRFhYmNjlWJyRkRGUlpYiNDQUycnJnCpmxqanp1FZWYmDBw/CxsYGO3bsQHJyMpycnMQujYjogjg5OSElJQU7duyAjY0NDh48iMrKSkxPT4tdGq0TKysrJCcnIyQkBKWlpRgdHRW7JIsTFhYGpVKJ6upq6PV6scuh88A16HQCQRDQ3NwMQRCQlJTEZh8bSBAEdHV1obOzE6mpqfDx8RG7JFoHgiBgYmICXV1dmJ+fR0hICJKTkzlLgojMkr29PbZs2YLIyEj09PSgsrISCoUCkZGR8PDw4HmGmZFIJIiMjISjoyPq6uoQFRWF8PBw/p03iEQiQVJSEkpLS9Hc3Mxz+U2IAZ1O0Nvbi/HxcRQWFnLkdgMduzAyNjaGvLw8Tm02Q4IgYHR0FJ2dnVCpVAgLC0NmZiabLxKRRbC1tUVsbCwiIiLQ29uLuro62NnZITIyEj4+PgwRZsbX1xf29vaoqqqCSqVCQkIC/8YbxMrKChkZGSgpKUFvby9CQ0PFLonOAQM6HWdychJtbW3Iyclh59UNZDAY0NjYiJmZGeTn58Pe3l7skmiNzczMoKWlBSsrK4iMjERgYCBkMr4EE5HlkcvliIyMRGhoKPr7+9Hc3IwjR44gPj4ebm5uYpdHa8jFxQX5+fkoLy9HQ0MDkpOTGdI3iJ2dHTIyMlBeXg4nJyd4eHiIXRKdJa5BJ6Pl5WXU1tYiISGBb5AbyGAwoK6uDnNzc8jLy2M4NzPLy8uoqalBeXk5PD09sXPnToSGhjKcE5HFk8lkCAsLw86dO+Hp6Yny8nLU1NRgeXlZ7NJoDdnb2yMvLw9zc3Oora2FwWAQuySL4ebmhoSEBNTW1vJ5tYkwoBOAo3ttV1dXw8/PD0FBQWKXYzGONeNbXl5Gbm4ubG1txS6J1ohGo0FLSwuKioogk8mwc+dOREdHM5gTEX2OTCZDdHQ0duzYAZlMhqKiIrS0tECj0YhdGq0RW1tb5ObmYnl5mc3LNlhQUBD8/PxQXV0NnU4ndjl0FhjQCYIgoL6+HtbW1oiPjxe7HIuh0+lQWVkJrVaL3NxcNggzEwaDAd3d3di7dy8WFhZQUFCA5ORkXnwhIjoDOzs7JCcno6CgAAsLC9i7dy+6u7s54mombGxskJubC41Gg8rKSobFDRQfHw9ra2vU19dDEASxy6EzYEAndHZ2Yn5+HmlpaZBK+ZDYCFqtFhUVFQCA7OxsNgkzA4IgYGRkBEVFRejv70daWhpycnKgUCjELo2IaFNRKBTIyclBamoq+vv7UVRUhJGREQYLMyCXy5GTkwMAqKiogFarFbkiyyCVSpGWloa5uTl0dnaKXQ6dAedaWrixsTF0dXUhPz+fI7gbZHV1FRUVFbC1tUV6ejo75ZuBmZkZtLa2Ynl5GTExMQgMDGQTHCKiC+Tl5QUPDw8MDg6iubkZ3d3diIuLY5+cTU4mkyErKws1NTUoKytDdnY2z0E3gI2NDTIzM3Hw4EE4OzvDwcFB7JLoFDhcauGampqQkpLCUb4NolarUVZWBgcHB2RkZDCcb3LHGiuWl5fDw8MDO3fuRFBQEMM5EdEakUqlCAoKws6dO+Hh4YHy8nI2vDIDx7YBc3BwQFlZGdRqtdglWQSFQoHk5GTU19djYWFB7HLoFBjQLVxwcDB8fX3FLsMirKysoLS0FC4uLlxOsMlpNBq0traiqKgIVlZW2LFjBxvAERGto882krOyskJxcTFaW1s5RXoTk0qlSE1NhYuLC0pLS7GysiJ2SRbBz88PoaGhqKurE7sUOgUmBAsXGRkpdgkWYWlpCaWlpfD09OQeoJvYZxvAzc/PGxvA2dnZiV0aEZFFONZILj8/H3Nzc9izZw8byW1iUqkUycnJ8PDwQGlpKZaWlsQuySJER0fDyclJ7DLoFDjcY+EYFNffwsICysvLERAQgNjYWP7ONyFBEDA6Ooq2tjbjFX9PT0/+LYmIRHKskdzExARaW1vR29uL2NhY+Pj48LV5k5FIJNiyZQva2tpQWlqKnJwcODs7i12WWZNIJEhMTBS7DDoFBnSidTQ3N4fy8nKEhYUhMjKSJw2b0NzcHFpaWrC0tITo6GgEBgZyeQIRkQmQSCTGRnIDAwNobm5GT08P4uPj4eLiInZ5dA4kEgliY2Mhk8mMjeP4N1xf3EHIdDGgE62T6elpVFZWIjo6GmFhYWKXQ+dIp9Ph8OHD6OvrQ1hYGDIzM/lmRkRkgqRSKYKDg+Hn54euri6UlpYiJCQEUVFR7A2yiUgkEkRFRcHKygplZWXIysqCu7u72GURbTi+ahGtg4mJCVRXVyM+Ph7BwcFil0PnaHJyEo2NjbCxsUFBQQGn2hERbQJyuRyxsbHw9/dHY2MjiouLkZSUBA8PD7FLo3MQHh4OmUyGiooKZGZm8u9HFocBnWiNjY2Noba2FomJiQgICBC7HDoHx7qzj4yMICYmBiEhIVyWQES0yTg7OyM/Px+9vb2orq6Gr68v4uLiYG1tLXZpdJaCg4NhZWWFqqoqpKWlwdvbW+ySiDYMF1ISraHh4WHU1tYiJSWF4XwTEQQBw8PDKCoqwurqKrZt24bQ0FCGcyKiTUoikSA0NBTbtm2DWq1GUVERRkZGIAiC2KXRWQoICEBKSgpqa2sxPDwsdjlEG4Yj6ERrpL+/H4cOHUJ6ejq8vLzELofOkkqlQnNzM2ZmZpCQkAA/Pz8GcyIiM2Fvb4+srCwMDw+jqakJg4OD2LJlC7fH3CR8fX1hZWWFmpoa6HQ6BAUFiV0S0brjCDrRGujp6UFLSwuysrIYzjcJQRDQ19eHoqIiyGQybN++Hf7+/gznRERmRiKRwN/fH9u3b4dMJkNRURH6+vo4mr5JeHl5ISsrCy0tLejp6RG7HKJ1xxF0ogvU1dWFrq4uZGdnw83NTexy6CwsLi6iqakJKysrSEtL40UVIiILYGNjg9TUVIyPj6OpqQlDQ0NISkqCo6Oj2KXRGSiVSmRnZ6OyshJ6vR4RERFil0S0bjiCTnQBent70dXVhdzcXIbzTcBgMKCzsxMlJSVQKBTYvn07wzkRkYXx8vLC9u3boVAosH//fnR2dsJgMIhdFp2Bm5sbcnNz0dXVhd7eXrHLIVo3HEEnOk9DQ0NobW1FTk4OFAqF2OXQGczOzqKxsRGCICAnJ4cXVIiILJhMJjP2HWlsbMTw8DCSkpLg6uoqdml0GgqFApmZmaioqIC1tTX8/PzELolozTGgE52H8fFxNDY2Ij09nUHPxOl0Ohw+fBh9fX2IiIhAREQEpFJOHiIioqOjslu3bkVXVxfKysoQHByM6OhoyGQ8RTZV7u7uSE9PR01NDeRyOTw9PcUuiWhN8SyV6BzNzMygpqYGSUlJnB5t4iYmJlBcXIzZ2VkUFBQgKiqK4ZyIiI4jlUoRFRWFgoICzMzMoLi4GBMTE2KXRafh5eWFpKQkVFdXY2ZmRuxyiNYULw8SnYOFhQVUVlYiLi4O/v7+p7zf8vIyysrK0N3djZaWFtx4441ISUnZwEotm0ajQUtLC0ZHRxETE4OQkBB2ZyciotNydnZGfn4+ent7UV1dDT8/P8TFxcHa2lrs0ugk/P39odVqUVlZiby8PDg7O4tdEtGaYEAnOkvLy8soLy9HWFgYQkJCTnm/d999F9/73veOu/r+3HPPYXV1lW/yG2B6ehq1tbVwdnbGtm3bYG9vL3ZJRES0SUgkEoSGhsLb2xtNTU0oLi5GWloa3N3dxS6NTiIkJAQajQbl5eXIz8+Hg4OD2CURXTDO9SQ6C2q1GhUVFfDz80NkZOQp71dSUoJdu3ZBq9UYP3brrbfinXfeYThfZ4IgoKOjAxUVFYiIiEBWVhbDORERnRd7e3tkZWUhIiICFRUV6Ojo4L7pJioyMhJ+fn6oqKiAWq0WuxyiC8YRdKIz0Gq1qKiogKurK+Lj4085VXpqagrbtm0DAMzOziEiIhxFRcWnnQpPa0OtVqOurg4qlQp5eXlwcXERuyQiItrkjo2mu7m5oba2FlNTU0hNTYWtra3YpdFnSCQSxMfHQ6PRoKKiAnl5eZDL5WKXRXTeOIJOdBo6nQ6VlZWws7NDcnLyadcxu7m5ITk5GQDwm9/8BtXVNQznG2B8fBzFxcWwtbVFYWEhwzkREa0pFxcXFBYWwtbWFsXFxRgfHxe7JPociUSC5ORk2NnZobKyEjqdTuySiM4bR9CJTsFgMKC2thYSiQTp6eln7P4tlUpRUVGB7u5uxMTEbFCVlstgMKC9vR29vb3YsmULAgMDxS6JiIjMlFwuR0pKCgYHB1FTU4OQkBDExMRwZxATIpVKkZaWhoqKCtTW1iIjI4N/H9qU+KglOglBENDQ0ACVSoXMzExYWVmd1ddZW1sznG+A5eVlHDx4EBMTEygsLGQ4JyKidSeRSBAYGIjCwkJMTEygtLQUy8vLYpdFnyGTyZCVlQWVSoWGhgb2DaBNiQGd6HMEQcChQ4cwOzuL7OxsrmMyMcPDw9i/fz9cXV1RUFAAJycnsUsiIiIL4uTkhIKCAri4uGD//v0YGRkRuyT6DLlcjuzsbMzOzqKlpYUhnTYdTnEn+pzOzk6Mjo4iLy+PjWBMiF6vR0tLC4aHh5GcnAxfX1+xSyISjcFggEajgVarhVarhU6nO+HfZ6LX6wEAhw8fNs4SUqvVGB0dhZubGxQKBYCjI1JyuRxyuRzW1tYn/JtTSMkSWVlZYcuWLVAqlWhsbMTk5CTi4+PPesYdrS9bW1tkZ2fj4MGDsLa2RlRUlNglEZ01BnSiz+jp6UF3dzfy8vK4l6YJWVhYQG1tLeRyObZu3crt08isGAwGrKysYGVlBSqVyhiyT3bTaDTQ6XTGcC2VSo1h+fMh+my+L3C0GabBYMDs7CzeeecdY7i/6qqr4OrqCpVKdVz4P3Y79vVWVlaQyWSwtrY+oZbP3uzs7GBvbw97e3uGejIbvr6+cHFxQW1tLQ4cOIC0tDTO7DIRDg4OyMnJQWlpKaytrRESEiJ2SURnhQGd6L+GhobQ1taGnJwcODs7i10O4ehyg4GBARw6dAihoaGIjo7miT1tOgaDAWq1GisrK1heXoZKpcLy8rIxlKvVakilUtjZ2cHOzu64oGtra3va0Hsho3VarRYDAwOIj4+HXC7H448/jr/+9RW8996r2LHj68jPz8fWrVtP+fV6vf60FxO0Wi1WV1extLQEjUYDlUoFlUoFg8EAW1tbY1h3cHCAnZ0dHBwcYG9vD1tbWz7PaVOxt7dHXl4eDh8+jJKSEiQkJCAwMPC0O7/QxnB2dkZWVhbKy8shl8u5uw5tCgzoRDi6VVdjYyMyMjLg5uYmdjmEo+GhqakJU1NTyMjIgKenp9glEZ2UIAhYXV09LnR/9qZSqQDguBFkR0dHeHp6Gv9ta2sr+sm8nZ0dBEFAe3snACAuLu6097eysoKVldU5LQUSBMF4seKzt+np6VP+rj57c3BwgI2Njei/K6LPk0qliI2NhVKpRH19PaamprBlyxb2sTEBbm5uSE9PR01NDeRyOby8vMQuiei0JAI7J1ikhYUFKBQKzM/PW/xo8fT0NCoqKpCcnAw/Pz+xyyEAs7OzqKurg729PVJSUtgLgEyGIAhYXl7G/Pw85ubmMD8/j/n5eWg0muNGhT8fKtdjVFir1eL999/H4OAgrrnmmnO+iKXVavHhhx/i0ksvhVwuR0NDA1JSUgAAl112Gd5///1zOt7HH3+M999/H1u2bMENN9wAa2vrc/p64OhsA5VKddILHcdmG1hbW0OhUEChUMDFxQUKhQIODg4M7WQy1Go16uvrsbKygrS0NLi4uIhdEuHoTMnGxkbk5ORwMAbMAqaMI+hk0ebn51FVVYW4uDiGcxMgCAJ6enrQ3t6OqKgohIeH86SbRGMwGLC4uHhcEJ+fn4cgCHB2doZCoYCPjw+io6Ph7Ox8Vuu+18ri4iK2bduGuro6SKVSvPLKy2hsbLqgYyYnJyMsLAzd3d246qqrzulr29ra8MUvfhF+fj54/vnnMTU1hQcffPCca5BKpXBwcDhlDxCdToeFhQXj3+LIkSNYWFiARCIxhvZjwd3JyYlT5UkUxxqUdXV1obS0FDExMQgNDeX7mcj8/f2h1WpRWVmJvLw8hlIyWQzoZLGWl5dRUVGBsLAwNg4xATqdDnV1dZifn+fVbdpwnw1+xwL54uIipFKpMfQFBQVBoVCYRPB7/vnncejQIXz66Vvo7x/CzTffi6mpKSiVygs67u23347HHnsMF1100Uk/r9Pp8Mtf/hLvvvsu0tPT8cILLwA4OhIDAH//+x/xs5/9GlVVVRdUx8kMDAzg+eefx7333nvca/axCynHQvvg4CBaWlpgMBjg5ORkHGVXKBQbfiGFLJdEIkFkZCSUSiVqa2sxNTWF1NRUPv5EFhISAo1Gg/LycuTn57MhMJkkTnG3UJY+rWV1dRUHDhyAt7c34uPjeVVbZCsrK6iqqoK1tTXS09PPa2os0blYWVnB5OQkpqamMDc3h6WlJePU6c8Guo2YOn3kyBG0tbXhsssuO6vvpdPpEBYWhtzcVDzzzGP47W9fwJNP/g7d3d0IDQ096+/7+SnuxwiCcNI6RkdH8Y1v7EJFRSUMBgMkEgk0Gg1kMhmmp6fh7++P73//FvzjHx8iMzMHf/3rX8+6lmOGhoZga2t7woUGtVqN3Nxc1NfXw9fXF2+88Qby8/NPeZzPLkX47EUXjUYDR0dHuLi4QKlUwsPD45x2hRAEAcXFxWhubsbs7CyCgoKwa9cui3wfpbOn0WhQU1MDjUaDzMxM7kQiMkEQ0NLSgrGxMRQUFMDGxkbskkRh6VnAlPEyHlkcg8GAmpoauLi4MJybgJmZGVRXV8PHxwcJCQmij0ySeVpdXcXU1JQxlK+srMDFxQUeHh7w8/ODQqHY8EZthw8fxje+8Q20tLQAAD744ANceumlZ/y68fFxDAwMYGBgAG+99T70ej2uuOIKBAYGrkldp/odPP744zh06BD+85/X8cILr6K5ucM4Guju7o7rrrsOv/jFswCA3/3uuXP+vq2trcbQ/bvf/Q7XXHONsZa77roLra2teOONF/Dssy9i27ZtqK2tRVJS0il/BkdHRzg6OhqXLwmCgMHBQezevRuRkZFITEyEr68vHBwcjGFdqVSe8mRdEATccccdeO655yCRSODt7Ynx8Uncdttt+Nvf/oZvfOMb5/wzk2WwtrZGdnY2Dh06hAMHDrAhrcgkEgni4+OhVqtRW1uL7OxsnnuQSWFAJ4vT0tICrVaLrKwshnORHWvYEhsbi5CQEP49aM1otVpMTU0ZQ/ni4iIUCgWUSiUSEhLg5uYmenfl+fl5tLS0ICjIH3q9AR9//PFZBXQ/Pz8899xzaGtrQ3x8PFJTU5GQkLDuU2ednJywsLCIG264G2NjE3j55ZeP+/yf/vQn7Ny5EyEhIcjIyDjj8QRBwNDQEFpbW9HT04Nf/OIX8PX1QnR0OK677jq8/fbbeOCBB/DnP/8Zf/nLX/Db3/4cF1+8Ddu35yEj4xI88cQTeOutt866folEgra2NhQXF6O4uBgeHu7YtetKPPTQQ5iamkJXVxdqa2vh7OxsDOzu7u7Gx0lbWxuee+45PPHET/Dd7+7G2NgEbrvthygpKcff//53BnQ6LalUii1btsDR0RHl5eVISkrill8ikkgkSE5OxsGDB9HS0oItW7aIXRKREQM6WZS+vj4MDw+jsLCQ68BEJAgCOjo60N3djfT0dG55QhdMr9djenraGMjn5+dhb28PDw8PREdHw93d3eSmMWZmZuKRRx7BI488AuBoAD4b8/PzqK2tRWdnB/7zn3/D0dERmZlZ+PWvf33WxzgfP/jBD7C4uAhXV1dcdNFFJ+yRLpVK8c1vfhMAMDU1heLiYnR3d0Ov10On0xkb7s3NzWF2dhZtbW0YGxsDAMhkMiQmxuG11/4AHx8vXHHFJfjBDx5BdnY2XFyc8atfPYJvfetoAJbL5bj77ptx770Pobq6+qwuBhxz8cUX45ZbbsELL7wANzcXVFVVwtvbG97e3gCOzrSYnp7G5OQkWlpajDMtlEol5ubm/rtHvTUkEgm+//3/D62tnXj66adx0003rcFvmMydRCJBWFgYHB0dUVtbi6WlJURFRfHitEhkMhkyMjJw4MABY58RIlPANegWyhLXnRzbTi0rK+uCGynR+dPpdGhoaMDc3BwyMzMt5vFHa8tgMGBubs44ZX1mZgbW1tbGacoeHh6ws7MTu8wzEgQB9957L5ydnbFr166zWnZTUlJiDMe7d18FKysrvP32+wgODsF9992HwsLCs5rufqo16OdjZWUFBw8exL59+7B37x40NjZBEAS4urpAJpNBJrOCo6MDFApnODs7wtnZCSEhQUhLS0R8fDT8/HxgZWV13DFXV1dRW9uIqKhwKJXux31Oo9HgS1+6FhMTM6ivr4e7+/GfP9XP+9prr+EHP/gBbGzkuPLKK/D886+gsbHxlHu+q1Qq42NscnISy8vLaGtrg7OzHZ577kU8/PDDuPrqq8//F0cWa2FhAVVVVXBxcUFycjIHDUQ0OTmJqqoqi2tQa4lZYLNgQLdQlvakVKlUKCkpQWRk5Dk1UaK1pVKpUF1dDalUioyMDJMb0STTZjAYMDU1hZGREYyOjgIAlEqlMZBvxr2w1Wo1Hn74Yfz2t7/F6uoq0tJSUVFRecaT9T/96U+4//77YWdni1//+nEEBPji2mtvw+DgMKysrNDT03PGkH6+AX15eRm9vb3o7e1FU1MT9u7di4qKCmg0Gnh7e6KwMAdbt+agoCAbvr7eZ33cczU4OIKtW7+CqKgofPLJp6edPTA8PIwvfelSNDU146tf/RJ+9auHIJfLceml12B+fgl79+5FVFTUab+fIAhYWlrCww8/DJlMhqSkJLi6usLHxwe+vr5QKpVcx0rnZHV1FdXV1TAYDMjMzIStra3YJVmsnp4edHZ2orCwcFNc3F0LlpYFNhMGdAtlSU9KvV6PgwcPwsXFBYmJiZvuBN5czM3NoaqqCh4eHkhMTDxhtIzoZAwGAyYnJ42h3MrKCr6+vvD19YWbm9umej4PDQ2hpKQEWVlZCA0NRUVFBe688060trbi7rtvRlRUOG688R68+eabuPLKK894vOHhYezevRvl5WXo6amBRCLB7t13Yf/+ckxOTp5x+6CzDegajQbvv/8+XnrpL6itrcPk5KTxc87OTsjNzcDWrTkoLMxBZGTYhv5N6uqa8LWvXY/ExCR89NFHJ/2ZFxYWkJGRgeXlRbz22h+QlBRv/Nzo6Di+9rXrMTw8hqioSLi4uMDFxRVxcXHIy8tDdnb2CcdsbGzE3XffjR/84AfIyckxPjb1er0xrHt4eDCs01nR6/VoamrC5OQkMjMz4eLiInZJFkkQBDQ2NmJhYQF5eXkWcY5iSVlgs2FAt1CW8qQUBAH19fVYWVlBTk6ORbzgmqKRkRHU19cjKioK4eHhmypU0cbT6/WYmJjAyMgIxsbGIJfLjaHc1dV10z1+BEHACy+8gAceeABzc3MAABsbG6yuriIqKhwvvPA0tmw5OsU6OjoH3/72bjz11FNndezKykpkZ2fjzjtvwqOP/hCxsXn49rd348knnzzj154poE9NTeGpp57CK6+8gsnJSaSnJ2PnznwEBgYgKMgfwcEB8PISP4hWVzfg61+/Hmlp6fjggw+O28JKEARceeWV+PTTT7Bv37sIDw854etnZmbxxz/+FRMTU5ifX8DMzByam9swNzcPa2tr3HDDDXjwwQfh5+eHp556Cj/60Y8AHF1PfODAAeTl5UEQBMzOzmJkZAQjIyPQarXHhXW+99DpCIKAI0eOoKOjAykpKfD19RW7JIuk1+tRVlYGBwcHpKSkbLr3mnNlKVlgM+KCFzJr3d3dmJqaQmFhIU+QRCAIArq6utDZ2YnU1FT4+PiIXRKZKL1ej/HxcWMot7Gxga+vL3JycuDi4rKpT5Q++eQTfPe738WuXZfh//v/foDW1sMYGBhCZGQYCgtzjAH3yJFejI9PIjs7+6yO+9FHH2FlZQVXX301XnvtbWRmpmBsbAKXXHLJBdW7urqKl156CQ8++CB0Oi2uueZr+Na3rkRsbOQFHXe9ZGQk4623/oxvfONG7NixHW+88SaCgoIgCAIefPBBvPPOO3j11d+fNJwDgJubK37yk3uO+5jBYEBHRzc+/HAv/vCHl/Dyyy8jKSkJVVVVuOuum/H1r38Jd975E/zyl7/Ef/7zH0gkEri5ucHNzQ1xcXGYm5vDyMgIDh069N+p/97w8fGBl5cX34voBBKJBBEREXB0dERdXR2WlpYQERGxqV/3NiMrKytkZGSgpKQE3d3dCA8PF7skslAcQbdQlnDVbHx8HDU1NcjNzYWrq6vY5VgcvV6PxsZGTE1NISsrCwqFQuySyMTodDpjKB8fH4etra1xpFyhUJjNyemzzz6L++67D52dFXBxOfXz4JvfvAVtbV1ob2+Ho6PjaY85OjpqHGX77ne/iz/+8Y9wc3NFdnY2/v3v/5zV7+7zI+gqlQp//vOf8dRTT2F4eBhXXfUVPPLID+HpuTmaatbVNeHb374DExNTuPLKK+Ho6IgXXngBjz76Q9x1183nfdyFhUW8+upbqKqqQ0FBDm6++ToAwJVX3gQHB1f885//POXXCoKA+fl548i6Wq2Gl5cXfH194eXlxcZgdAIuBxPf7OwsysrKkJGRAU9PT7HLWTeWkAU2KwZ0C2XuT8qlpSUcOHAACQkJCAgIELsci8PGN3QqBoMBY2NjGBoawsTEBOzs7Iyh3NnZedOE8qmpKbz++uvYuXPnKTuAHzM0NISEhARcfPFW/PGPvzrpfWprG3HRRd/AW2+9dVb7aY+MjMDPzw/A0UZ5U1NTCAwMPOuO5sDxAf29997DnXfeiYmJCezadRm+//1bER0dcVbHMSWLi0t4/fV38Pzzf8X09Aweeug+3HLLt9ble33hC1ciPj4JL7300lndXxAELCwsGMO6SqWCp6cn/P394e3tLfpSATIdarUaVVVVbKgqosHBQRw6dAgFBQVnvGC6WZl7FtjMGNAtlDk/KbVaLQ4cOABvb+8znjjT2ju2dYyrqyuSk5N59Z8AHO383d/fj4GBAVhZWSEgIMAYyjej7du3o7i4GG5ubvjkk0+QlpZ22vu//PLLuOGGG/Cf//wNubmZJ3z+7rt/itLSWnR2dp71c+aGG27Ayy+/DAD45S9/ibvvvvukF8N+85vf4KWXXsKrr76KpKQk48ePBfTi4mL89re/xWWXfQGPPPJDhIZu/r2ADQYD9Hr9BW8fdzrXXfc9FBeX4be//S1uvPHGEy4u6fV6lJSUoL+/H//5z3+QkZGBH/7wh8b7HQvrg4OD0Ov1CAwMRFBQ0Bmb+5Fl0Ov1qK+v55akImppacH4+DgKCgrW9bVELOacBTY7BnQLZa5PSkEQUFVVBYPBgOzs7E0zGmcuxsfHUVtbi7CwMERFRfH3b+GOjZb39fVhenoaXl5eCA4OhoeHx6Z/bERERODIkSMAjq4f/cpXvoKLLroIu3fvPukWPQaDAXFxccjI2ILf/vbnJ3z+6qtvhbW1I957773jPq7T6YwhTiaTQaPRwN/fHyEhIZifn8ezzz6L2tpadHV1Qq/XIzc3DzfddBNycnIAAAMDAwgJCTF+/+bmZuNIrVqtxieffIJrrrkGjz76Q9x44zWb/u+ykZaXV/CTn/wcr776Fr785S/h+ef/CH9/f+Pnf/KTn+AXv/gFACAgwA+Dg8OoqKhAVlbWcccRBAGTk5Po6+vD+Pg43N3dERwczFF1giAI6OjoQHd3N9LS0uDl5SV2SRbFYDCgsrLSuDbd3F4fzTULmAMGdAtlrk/K9vZ2DA8Po6CgANbW1mKXY1G6u7vR3t6OpKSk405SyfJ8frQ8KCgIgYGBZrXUoaGhAQ8++CA+/PBD3HPPrSguLkNr62FERUXhwIEDcHNzO+Frvv3tb6OtrRl7975zwueuu+57KCmpwN13343+/v7//v76MTQ0DL1ef8L9j01rBwBfX29cfPE2yGQyFBUdRH//EO68805MT0+jtLQU09NT+OUv/z/cdtv9GBkZMTZr/OEPf4jc3FxMTvZg167L1vg3ZDk++GAP7rvvESwvq/DUU0/hlltuQWtrK1JTU3HHHTfijjtugLOzE4KCUnDffffj0UcfPeWx1Go1BgYG0N/fz1F1MhoaGkJjYyNiYmIQFhYmdjkWRaPR4MCBA/Dz80NMTIzY5awpc80C5oDdSchsDA8Po6enB/n5+QznG0gQBLS3t6O/vx85OTknDSZk/k42Wp6SkmIWo+Unk5ycjKCgINjb2+Gmm67Fww/fh/b2Llx66VW488478frrr5/wNbOzs3B3P3nDyssvvxgNDYfw17++DD8/HwQE+CI1NRYBAb7w9z960+v1sLaW4/DhLrS3dyE4OBDR0eHYsiXWONKq1WrxwAM/w6uv/hWhoUHIyUnBrbd+BwbD0ZA/NDQEHx8f7N+/H3/4wx+Qm5uLr3zl0vX7RVmAL33pIuTlZeKhh57EbbfdhldeeQWDg4OIjAzD/fffDjs7W3zySTFWVlTYvn37aY9la2uLyMhIREREGEfVi4qKOKpu4fz9/WFvb4+qqipoNBpER0eb5euqKbK2tkZGRgYOHjwIhULBLfBoQ3AE3UKZ21Wz+fl5HDx4EGlpafD29ha7HIshCAJaWlowMjKCnJwcODk5iV0SbTBLGC0/mbfeegvf/OY38dRTDxu7eh/9+Hu49db78Pbbb2PXrl3Hfc0Xv/hFyGR6vPbacxtdLmZmZhEWloG///3vuPzyyxEXF4egID98//v3Izc3GjIZe0WshYMHK/HAA49DLpfjtdeeQ0CALwRBwCWXXAWZzAalpWXnHKw4qk7HLC4uory8HL6+voiPj2dI30Cjo6Ooq6tDfn6+2exKY25ZwJwwoFsoc3pSrq6uoqSkBEFBQYiKihK7HIshCAKampowOTmJnJwcnixaEHNeW362IiIiEBUVgtde+8NxP7MgCPjWt25HY2Mbjhw5ctyFimuuuQaDgz3497//JkbJyM6+FHFxWxAXF4df/OIXKCv7ACMjKwzo6+w///kU3/rW7fjoo4/OaY/6wcFB+Pv7Gx9fn1+rrlQqERQUxFF1C7O8vIzy8nLjNmyW8pprCjo6OjAwMICCggKz6KxvTlnA3PAVnTY1g8GA2tpauLq6IjIyUuxyLIbBYEBdXR2mp6eRl5fHcG4hNBoNOjo68Omnn6K1tRVKpRIXXXSRca9YczpR1Ov1uO+++5CWlorvfe976OrqMn5udXUVR44cwSWXbDvhZ5ZIJHjkkfsxNjaGP/3pT8d9ztXVFbOz8xtS/8ncdddNePfdd/HYY4/hnntuQUhIoGi1WAqVSo2f/vQX+OIXLznrcC4IAh5++GEEBgbipptuwrFxFIlEAk9PT2RkZOCiiy6Cu7s7Wltb8emnn6KjowMajWY9fxQyEQ4ODsjLy8PU1BTq6+thMBjELsliREZGwsXFBbW1tfy907piQKdNraWlBRqNBsnJyWYVDkyZXq9HTU0NFhcXkZube9KO1WRe1Go1WltbsWfPHkxNTSE5ORk7d+5EZGSk2U5lf+qpp/DrX/8a/v6eeO+9f2LLli146qmnsLq6ioGBAQCAv//J1yKGh4fg6qu/iieeeALLy8sAgJWVFRQVFcHPz2fDfobPu/rqr+Hxxx/AD394B37847tFq8OSfPppMQYGhvDMM/93VvdXqVS45ppr8NhjjyEiIhQvvfQS9u/ff8L9jq1V37lzJ5KTkzE1NYU9e/agtbUVarV6jX8KMjV2dnbIy8vDwsICampqTtpIktaeRCJBcnIyNBoNWlpaxC6HzBinuFsoc5jW0t/fj7a2NhQWFsLe3l7sciyCTqdDdXU1tFotsrOz2YzPzK2srKCrqwsDAwPw9PRERESExTQB9Pf3x9atWfj973+JlRUVnnjiN3j++Vfg7++PSy65BC+++CKOHKmCm9vJm74NDAwhLe0L+PKXvwwrKyu8//77MBgM2Lv3HSQmxm3wT3NyOp0eZWWHOcV9Hb3yyhu4996HoNfrz3gRWaVSYefOHWhoaMDzzz+Fyy+/BFFRObjxxpuM27WdzszMDDo7OzE1NYWAgABERETwvdHMaTQaVFRUwNraGunp6ZDJ2Pt5IywvL+PAgQOIjY1FUFCQ2OWcN3PIAuaKI+i0Kc3MzODQoUNIT0/nCcgG0Wq1qKyshMFgQE5ODsO5GVtYWEB9fT327dsHrVaLgoICZGZmWkw4B4CsrCxUVdVDp9PB3t4OP/vZj1FR8SGUShe88MILyM5OP2U4B4DAQH/s3n0V/vnPf6KurgYPP3wfKis/MplwThtDpVLB1tb2rGZ43XPPPaivr8d7772KK674IiQSCbZuzcGHH35wVt/Lzc0NWVlZyM/Ph1arxb59+1BfX4/FxcUL/THIRFlbWyMnJwd6vR6VlZXQarVil2QRHBwckJaWhkOHDmFmZkbscsgMMaDTpqNWq1FdXY3Y2FgolUqxy7EIGo0G5eXlsLKyQlZWFuRyudgl0TqYnZ1FdXU1SkpKIJVKsW3bNqSlpZlNx9pz8eMf/xjd3X14/vlXjB+LjAzDv//9N/ztb8/htdd+f8Zj/PznP0ZjYxFqaj7B9753PcLCgtevYDJJrq4uUKlU2Lt3L043YfGNN97ACy+8gCeffAjp6cnGj2/blovm5kPGPe/PhkKhQFpaGrZt2wapVIr9+/ejuroas7OzF/SzkGmSy+XIysqCVCpFeXk5exFsEA8PD8TGxqK6uprLSmjNcYq7hdqs01oEQUBlZSXkcjlSU1O57nwDqNVqVFRUwMHBAampqbCy4lRYcyIIAqanp9HZ2YmZmRkEBwcjLCyMvQVwdETz2WefxaWX7sT3vnc9srPTIJFIMDk5DRcX501/oYpT3NffzMwsvv71G9DY2IKgoCDs2LEDN9xwA6Kjo+Hm5gaJRILBwUEkJCRgx448/PnPvza+rw0Pj+Kmm+7F4OAoBgcHT3i/W1paQnNzM7Kzs0/7XqhSqdDd3Y2+vj64ubkhMjIS7u7ufP80M3q9HrW1tVhZWUF2drbZ9gcxJYIgoK6uDlqtFllZWZvuObVZs4AlYEC3UJv1Sdnd3Y3u7m5s27Zt058cbwYqlQplZWVwdXVFcnIyt/IxI4IgYHx8HJ2dnVhaWkJoaChCQkLMYuuYtaLVavHKK6/g17/+Ndrb2xEUFICYmAh8/HER7rjjRjz++ANil3hBGNA3hsFgwIEDFfj00/34978/xdDQCADA2dkZISHBWFpahkq1jLKy/8DF5X+zVXbtuhGtrZ14/fXXsX379uOOqdPpcMkll2Dfvn34yleuwJtvvnXGZUerq6tobm7G8PAwnJycEBcXBy8vr00XKujUDAYDGhoaMDc3h5ycHF5o3QBarRbFxcUIDw9HaGio2OWck82aBSwBz7Zp01hYWEB7eztSU1MZzjfA8vIySktLoVQqkZKSwnBuJgwGA4aGhrB//340NjbCx8cHF110EaKjoxnOP0cul+Pmm29GS0sL9u7di4sv/iKmphYgkUjw+uvvnnbKMtExUqkUW7fm4oknfoq6uj0oKvoHXn75Wdx7761ITo5FVFQIXn752ePCOQAIggHe3t7Izc393McF3HPPPSgpKcGPf3wXPvjgQ/z85z8/bQ3d3d34zne+g5ycHFxzzTX461//irq6Ouzfvx9DQ0OiPpaHhoZw6623IjIyAj4+PggICMBjjz3Gtb3nQSqVIiUlBe7u7igtLTXuIkHr59iMzra2NiwsLIhdDpkJjqBbqM121Uyv16OkpAQ+Pj6IiYkRuxyzt7i4iPLycvj6+iI+Pp4jLGZAEASMjY2hra0NBoMB4eHhCAwM5JKF8/D666/juuuuQ19fHRQK03/9PBWOoJu2+vpmfOlL16CwsBD/+Mc/YW9vj4mJCeze/R189NHHeOaZR3HDDdfg2mtvgyDI8eGHH570OHq9HomJiZifn8Xtt1+PbdvykJX1Rbz88ssoLCzEkSNHIJVKERsbC29v7w19ve/r60NmZib0eh127foy3NxcMDY2ib///R9wdXXDu+++i+zs7A2rx1wIgoCWlhaMjIwgJycHTk5OYpdk9trb2zE2NoaCgoJN87662bKAJeF+DLQptLW1QSaTISoqSuxSzN78/DzKy8sRHByM6OhohnMzMDs7i9bWViwuLiI6OhpBQUGcEXEBOjs7oVS6w9mZJ720flJStuDNN1/E1Vffiq1btyI0NBQfffQRbGys8dZbf8ZFFxVCEAQMDY0iJCT8lMcpKytDa2srPvroDWRlpWJ2dg7A0ZG/kJAQBAUFob+/H42NjXB2dkZcXBxcXFzW/edbWFjAl7/8Zdjb22LPnregVLobP3f//bfj+uvvRmFhIV566SVcd911616POZFIJIiPj4dMJkNpaSlycnIsstnnRoqKisLExATa2tqQkJAgdjm0yfEMjUze+Pg4BgYGkJqaylCxzmZmZlBWVobw8HDExMQwnG9yKysrqKurQ1lZGdzc3LBz506EhITweXQWTrc1VXt7O2JjI/n8oHVXUJCNd999GTIZcOTIYdx223dQWvpvXHRRIQDg4MFKNDe34vbbbz/lMdra2gAA7u5HtwXs7OwBAGOIkEqlCAkJwc6dO+Hq6orS0lLU1dVBpVKt54+Ge+65B0NDg3jjjT8dF84BwMfHC++//yquvPJyfOtb38Irr7yyrrWYI4lEgpiYGISFhaGsrIxLBtaZVCpFamoq+vv7MT4+LnY5tMnxLI1M2urqKhoaGpCQkAAHBwexyzFrU1NTqKioQHR0NCIiIsQuhy6AVqtFW1sbioqKAADbt29HbGwsezecpT/+8Y/w9/fHd7/7Xeh0uhM+PzExAU9PbvFIGyMrKxUffvj/sHfvO3jggbuOe+zt2VMCPz8/7Ny585Rff+211yIyMhLXXnsbXn/9HRw4UA4ACA8/ftRdLpcjNjbW2JBu3759aGtrW5e9tQVBwIcffojrr78aUVEnH/23trbGrbd+B3K5HJ2dnWteg6WIjIxEdHQ0Kioqzmm7Pjp3jo6OSEhIQENDA1ZXV8UuhzYxTnEnkyUIAhoaGuDu7o6AgACxyzFrk5OTqKqqwpYtWxAYGCh2OXSeDAYD+vv7cfjwYTg5OSEvL29Dpqqam0OHDmFhYQF/+tOf4Orqil/84hfHfX5qahLR0UEiVUf0P+7urlheXj7tbA4nJye88847KCwsxB13/BgAcOWVV8Le3v6k97e3t0dqaqpxaczevXvXfGlMV1cXxsfHkZubccLnhoZGsX9/Kf7xjw9QXHx0Rte99967Jt/XUoWGhsLKygqVlZXIzMyEh4eH2CWZrcDAQExMTKChoQGZmZmcaUXnhSPoZLL6+vowPz+PxMREvsCto9nZWVRXVzOcb2LHGsAVFxejp6cHSUlJyM3NZTg/T9ddd52xyc8zzzxzQofryckpKJVuYpRGdJzg4EDMzc1hbGzstPdLSEjA8PAwuru78dJLL+HVV18947FdXV2Rm5uLpKQkdHd3o7i4GGNjY2vS8b2urg4AkJ6edNzHR0fHkZl5Me6666cwGGR45ZVX0NbWBqWSM1YuVFBQELZs2YLq6mrMzs6KXY7Zkkgk/23KOI++vj6xy6FNiiPoZJIWFhbQ2tqKrKysM+7tSudvcXERlZWViI6OZjjfpObm5tDa2oqFhQVERUUhODiYa8wvUHZ2Ng4ePIinn34a6enpx10gVKvVmJychLe3p4gVEh2VlZUKiUSCP//5z3jwwQdPe187OzuEhoae017NEokEPj4+8PLyQl9fHxoaGtakkVxfXx9cXV1O2AVhz54SrKyo8Morr+A73/nOeR+fTi4wMBBarRaVlZXIy8tjd/d1Ym1tjdTUVFRWVkKpVPL3TOeMZ3FkcvR6Perq6hAaGsqr5utoZWXF2K09LCxM7HLoHKlUKtTV1aG0tBQuLi7YuXMnQkNDGc7XSHZ2Nt5991088MADx3183759EAQBoaHB4hRG9Bne3p74/ve/i0ceeQSlpaXr9n2kUilCQ0Oxc+dOuLi4oLS0FPX19efdSO7gwQMnXXv+1a9eih07CrB7925ce+21GBwcvNDS6XPCwsIQHByMiooKrKysiF2O2VIqlQgNDUVtbS30er3Y5dAmwzM5Mjnt7e2QSqWIjo4WuxSztbq6ioqKCnh7e/P3vMkcawC3b98+AEcbwMXFxbEB3DoTBAGPPPIIvvzlLyMtLQnJydxGh0zDj398FzIyUrBz50488cQT69LU7Ri5XI64uDhs374dgiBg3759aG9vP6fv2dvbi48//gTXXvu1Ez7n5OSIN998Ac8++wT27t2DqKgoYxd6WjvR0dHw8vJCRUUFm5mto2Nb1ba3t4tdCm0yDOhkUiYmJtDX18ct1daRVqtFRUUFFAoFtmzZwvX9m8jY2BiKioowMzOD3NxcpKamnrLRE60dg8GA7373u3j00Ufxk5/cjY8/fgN2drZil0UEAJDJZHj33Zfw3e9+Bw899BC++tWvnHT3gbV0rJFcbm4upqenUVRUdMZ18Mf89Kc/hVLpjq9+9Usn/byVlRW+9a1voKLiA6hUKtTX169l6YSjSxe2bNkChUKBioqKdb2oY8mObb3W19eHiYkJscuhTYRr0MlkrK6uor6+HgkJCXB0dBS7HLOk1+tRXV0NGxsbpKSkMJxvEqurqzh06BAmJiYQFxeHwMBA/u02iCAIuOOOO/Diiy/id797Atdd9w2xSyI6gZ2dLR555H7k5WXiqqtuwSWXXILbbrsNX/ziF6FSqeDq6gqpVIrFxUUUFRWhq6sLcrkcQUFBCAoKgr+/P6ysrCAIAmZnZ1FaWoqSkhIcPHgAExOTAI6GuujoKFx33bfwzW9+E56ensZGcgMDA6ivr4enpycSEhJgY2NzQo2CIODRRx/F3//+dzz33JNwcDj9xUWtVvffn81u7X9hBIlEgpSUFFRWVqK6uhpZWVnG5pi0dpycnJCQkID6+nps27btpM8Nos+TCGvRjpM2nYWFBSgUCszPz8PZ2fnMX7DOBEFAdXU1JBLJCU2ZaG0YDAbU1NRgdXUVOTk5kMl4fc7UCYKAwcFBtLS0wMPDAwkJCbC15cjtRrrvvvvwzDPP4Le//Tm+/e0rxS5nTel0epSVHUZubjRkMp6Ym4sPP9yLZ555HvX1zcaPOTk5Qal0x/DwCDQaDZycHKHVaqFWn3x6s0QiQVxcNHJz0xEQ4Afg6HtIRUUt9uwpgSAIuOSSi7Fr1zdw+eWXw83NDWq1Gs3NzZiamkJ8fDwCAgKM7+WCIOCBBx7AU089hYceug/33HPLGd/nP/mkGFdddQt6e3sRHBy8Nr8cOoFOp0N5eTlsbGyQnp7O2YvrQBAE1NTUQBAEZGRkmMw5rqllAfofBnQLZWpPyr6+PnR0dGDbtm3s2r4OBEFAY2MjZmdnkZeXx9/xJrC8vIympiYsLCwgMTERPj4+YpdkcaqqqpCVlYXHH38Ad9xxo9jlrDkGdPPW0XEENTUNcHR0RH//IGZn5+Hj44kvfGErQkKCIAgCJienMTg4jNHRcRgMBkgkEtjZ2SEtLREuLoqTHnd6egb//OdHeOut91Bb2wgXFxc8+OCDSElJQVBQEGQyGVpbW+Hs7IykpCQYDAY8+uijePrpp/HEEz/Bbbddf1b1P/nk7/Dii69jcnLSZAKNudJoNCgtLYWrqyuSkpL4+14HGo0GxcXFxt1WTIGpZQH6HwZ0C2VKT8rFxUWUlJQgMzMTHh4eF3Ssnp4eFBQU4PHHH8f115/dSYC5EwQBra2tGB0dRV5eHqcLmjhBENDT04P29nYEBAQgNjaWDeDOkyAIuPLKb0ChcMFzzz13ThemBEFAQUE+ZmenUVLyL7Oc+smAThdqbGwCjz32NN5441/G/dGlUimCgoJwxRVXIDMzE++88w7+9a9/4ZFH7j+nC11XXXULADk+/viTdaqePkulUqG0tBS+vr6Ii4sTuxyzNDExgerqahQWFprE1mumlAXoeJzjSqIyGAyoq6tDSEjIBYdz4GjjmuHhYdxwww2QSqXcRxVAV1cXhoaGGM43gfn5eTQ2NkKr1SIrK4vbDF6gmZkZvPPOuwAAHx8fPP7446e8769+9St0d3dDKpXCzc0N5eXlKC0tw7vvvmSW4ZxoLXh7e+K5557C//3f4xgaGsHAwBAGB0cwNjYBGxsZBge78I1v7MJNN+1GfHzwWR/XYDCgsbEFN9548/oVT8exs7NDdnY2SktLYW1tjYiICLFLMjuenp4ICQlBXV0dCgoKuJyATokj6BbKVK6atba2YnJyEvn5+Wt2EvyFL1yEPXv24uKLv2DxV977+vrQ1taG3NxcKBQnn65I4tPr9ejs7ER3dzdCQ0MRFRXFULgGdDodfH19MTk5CSsrKzQ0NCAh4cTt0fR6vbEnQ3x8DKanZxAbG4lduy7DVVd9daPL3jAcQaeNoNcb0N8/ieHhafj7uyMoyOOMwaS4uBRf+9r1OHjwIPLy8jaoUgKOXiguLS1FXFycyUzFNid6vR4HDx6Eh4eH6DMVTCUL0Il46YZEMzk5id7eXqSmpl5QGDEYDNi/fz8MBgMA4K9/fRUvv/wynnvu+bUqdVMaGRlBS0sLMjMzGc5N2PT0NPbv34/x8XHk5+cjNjaW4XyNyGQy/PjHPwZw9KTo7bffPun9rKys8LOf/QwAcOedN6KtrRTvvPOSWYdzoo1iZSVFaKgXkpJCMDOzhLq6bszPL5/2a1599S0kJMQjNzd3g6qkYxQKBbKystDS0oKRkRGxyzE7VlZWSE1NRW9vLyYnJ8Uuh0wUAzqJQqPRoL6+HvHx8Re8Dmf37t3Ytm0bPv74YwBHp7Lu3r0boaGha1HqpjQxMYH6+nqkpaXB3d1d7HLoJLRaLZqamlBRUYGgoCAUFBTwQso6uPvuu/GHP/wBN9xwA2699dZT3u+nP/0prrzySjz44C8xNze/gRUSWQYnJzukpITC29sVzc396OoagU6nP+l9NRotZmfn8Nprr4ETPTeeu7s70tLSUF9fz/2714GTkxPi4uJQX18PjUYjdjlkghjQSRTNzc1wcXFBUFDQBR3nN7/5DV577TUAQGpq6lqUtunNzMygpqYGiYmJ8Pb2FrscOonx8XEUFRVhaWkJ27ZtQ3h4ONeirROpVIrvfe97+Mtf/gI/P7/T3vfXv/41Jien8O67/9mg6ogsi0QiQUCAEmlpYVhZ0aC29gimpxdPuN+DD96L2NhwfOc738GVV16J2dlZEaq1bN7e3khMTERNTQ1//+sgODgYLi4uaG5uPvOdyeKwSRxtuPHxcUxMTGD79u0XtJXHm2++ie9///sAgLvuugteXl5rVeKmtbCwgMrKSsTExCAgIEDscuhz9Ho92traMDAwgPj4eAQGBnI7GxHp9Xq8+eabmJmZgY+PDxYXjwaFY/s+E9H6sLOzwZYtQRgbm0N7+xC8vV0QGuplvFAZExOBN998Ee+//zHuuuunCA0NxR133IEf//jHsLe3F7l6yxEQEACNRoPKykrk5eWZROdxcyGRSJCYmIiioiKMj4/zHJaOw4BOG0qn06G5uRmxsbGwtbU97+McPnwYV111FXbuLMTevSXIyclZwyo3p5WVFVRUVCA0NNSip/ebqqWlJdTW1gIACgsL4ejoKHJFlq26uhrf+973UFdXB7lcDq1WCwAIDQ1GdnaayNURmT+JRAIfH1e4uNijrW0IDQ29iI31h52djfE+l19+CdLTk/Hccy/jmWeexrvvvouioiLODttAYWFh0Gq1KC8vR35+Pi+QrCFbW1vExMSgubkZ27ZtMzYrJeKcStpQnZ2dsLGxueCp7cemBO3bdwAAzml/Y3Ok1WpRWVkJb29vREVFiV0Ofc7Q0BBKSkqgVCqRn5/PcC6yuro65ObmQqNR4ZNP3sL4eCu6u6tRVvYBDh58H05O/PsQbRQ7OxskJ4dAobBHXV0Pxsfnjvu8j48XHn/8ARQX/xODgwP49a9/LU6hFiwqKgre3t6orKw0XsyktREcHAwbGxt0dnaKXQqZEF6qoQ2zsLCAnp4e5OfnX/C03osuuggvv/wyampqMD09jR07dqxRlZuPIAior6+Hra0tEhISOGXahOh0Ohw6dAhjY2NITU3lqI+JePjhhxAZGYZ9+96BXC4HALi5ucLNzVXkyogsk1QqRXi4D1xcHNHRMYy5uWWEh/vAyup/40hRUeHw9vaCTqdbs++7vLyMtrY2rKyswMfHB8HBwRZ/wf9kJBIJEhISUFFRgYaGBqSnp/NcY40cm+p+8OBB+Pv7c7szAsCAThtEEAQ0NTUhJCRkTTpVu7q6Yvfu3di9e/eFF7fJdXR0YGFhAYWFhWw0ZkLm5+dRW1sLGxsbbN26FXZ2dmKXRDi67vzAgYO4555bjOGciEyDUukEJ6cwtLcPob6+BzEx/nB0/N9yOB8fT7S3t2NoaAi+vr7n/Z43MDCAO+64HZ9+ugerq6vGj/v6+uL3v/89XF1d0dTUhLGxMfj6+iI3NxfJyckWHUqlUinS09NRUlKCjo4OREdHi12S2VAoFAgODkZTUxPy8vIs+nFGRzGg04YYGBiASqXi9Os1NjIygu7ubuTn5/Oqv4kQBAF9fX1obW1FeHg4oqKi+GZrQpqbm7G4uMh15kQmysZGjsTEYPT3T6KhoQdhYd7w8XGFRCJBSsoW/Pa3LyAgIADu7u548sknceONN57T8SsqKvCVr3wFtrZyPPzwD5CdnQ4HB3uMjIzh979/CV/72tf+W4cNPD2VGB+fhEajgZ+fHy6//HLcdNNNSElJOe6Yc3NzmJ6eRmhoqFm/3ltbWyMzMxMHDx6Es7MzfH19xS7JbERHR6OoqAgDAwMXvAyUNj8GdFp3q6uraG1tRUpKChtgrKGFhQXU19cjJSWFU6JMhFarRUNDA2ZnZ5GVlQWlUil2SfQ5e/bsga2tDZKTE8QuhYhOQSKRIDjYEwqFAw4fHsLs7DKionzxwAN34dJLd2J2dg7/+tdHuOmmmxAXF4esrKyzOu6//vUvfPOb30RKyha89trvoVS6Gz8XERGKgoJsVFXVw8XFGeHhIZDJZNBqtaioqMVHH+3De+/9E88//zwyMtKxa9c30NHRgYqKcrS1tQM42lDtxhtvxP3332+25zvOzs5ITk5GQ0MDHB0def6xRmQyGRISEtDQ0ABvb2/Y2Nic+YvIbEkEQRDELoI23sLCAhQKBebn59f9xbW+vh46nQ4ZGRnr+n0siUajQUlJCQICAjjNzETMzMygtrbWePLCN1fTs7KygrCwMOTlpePFF/9P7HJEp9PpUVZ2GLm50ZDJrMQuh+ikNBodOjqGsbKyipgYfzg7H+0ibjAYEBGRhdtvvwOPPfbYGY/z73//G1//+tfxpS/txB//+Kvzeo3W6XT49NP9eOml/4f9+8sRFRWOjIxkZGQkw8VFgQ8+2IM333wPOTk5+Pvf/27WI8yHDx/G4OAgCgsLOYNvDVVVVUEul58wS2M9bGQWoHNjnpf3yGRMTk5iZGTEopu4rTWDwYCamhooFAouGTABgiDgyJEjxjV5YWFhZj3FcTObn5/H2NgYvvKVL4pdChGdJWtrGeLjAzE0NI2mpj4EBXkiIMAdUqkUublH10SfyX/+8x/s2rULX/zidrzwwjPn3X9CJpPh0kt34tJLd8JgMJywBv6LX9yBa6/dheuvvwvh4eG4/fbb8aMf/cgsZ1NFRUVhfn4eNTU1yM7OZg+cNbJlyxbs27cPgYGBZvm4obPDZxOtG71ej6amJsTExLBB1hpqbW3F6uqqxTesMQWrq6uorKxEX18fcnNzER4ezr+JCfPy8oKNjQ0GBobELoWIzoFEIkFAgBKJiSEYHZ3BoUMD0Gh00Gp1p92Xu7GxEVdccQUuu+wy7NxZgBdf/L81aw55qkCanZ2GysqP8L3v7cYf//g8QkJC8POf/3xNu8+bgqM9AVKMyxhpbdjZ2SE6OhpNTU3Q6/Vil0MiYUCndXPkyBHIZDKEhISIXYrZGBgYwODgIDIzM9mBWmTT09MoLi6GXC7H1q1b4erKLbpMnVQqRXJyEv7xjw9QUlKOyclpsUsionPg7GyH1NQwyGRS1NV1Q63WIT4+/rj7rK6u4s0338TOnTuRnJyMlpZm/PGPT+PVV3+/YVOxXVwUePDBe9HYWITdu7+Jhx56CLGxMfjZz36Gv/zlL3jiiSfw5JNPoru7e0PqWS9yuRyZmZkYHBzEwMCA2OWYjdDQUFhZWeHIkSNil0Ii4Rp0C7Xe606Wlpawf/9+5ObmMriskZmZGZSXlyMzMxMeHh5il2PRBgYG0NzcjLi4OAQHB3PUfBN58803cf3110OlUsHBwR5vv/0XY0f3sbEJPPvsi2hr68Rbb71o9usquQadNitBENDbO4aurhEYDAZcffXVmJqawnPPPYff//73mJycRGZmKq6//mp8/etfEr1hW319M1544TX8+9+fQKVSw83NFWq1Gmr1Kt544w3s2rXrpF+n0WjQ1NQELy8vBAYGbnDVZ29iYgLV1dXIycmBm5ub2OWYhdnZWZSVlWHr1q1wdHRcl+8xMzMDd3d3rkE3QRxBt3DDw8NY62s0giCgubkZgYGBDOdrRKVSobq6GjExMQznIhIEAa2trWhpaUFmZiZCQkIYzjeZb37zmxgfH8c///lPLC+voLy8BlqtFo899gySk3fg9df/gZKScnzySbHYpRLRKUgkEqyuLuGJJ56Ara0tHn74Ifj5+eGXv/wFLrvsIlRUfIiPP34D3/zmFaKHcwBISdmCP/7xV+jtrcXERBuOHKlCZ2clrrjiElx77bV48skn0dDQYDwfEwQBDz/8MFxdXZGRkYGQkBD861//EveHOA1PT0/ExMSguroaKpVK7HLMgqurKwICAtDc3Lwu5+lDQ0PYv3//mh6X1g4DuoVra2tDaWkp5ubm1uyYw8PDWFhYQExMzJod05Lp9XrU1NTA09MToaGhYpdjsXQ6HaqrqzE6OoqCggJeKNnEnJyc8OqrrwIArKykuOKK7+B3v/szfvjDH6K5uRkSiQSLi0siV0lEpxMU5I+Wlhbccccd8PPzx1/+8ic0NhbjmWceRXR0hNjlnZS1tbXxgoG9vR2ef/4pfPWrl+KRRx5GSkoKvvrVr2J1dRWffvopHnvsMdxww9X49NO3cNllX8C1115r0lPiQ0ND4enpiZqaGq6dXiOxsbFYWFjA8PDwmh1zbm4OpaWlaG1t5S5AJowB3cJt27YNSqUSpaWlaGhogFqtvqDjaTQatLS0ICEhgWuk14AgCGhqagIAJCYmcrRWJCqVCgcPHoROp0NBQcG6TTejjVNYWAgAePTRpzE8PI79+/fj0Ucfxd69ewEA27bliVkeEZ2Bvb0dDAYDRkZGYGurRUCAPwYH56FWa8Uu7axZW1v/d2S9Dn/5y2/w8ccfIykpCQ899BBcXBR47LEfIT09Gc8++wRWVlZQUVFxxmM2NzcjNDQUGRnpmJqa2oCf4iiJRILExETjeQtX0F44uVyO+Ph4tLS0QKu9sMe1Wq1GQ0MDSktLoVQqsWPHDvj7+69RpbTWGNAtnEwmQ0xMDLZt2watVot9+/ahq6vrvK9+tre3Q6FQmPXenxupp6cHExMTSE9Ph5UV14iKYXZ2FiUlJXB1dUV2drbZr0s2de+99x7uu+8+GAyGCzrO3XffjZmZGaysrBi78APA3/72NxQW5sDHx2styiWidfS3vz2Hl19+FpdffjESEoLg5GSHhoYeLCysiF3aObG1tcHXvvYlfPTR3xEWFgCVagmvvfYH40V5Z2cnuLg449ChQ2c81rPPPove3l7U1NTixhtvvODXynNhZWWFjIwMTExMoKenZ8O+rznz8/ODs7Mz2trazuvr9Xo9urq6sG/fPuh0Omzfvh0xMTEmsfSDTo1N4izUqZrETU1N4dChQ9Dr9YiPj4eXl9dZj9oea2K2bds2ODg4rFfpFoNNV8Q3NDSExsZGxMTEIDQ0lDMYRDY/Pw8XFxcAwEsvvYTrr79+TY8/OTkJT09P/P73v8C11568aZM5YZM4MjeCIGB4eAa9vROIivKFp6dC7JIu2MLCIj78cB9uu+1+AEfP09zd3U95/66uLlx33bWorq4BADQ0NCApKWkjSjViU9u1tby8jOLi4nM6HxQEAWNjY2htbYWVlRUSEhJO2Fd9vRtG0/njCDodR6lUYuvWrQgPD0dDQwMqKiqwsLBwxq8zGAxoampCZGSk2YTzF154AQqFArm5OSgpKdnQ7728vIza2lps2bKF4VwEgiDg8OHDaGpqQnp6OsLCwhjOTUBXVxcAwM/PB88888yaT6E8tpwkMzN1TY9LRBtDIpHA398dsbH+6OwcQV/fxKaeat3XN4D4+ALcdtv9kMlkCA8PP2WQGh0dRUVFBQIDA3HgwEFcd9212LFjO6Kioja4asDNzQ0JCQmoqanB8vLyhn9/c+Pg4ICIiAg0NTWd1YyIhYUFVFRUoLGxEWFhYdi6desJ4ZxMGwM6nUAikSA4OBg7duyAk5MTSkpK0NzcDI1Gc8qv6enpgcFgQHh4+AZWuj5GRkbw85//HHfeeSfS05NQXl6Bn//8Zxv2/bVaLaqqqhAQEGDS26qYK71ej7q6OgwODiI/Px9eXpzqbCqOjcTs2JGP1tZWjI2NrenxS0tL4eTkiJAQPu+INjN3dyckJ4dgbGwO7e1D0Os3bpr3WqqpacTi4hKOHDkCjUaDw4cPn7S/jyAI+OpXv4KcnBwoFApceumleOyxx7F37z7Y2dmJUDkQFBSEgIAAVFVVQafTiVKDOYmIiIDBYDjt0gGNRoPm5maUlJTA2dkZO3fu5G4zmxQXINApWVtbIyEhAcHBwWhpacHevXsRExODoKAgSKX/u7azsrKCw4cPIysr67iPb0YrKytIS0vD6OgoLrvsYuzcWYB9+w7g8suv2JDvLwgCGhoaYGNjg7i4uA35nvQ/arUaVVVVkEqlKCgogI2Njdgl0Wf4+/vD2dkZs7NzAIC+vj74+Pic17FWVlawZ88edHR0wNvbGx4eHvjTn/6EL3/5IvZ7IDIDDg62SEkJRWvrAJqa+hAfHwBr683VvHZ8fBJOTk4ICwsDgFO+NhUVFaGqqhpPPfUw9Hod/vjHV3HZZZehvLxc1KnLcXFxqKioQENDA9LS0hgUL4BUKkViYiIqKyvh6+sLe3t74+cMBgP6+vpw+PBhuLq6YuvWrXBychKxWrpQDOh0Rk5OTsjOzsb4+DgOHTqE3t5eJCQkwMPDA4Ig4NChQ/Dz89u002cEQcD/+3//D6GhoaioqMDk5CTee+9VzM7O4dZb78fu3btx++23b0gt/f39mJmZwbZt2zb9xY7NZn5+HpWVlVAqlUhKSmJIM0FWVlbw8fGGt7cXXFyc8dFHHyE7O/ucjtHU1IT77vsBioqKYTAY4OTkaNxSTS6X49Zbv7Mepa8Zg8EAnc4AnU7/39tn///k/z7VFN9jH25s7MPnz5slEglkMilkMqvP3E73bylfs8jkWFvLkJgYjI6OEdTX9yI+PhCOjrZil3XWrKykWF1dRWNj42nXke/fvx8KhTO+/e1vwMbGBtu25eELX7gS99xzD1566aVTfl11dTXeeecdhIWFITc3F/Hx8Wtav1QqRVpaGoqLizEwMICgoKA1Pb6lUSqV8PX1xaFDh5CZmQngaO+UQ4cOwWAwIDU1lbP+zASbxFmo820McWx6TUdHB5RKJTw9PXH48GFs3759w0cbu7q6UFpaiu3bt1/Qi/5Pf/pTPPHEEwCOrpv68pd3wtvbE0899XtccsnF+Ne/3tuQn21xcRElJSXIyMiAp6fnun8/+p/R0VHU1dUhMjISERERvMpvoqqrq5GVlYU//OGXKC4uQ0dHL5qams/66w0GA8LCwmBtbYVbb/02cnMzEBUVDpVKjfHxCdjY2IjavV0QBGg0OqjVWqjVms/9VwuNRguD4ehbtlQqOWVQ/nyIPtXjWa834PDhYURH+8HK6vhwLQjCGcL///7/szVZW8tha3vsZn3cf62tZXxukSgEQcDAwBQGB6cQHe0HpXJzNMSamJjC179+A1pa2pGZmYFXX30NkZGRJ9xvz549+NKXvoSCgmy8/fafIZFIcMMN92B+XoV9+/adcP/R0VHcfPNN+OCDD6FUumN2dg56vR533nknnnzyyTWfFn+s6W1hYSFHdi/Q6uoqioqKEB0djYmJCUxNTSEqKgqhoaHnfJGUTeJMFwO6hbrQJ+Xq6ipaW1sxODgIT09PpKWlbei+5xqNBqGhoRgeHoanpyfGxsbO68TvxRdfxC233IL7778dTz/9HARBQHn5h/j2t+9AcHAoJJKjU/1fe+1vcHV1XYef5CiDwYADBw5AqVSu+RVsOr3e3l60trYiJSWF2wOasD179uCrX/0qoqLC8Pbbf0ZpaRW+85070dzcjISEhLM6xsjICPz8/PD668/j0kt3rnPFJ2cwGLC8vAq1WgOVSovV1f/9V60+GsCtrWUnDbg2NvI1Ha1eqy7unx3VX13VnvQCg0ajg1Qq+e/PYQ07u//919bWGg4ONhyBp3U3ObmAjo5hhIZ6wdd3czRgVanU+OCDPXjooSdxySWXGkfEh4aGoNVq4erqCmdnZ7z88su46aab8MYbL+Dii7fh29++HRqNBB9//PFxx1teXkZBQQGGhwfx+OMP4Gtf+xI0Gi1effVNPPzwr+Do6IjCwkLjLSEhYU2emy0tLZiamkJBQQGf6xdAq9WitrYWExMTCAgIQFxc3HkPIjGgmy5OcafzYmNjAycnJzg6OkKn02Hfvn2IiYlBYGDghoyQXHbZlzE8PAwAuOqqq877ez733B8QHR0BT8+j0/WlUikiIkIwMzOLqalazM3NAQA6OzuN04nWQ3t7OwAgJiZm3b4HnejIkSPo6OhAdnb2abetIXF1dHTgC1/4AgCgvr4ZYWEZ+MpXvojg4EBceeWVqK6uPqtRmcnJSQCAl9fGbPuj0+mxtKT+zE2FlZVVWFlJYWdnYxxpViqdjEHcxkZ+wmi2qZNKpbC2lsLaWgZ7+5OfKOr1hv+G9/8F96UlFaamFqBSrUKvN8De3gaOjnZwdLQ13rj9G60lDw9nWFvLcOhQP/R6AwICTH9pnp2dLXbtugxFRQdRUVEOQRDw9NNP40c/+pFx+YpUKjV29+7q6sHFF2+Dq6sL2tq6Tzjegw8+iI6Ow/joo78jISH2v9/DCrfe+h1s25aHt99+H2VlNbj//vuh0Wjg4uKCwsJC7Nq1C7t27YKt7fktEYiJicGBAwdw+PBhxMbGnudvw3IJgoDBwUG0tbXBwcEBjo6OcHJyYq8cM8WATudFo9Ggq6sLaWlp8PDwwMjICFpbW9HX14eEhIR13RpscHAQn366B7/73RP4wQ8euaDp7UlJyXjllVfwwAOPIykpCWNjI5DJZJDJZJiYmMTu3VfhlVfeOKut5s7X5OQkent7UVhYyHXPG0QQBHR0dKC3txe5ubnGvbXJNB3rWrt9+3ZcffXVWF5exgMPPIC0tEQ0N7fha1/7Kj79dM8ZL9RNTEwAAJTKtX990mh0xhB+LJCrVBpYW8uMYVOp9ISjoy1sbOQWN9XbykoKe3ubkwZ4QRCwuqrF0pIai4sqzM4uYXBwChqNDnZ21p8J7EfDu7U1T13o/CkU9khMDEZz89GQHhTkYfLPx8bGFnz44T7cfPMt+OEPf4inn34ad999C7Zty8Xc3DxmZ+fh4qJARkYyfH29AQDe3p7Yu/fgCccaGxtDamqiMZx/VmRkGH760+8DODpyX1fXhLKyahQVleJb3/oWnnnmGfzjH/9ASEjIOf8MVlZWSE1NxYEDB+Dp6blp+xaJYWZmBocOHcLq6iq2bNkCHx8fTE5Oora2FsHBwRs6g5U2Bt/l6Lx0dXVBoVAY10r7+fnB29sbR44cQXl5OXx8fBAbG7su23v85S9/gVQqRXNzOzQaDSIiIs77WL///e9x8803IzIyEiUlJdi1axfuvvunmJg4OtL2yitvICIiYt0am2g0GtTX1yMuLo7rsjaIIAhoa2vD4OAgcnNzOa1rE7jooovQ19d33PPQYDDgvvvuw09+cg9+9rP/Q1FREXbs2HHa4xwbQXd3v7CALggClpbUmJtbxvz8CpaWVFhd1cHWVm4Mkd7eLnB0tGOYPAsSieS/0/itj1sbrNFosbio/m9wV2N0dBZqtRY2NjI4OtpBobCHi4sDHB1tTT5gkWlxcrJDUtL/QnpoqJfJPobq65tx+eXfgq+vHwYHB/Hmm2/il7988IwNLb29PTE+PgGdTgeZ7Ojr0F//+le89957uOyyL5zx+9rZ2SIvLxN5eZn40Y/uRHNzK77znbuQlpaGN998Ezt3nvsyIWdnZ8TFxaGurg7btm2DtbX1OR/DkqhUKrS1tWF0dBQREREIDw83DuR4eHhAoVCgq6uLMxLMENegW6gLWXeiUh1tOpKbm3vSddmne0G5UKOjo/D19cWdd94EZ2dH/Pznv8Fll12G999//4KPLQgCbrjhBrzyyitwd3fHE088gbCwsHXrqC4IAmpqaiAIAjIyMkz25MCcCIKA5uZmjI+PIycnB46OjmKXROdJq9UiKSkJjo62OHSoDddeex1efPHF037Nb37zG/z4xw9gZOTQOT3fBEHAyooGc3NLmJtbxtzcCgRBgIuLAxQKezg52W3K6dhrtQZ9Ix1bNrC4qML8/Arm5pYhkUjg4nI0rLu4OMLe3pqvp3RWVlZW0dzcD3d3R4SH+5jk4+aSS65CVVXdfy9k2eDRR3+Em2++7oxf19BwCDt2fB333nsvnn76abz99tu48sorce21X8evfvUI7OzOfar67Owcbr75Xhw8WIUPPvjgvEK6IAioqqqClZUVt147BZ1Oh+7ubnR1dZ12wGt2dhZlZWXYsWPHeQ2IcQ266eKlfTpnHR0d8PLyOmXTNDs7O6Smphqn5PT39yMuLg6+vr4X/EI8MDAAALjyyitwzz0PAgC+9rWvXdAxj5FIJHj55Zfxi1/8Avb29uv+YjUwMGDcUo1vUOvPYDCgoaEBs7OzyMvLO24PUdp85HI5/vCHP2Dnzp3Q6/VndRFQIpEYb2eiVmswO7v830C+DJ1OD2dne7i6OiAgQAknJzs+b0Ugk1n9N4g7ICDg6Mn+4qIKc3PLmJpaRE/P+HH3cXV1gK0tR+no5OztbYwj6R0dw4iK8jO55/Vdd92EPXsi4O3tiRtvvAZK5dn1S0lOTsDPf/5j/OQnT8DDwwOPPvoovv71L+N3v/vFef+Mrq4u+Pvf/4RrrrkNX/nKV7Bv375z7s8jkUiQnJyM4uJiDA4OIjAw8LxqMUeCIBiXjNrY2CAnJ+e0S0ZdXV3h5eWFjo6O027DR5sPR9At1PleNVtcXMT+/fuxbdu2sxp9/GxTC0dHR8THx1/Qet9PPvkEl1xyCT7++E3ccsu9UCq9cODAATg4OJzX8Wpra3H99bshk8nwzW9ehYsvvhgRERHo7OxEUlLSunUaXVpawv79+5Gens49KzeAwWBAbW0tlpaWkJOTc95Nbsj0HD58GKOjo8jOzj7j3/X111/Hddddh6Ghpv+fvfsOj6rOGjj+nUnvvddJ7wkhCS2UkCgoooKiYhdd3LUr9l1dewXbWhAVCyK2xa50EiCUENJ7Jpn03utMpr1/5CUuUgNJJuV+nodn18zce8+kzNzzK+dgZnbiAI1SqaK9vZf29sFZcoVCiYWF6VCSZ2lpMukqD0/EGfSz0Wg0dHX1///gSg/d3f0YGRlgY2M+9LM0MBDmJgQnUiiU5ORUYmpqRHCw26T5W9dqtSQlXU1GRg4xMVH8/POm85o5/6u+vn6WL7+NkpJyfvrpJ+bOnTvsczQ2NpKens78+fOF1WxAR0cHeXl59PT0EBISgoeHxzkNpPT09LB3714WLFgw7K2Swgz6+CUk6FPU+f5RpqWlYWRkRGRk5LCup1QqKS0tpby8HHd3d4KDg8+r8mRfXx9eXl5cd90V1Nc38t///sqhQ4eYOXPmsM/V1tZGZGQkVlbm+Pl5s2NHMv398qHHX3nlFR577LFhn/dsNBoN+/fvx9bW9pzbQwnOn1qt5ujRo8jlcmbNmiVUPJ3CfvvtNy677DIKCg7g4uLEwICK1tYumpu76OjoxczMeGjm1crKdNIkraczGRP0v1Kp1ENL4Ts6euntlWNtbYaDgyV2dpZCjQDBEKVSRU5OJYaG+oSEeEy4bgqnI5XKOHQoncsvX4yV1cjVuuns7OL66//OkSMZvPLKK6xZs2bYM/O5ubm0tbUxd+7cSTMoMlwKhYLCwkJqamrw8fHB399/2EXfsrOzGRgYIDY2dljHCQn6+CV8MgnOWVtbG01NTee158jAwICQkBC8vLzIy8tj165dBAYG4uPjM6w3ZVNTUxYsWMC7734CwNKlS4mIiBh2PAA//vgjtbW1bNuWgpubC59+uoWHHnoaFxcn6usbyc3NPa/znk1xcTEajUYo6jEGVCoVR44cQaPRMGfOHKHS6RSnUCiwtramp0dJdnYFnZ29WFiYYG9vSUCAq7AUehLS19fDzs4CO7vBxEQuH6C5uYuGhg5KS+uxshpM1u3tLTA0FN4fpjIDA30iI73Jza0kL6+KsDCPSdFZxc9Pgp/f8Kuun42VlSU//fQFL7zwJo888gipqal89tlnWFlZnfM5QkJCSElJobi4eMq1mdVoNJSXl1NcXIy9vT0JCQnnvRo0ICCA3bt3097eftrtp4KJZWoOVwmGTavVUlhYiI+PzwUtDzYzM2PGjBnExcVRVVXFnj17aGhoYDgLOebNmweAoaEhRUVF510pPicnB19fCW5uLgCsX/85APX1jQC8+eab53XeM2lpaaGsrIzp06dPig/+8UypVHLw4EFEIhGzZs0SkvMprL+/n/LyclpbW/nkk0/o6RnAzs6CGTMCmDbNBw8PeyE5nyKMjQ3x8LBn2jQf4uICsLOzoLGxk0OHSsjKklFb24pCodR1mAId0dfXIyLCG4CcnEpUKrVuAxrn9PX1eeaZR9i8eT179+5h8eJFQ/3Yz8XxQnFlZWW0traOYqTjh1arpaGhgT179lBVVUVcXBwzZsw47+QcBms/+fj4UFBQMKz7acH4JSTognPS1NREZ2fnBbU0+18ODg4sWLAAHx8fMjIyOHz4MN3d3ed07B133IGnp8dQL/bzLXaSnZ1NaGgAADJZJSUlZfz444/88ssv/P7778BgSxK5XH6m05wzpVJJRkYGISEhwlKiUaZQKEhNTcXIyIgZM2YMtZgRTB19fX2UlZWxf/9+du7cSU1NDT/++CNSaQ7Tpvng7m6HkZEwaDOVGRsb4O5ux7RpEmbODMDBwZLm5i4OHy4hM1NGTU0rcvmArsMUjDE9PTHh4Z7o6+uRnV2BUqnSdUjj3qWXJrJ58wccPnyEzZs3D+tYS0tLgoODOXbsGErl5B4c6+7u5vDhw2RkZODr68uCBQtwcHAYkXP7+/vT2dk51E5UMLEJd62CszreNzogIGBEZyHFYjE+Pj64u7tTVFREcnIy3t7eBAYGnrE3pomJCb29fQDccMP153390tISrrvuCgBaWtoAkEgkREREIJfLcXBwoKenB2dnZxYtWnTe14HB72F2djaWlpZIJCO/1Ezwp/7+fg4ePIiVlRXR0dFTdl/bVKRWq6mvr6eyspLW1lbs7e3x8PAgNjaWzs5Ofv/9d264YamuwxSMQ0ZGBri52eHmZsfAgIqWlsHaBOXlDVhamuLqaou9vYXwfjJFiMViQkM9KSqqISurgogIL2FA7yzmzInjiisW88QTT7B8+fJhzQj7+PjQ1NREdnY206dPH3eV9C/UwMAAxcXFVFRU4OXlxfTp00e8B7yBgQEBAQEUFBTg4OAw6b6HU43wSSM4q9raWpRK5aglloaGhkRERDB//ny6u7vZvXs3MpnsjMt0vvrqK959910++WTjeV/Xzs6Ojo4uACSSwTYfhYWFaLVa5s2bS09PD8CI7IuqqamhubmZqKgo4U1zFPX395OamoqtrS3Tp08XbqaniO7ubvLy8tixYwdFRUU4OTmxaNEiZs+ejbe3N8bGxkPVbXt6enUcrWC8MzTUx9XVlshIb2bODMTOzoKKiiYOHSqhrKyBvj6FrkMUjAGxWERwsDsWFiZkZVUgl0/u2d2R8Oyzj9Lc3Mzrr78+rOOOt15rbm6mpqZmlKIbexqNBplMxu7du+nu7mb+/PlERESMeHJ+nEQiYWBggNra2lE5v2DsCDPogjPSaDQUFhYSFBQ06numLS0tmTVrFg0NDeTn51NRUUFYWNhJy3+6u7u56667KCsro7S0lLfeeuu8rufp6UV19eCbmL29HdbWVlRUVJCamsrRo+kA3HbbbdTW1vL+++9jZmbGE088gb6+Ph999BGFhYW88cYbZ71Ob28vOTk5TJ8+XWjvNYoUCgUHDx7E3t6eyMhIYSBkkvvf2fK2tjZcXFyIiYnB3t7+lD97ExMT3N3d+fLL77nqqsuEGhCCc2JoqI+Hhz3u7nZ0dPRRX99GenoZlpYmwqz6FCASiQgMdKW0tJ7c3AqioiRCm74z8PLy4K67buO1117j9ttvx8PD45yPNTY2Ztq0aRw7dgxbW9sL2pM9HjQ3N5OXl4darWbatGk4OTmN+n2Jnp4egYGBFBYW4urqKrw3TWDCT05wRhUVFejp6Q3rTfZCiEQiXFxcSEhIwN3dnbS0NNLS0ujt/XPW6/3336esrAxgWMVI/sre3p7W1vah/xaLxcjlcp5++mn09PS46qqr+PTTT5k9ezYffvgBTz/9NMbGxmRnZ7N69WrefPNNHn300TNeQ6PRcOzYMTw8PHB2dj7vWAVnplQqOXz4MJaWlkJyPsn19PSQn59/wmz5xRdfTExMzBmX9YlEIjZt2kRqahrx8Zdx5EjGGEcumMhEIhE2NmaEhHgwc2bA0Kz64cPCrPpkJxKJ8Pd3wczMmNxcoXDc2Tz44J1YWJjzxBNPDPtYZ2dnPDw8OHbs2AXd3+lSb2/v0L2rh4cHCxcuxNnZeczuSzw9PdHT06OiomJMricYHUKCLjgtpVI51PpirBMePT09/P39SUxMxMDAgL1791JQUIBKpWL27NlcddVVvPvuuxdUab24uAhfX++h/+7t7aOuro69e/eiVqv573//C8Dq1TdRUJDK+vVrUavV3HTTTfj6+gCwbt26oaXwp1JSUoJKpSI0NPS84xScmVqtJi0tDQMDg0m5d00w+DOuqakhNTWVvXv30t/fT0xMDImJifj5+Z1zb/t58+Zx7bXXUlQk5cMPPx/lqAWT1fFZ9dhYP4KDPVAolKSnl5GdXUFTU+eETSwEpycSiQgKckNfX4/8/GrhZ3wGlpYW/POfD7B582aOHDky7ONDQ0NRKpWUlJSMQnSjR6VSUVBQwN69ezEwMBj6fBrrWWyRSERwcPDQ/adgYhISdMFplZWVYW5urtOZ3+NLnuLj42ltbWXXrl14eXnx3Xffcffdd5/3MlW1Wk1OTi5hYUHA4GCEQqEYSu5+/nkTNjbWwGCvTxMTY1asWIpE4klubi7NzS3MmROHRqNBKpWe8hpdXV1IpVKhpdooOr5CQa1WExcXJyznmmSO36QNd7b8VAYGBrjxxhvZsmULixcv5I03nhvFyAVTwV9n1W1tzYdm1Ssrm4WZ1klmsHCcB2q1hsLCGqGd1RnccMNVBAcH8Oqrrw772OOt16RSKV1dXaMQ3cjSarVUVVWxa9cuWltbiY+PZ9q0aTrd0ujs7IyZmdnQalPBxCNspBGckkKhQCqVMmvWrHExI2ltbU18fDx1dXXk5+cjk8lwdnbmrrvuYvPmzcMeRCgoKKC3t5fw8MECcHp6ejg6OtDU1ASAj48Xhw//wRdffMMNN1wNwBNPvIBMVoWFhQVarZbU1DRgsLf5X2m1WrKyspBIJFhZWV3ISxecxvHK+D09PcTHxwut1CYRuVxOeXk5MpkMKysrpk+ffl5Vabu7uykqKqKgoIAvvviCAwcO8Omn73DllZeMUuSCqep/96q3t/dSVdVMdXULrq62uLvbYWgovD9NBnp6eoSHe5KVVUFJSR0BAa7j4h5pvNHT0+OWW67hqadepbW1FTs7u2Edb2VlhUQiITs7m/j4+HH7PW5rayM3NxeFQkF4eDiuruPj90EkEhESEsLhw4fx9vY+51VmgvFDmG4SnFJJSQkODg7DflMdTSKRCDc3NxYuXEh5eTlZWVmEh4dz8ODBYZ/r+++/x8rKklmzYoDBkfErrljMwYOp/79X9Tu2bNlKTU09WVl5bN36Gxs2bAJg69atvPvuu7i5uXHDDTcwf/78k85fWVmJQqEgMDDwwl604LQKCgpoaWlh1qxZo1YRVTC2+vr6yMnJYdeuXXR1dTFz5kzi4+NxdHQc9k3PLbfcjKWlJXFxcdx6663IZGV8993HQnIuGFUikQhbW3OioiSEh3vR2yvnyJESSkvrhZ7qk4SBgT4REV60t/cikzXqOpxx64orLkGpVJKcnHxexwcGBtLf309lZeXIBjYC+vv7OXbsGAcPHsTJyYmFCxfi5uY2LpLz4+zs7LCzs5twWwUEg4QhXcFJent7qaioOGXiOR7k5+ezatUqrr76Cjw9fRGJRBQXF+Pn53fOS8nd3Nzo6uqmqqoWf//B/eTLly/ho482cd1117Fu3QdDe3c+//ybE4719vYmKSmJm2+++ZTnlsvlFBQUMH36dGFWd5SUlpZSXV1NfHw8JiYmug5HcIG6u7spLS2ltrYWFxcX5s6de0ErT3p7e/n662+47baV3HTTCvz9fTA3n9gVgQUTj5WVKeHhXvT09FNV1UJamhRHRys8Pe0xNRVmtCYyIyMDIiK8yMqSoa+vj6enva5DGnecnBwwNjY677Zp+vr6REREkJGRgYuLy7iYBVar1UilUkpLS3F2diYxMXFc34OEhISQkpKCj4/PhK+KP9UIM+iCkxQVFeHm5oalpaWuQzmld955BwAnJzveeOMNpFIp9fX17Nmzh7q6unPaF3bzzTfj6OjIZ599PfS1GTOimTMnjszMjKGibp9//jlRUVFDz3nooYdwc3M747nz8/Oxt7fHycnpPF6d4GwqKyspKSlh5syZmJub6zocwQXo6OggLS2N5ORkxGIxCQkJxMTEXPC2kK+++oqBgQHuuus2pk0LF5JzgU6Zm5sQEuJBTIwvIhGkp5eRn19Nd3e/rkMTXABTUyPCw72oqmqmvr797AdMMXK5ArlcgbW19Xmfw9nZGXt7e/Ly8kYusPOg1Wqpq6tjz5491NfXM2vWLGJiYsZ1cg6D7Yvd3NwoKirSdSiCYRISdMEJOjs7qaurIygoSNehnOTAgQM88MADbNy4EYD33ttIeHgY8fHxzJ8/n4CAAHJycjh48CCdnZ1nPJexsTEODvYnVLgUiUS8/PI/KS2VsnLlSvLz87n55ptZvnw5AI8++ijr1q074xtyU1MTDQ0NhIeHj8ArFvxVXV0dubm5zJgx44I+9AW6o9VqaWlp4eDBgxw4cAATExOSkpKIiooakQGXP/74g3vvvZfrr1+On59kBCIWCEaGqakRgYFuzJjhj5GRPllZMnJyKuno6BUKjk1QFhYmhIV5IpU20Nw8/guajaXi4sECun5+fhd0nvDwcBoaGmhubh6JsIats7OT1NRUcnJyCAgIYP78+eNq++fZBAUFUVdXd9b7YsH4ItIKnwpTUldXF1ZWVnR2dp4wU37o0CEsLCwICwvTYXQn02q12NnZ0d4+OEptYmJCV1fXSUvIj1d9Li8vx9PTk6CgoNMui4qNjSE42Id33nnphK8/+uhzbN78XwoKCvDy8jrnGNVqNXv37kUikeDr6zvMVyg4m6amJtLS0oiJiRF6yk9QnZ2d5Ofn097ejo+PDz4+Phe8bFGr1VJaWkppaSlffPEF3333HYsXL+TTT98eF0sixzOVSk1qahFz5gShry90mhhrAwMqamtbqa1tw9LSBB8fZ8zNdVf5WXD+Wlq6KSysJizMExsbYWUXwFtvfcjatR/Q1tZ2wXViysrKkMlkJCQkjFlXHIVCQVFREVVVVfj4+BAQEICBgcGYXHuk5eXl0dPTw8yZM0/4+ulyAYHuCTPogiEtLS20tbUREBCg61BOIhKJePjhh4femB9++OGh5PyHH37gmWeeobu7GwMDA0JDQ0lISEAul7Nr1y7KyspO2bNUIvGhsvLkvVE333wNfX19LFu2jGXLrqSvr++cYiwtLUVfXx8fH58LeKWCU2lvb+fo0aNERkYKyfkE1N/fT2ZmJvv27cPS0pKLLrqI4ODgC06gOzo6WLx4EYGBgVx22WUcPpzKm28+zxdfvCsk54Jxz9BQH4nEiRkzAjAzMyYzs5zi4loUCqWuQxMMk729Bf7+ruTnV9PVJWxdANi37xDz5s0bkSKuPj4+6OvrU1paOgKRnZlGo6GsrIxdu3Yhl8tJSEggNDR0wibnAP7+/rS2tp6y65BgfBIqWAmGFBUV4efnN24rYhsbG6NWD/aVPb4P/L///S9XXz3YBq2pqYn3338fAHNzc2bMmEFTUxN5eXlUVFQQFhZ2wr5wOzs7CgpyT7pOe3sHAJmZmWRmZuLl5cWtt97KI488gqOj4ylj6+7uRiqVjut2IBNVd3c3hw8fJigoCA8PD12HIxgGlUqFVCpFKpUOVbodqUI1JSUlXH755TQ2NvDpp+8QExOFq6sTYrEw7iyYWAwM9PD1dcbV1RaZrJG0NCkeHnZ4eNijpyf8Pk8Uzs7WqFRqcnMriYqSYGY2dQcJtVotmZl5PPTQmhE5n0gkIjIyktTUVNzd3Uet/kxjYyN5eXmIRCJiY2NPe8830RgZGeHn50dRURHx8fG6DkdwDoQEXQAMzlB2dHQQFxen61BOa8+ePcBgYr1ixQqAE5agJyUlnXSMo6MjCxYsoKKigmPHjmFra0toaCgWFhbIZDK8vNxPOiY+fgbr16/F3d2FL7/8nq+//oG1a9fS39/Pu+++e9LztVotOTk5eHp6CvuiR1hfXx8HDx7E29tb2DYwgWi1WqqqqigsLMTU1JTZs2dja2s7IufWaDR88MEHPProo7i6OrFr1/f4+nqPyLkFAl0yMTEkJMSDzs4+yssbqK9vx9vbEWdna2Hgd4Jwd7dDqVSRm1tBVJQEY+PxOeEx2iorq+no6GT69Okjdk4bGxs8PT3Jzs5m9uzZI/o30d3dTX5+Pm1tbQQFBeHt7T3pBnslEgmlpaW0t7djY2Oj63AEZyEk6AIApFIpXl5e43b2HODrr79m//79xMTEDN3sx8TE0Nvbi1qtxsLC4pTHicVifHx8cHd3p7CwkOTkZCQSCVVVlVx00dyTni8Sibj22ivo7OyisrIGfX19/Px8h4rF/VVNTQ09PT3jenBjIlKpVBw5cgRnZ+dxWbRQcGpNTU3k5+ejUqmIiIjAxcVlxG6kqqqqWLVqFbt372bVqut59tlHhQrtgknHysqUqCgJLS1dlJc3Ulvbio+PM7a2wt7micDb2xGlUk1eXhXTpknGbM/0eJKXN1g1PDIyckTPGxwczO7du6mpqRmRFXVKpZLi4mJkMhmenp4kJSWN6/vgC2FoaIiXlxdSqZTY2FhdhyM4CyFBF9Db20tDQwOJiYm6DuWMzM3NueSSS076uqmp6Tkdb2hoSGRkJBKJhMzMTB5//AlUqsHquf+bQPT3y7n00pUUFpYiFovZs2cPc+eenMgDDAwMkJeXR2Rk5ITenzTeaLVaMjIyMDQ0JDw8XJg9mgC6urqGCsAFBgbi7e09ojemMpmMWbNmoa8vZuvWT0lIEJbpCSYvkUiEg4MVdnYW1Na2UVhYjYWFKb6+TpiZCYXkxjORSISfnwu5uZUUFdUREuI+6T/Durt7WLr0RpYsSeKRR+7B29sTGNwqeLbWtMNhYGBAeHg4OTk5ODk5nXcyrdVqqayspLCwEEtLS+bPnz8liqT5+vqye/duent7hb7o49zkWr8hOC9SqRRXV9dzTnQnouN712GwL+SRI0fYsGEDzs4eZGSU09HRO/R4R0cnWVl5KBQK8vLyTpucAxQUFGBjY4OLi8uoxj/VlJSU0NnZSWxs7KRbZjbZKBQKsrKySElJwcLCgqSkJHx9fUc0OW9paWHx4sWYmZmwd+8PQnIumDLEYjEeHvbExfljampIRkY5JSV1KJWqsx8s0BmxWERIiDs9Pf1UVU3+wlxbtmwlOzufl156m8bGZsLCgggJCWTz5s0jfi1XV1esra0pKCg4r+NbWlpITk6mtLSUqKgoZs+ePSWScxic0HJxcaGsrEzXoQjOQrjzneIUCgXV1dUX3KdyPGtvb8fR0RETE5OhPpo//LAVe3sLZs4MwMHBkry8KgoKqpHLB3BxcWLhwsEEYNq0aRQXF5/yvK2trdTU1BARETHpR8fHUn19PaWlpcyYMWPSLjWbDLRaLTU1NezZsweFQkFCQgJhYWEj/jPr6+vj8suX0tbWyvfff4yDw8TpPysQjBQDA338/FyIifFlYEDF0aNSGhs7hP7p45iBgT6hoZ5UV7fQ0jLxe6RrNBpUqlMPDO3YkYyJiQkAPT2DEx7Lll3CTz/9NOK/oyKRiIiICGpqamhrazvn4/r6+jh69CiHDx/Gzc2NhQsXjugWrInCz8+PqqoqBgYGdB2K4AyEBH2Kq6qqwtbWFisrK12HMmoaGhpoa2tDLpczZ84cdu7ciUKhwNbWBrFYjKenA7GxfojFYo4elbJt20FSU48Cg8t2v/nmm5POqdFoyM7OJjAwcFKvPBhrXV1dZGRkEB0dPWVGtCeivr4+jhw5MrS9Iy4ublSq6qpUKlauXEl2djbffLMBicTr7AcJBJOYiYkRoaEe+Pu7UFbWSF5eFXK5cKM9XpmbGxMY6EZRUS29vXJdh3NBbrvtPry9p3PFFTfz4otvsnNnCsXFUt57byMHDqRx3XXXAVBaWg5AZ2c3lpaWo5IAm5mZERAQQFZW1inb6P4vlUpFYWEhe/bsQU9Pj6SkJAICAqZkbQAAa2trbGxskMlkug5FcAbCHvQprqKi4oxLuCeD4OBg1qxZw7p16ygtLWXt2rVoNJoTlk4bGRkQFOSGq6ste/YcZf369Xh4eFBSUsJNN9100jmPLw8SKouPnIGBAdLS0vD19cXV1VXX4QhOQavVIpPJKCgoGJqBGK1VDlqtlnvuuYfffvuNr75aT3R0xKhcRyCYaI7vT7e2NqO8vJH09DIkEkdcXW2n3GzgRODgYElPj5y8vGqioyUYGEzMW289PX3MzMyxtXXiiy++Z+3awba2+vr63Hjjjbz//vv88ssvbN36G+7urnz++TfcfvsdoxaPn58fNTU1lJWV4e/vf9Ljx1d5FRQUYGJiwpw5c4Tq5f/P39+fY8eOTZo2cpORMIM+xRkZGeHg4KDrMEbd2rVrhxKJWbNmoVarT9lf1tLShN7eJj777DMGBgYIDQ1FqVSe8Jze3l6Ki4uJjIwU9kePEI1GQ3p6OhYWFgQGBuo6HMEpdHV1sX//fsrKypgxYwbTpk0b1S0ImzZt4sMPP+TNN5/n4osXjNp1BIKJysBAn8BAN0JDPaipaSUrSzbhZ2knK29vB8zMjCgsrJmw2xKCg/3o6elhwYIFfPfdd6SmprJjxw5aW1v59NNPMTY25sUXX+S7735m7tylgIh//vOfoxaPWCwmMjKS4uJi+vr6Tnisvb2d/fv3U1BQQGhoKHPnzhWS8//h4OCAsbExNTU1ug5FcBpCdjHF+fj4TJgR948++oj6+vrzPv6bb75hz549/Pvf/wYgMzOPvr7+k57n6upMSkoKtra2ODg4kJqaSkZGBnK5HK1WS25uLu7u7tjZCXthR0pBQQFyuZzo6OgJ8/s4VajVaoqKiti3bx92dnYkJCSM+qCeWq3mhReeZ8mSi7jpphWjei2BYKKzsTEnJsYPS0tTMjLKqahoOuuyX8HYEolEBAW5oVCoKC9v1HU452XVquu55JKFPPTQQ8yfP5/58+fz008/oa//54qA1atXU1lZyW+//caePXuwt7cf1Zjs7Oxwc3MjJycHrVaLXC4nIyOD1NRUHB0dSUxMxN198lfRHy6RSISvry/l5eW6DkVwGiLtRB3KE1yQrq4urKysaG9vx9raWtfhnFVbW9tQQqxUKk/4QDgfL7/8Mk8++STXXHMFH3649oTH8vKKmDt3KevWreOhhx6ir6+P/Px8mpqacHZ2pqmpicTERKGA2QipqqoiLy+P+fPnC20/xpm2tjaysrIQi8VERUWN2XvFt99+y7XXXsuuXd8zffrI9tEV/EmlUpOaWsScOUHo60/N/ZiTTXd3P8XFdWi1WgICXLGyEmqkjCf9/QoyMmT4+Tnj5GSt63DOS3d3D3V1DWzbtofXXnuXOXPmsG3bdp2tKBwYGGD37t04ODjQ0NCAk5MToaGhQn2gs9BoNPz4449cddVVdHZ2CnV/xhlhBn2KmyhLtP+3cujOnTsv+HxPPPEEH3/8Md9++xO7d+8/4bGwsCAWLUrgjz9+BwbbUsTGxhIbG0ttbS0wWMFdGNu6cO3t7eTk5BATEyMk5+OIUqkkJyeHgwcP4uHhwbx588YsOVer1Tz77LMkJs4VknOBYJgsLEyIjvbBycmKnJwKpNJ6VCr12Q8UjAkTEyOCg90pKamnq+vkFXwTgYWFOYGBftx//2o2bXqPnTt38eGHH+okFq1WS0vLYBu7uro64uLiiI2NFZLzcyAWi5FIJLoOQ3AaEyM7E0x5Dg4OXHLJYgBeeeWVETnnqlWrWLhwIf/618snJdvz5s1i//4DdHR0DH2tq6sLCwsLgoKCyMrK4uDBg3R1TfzWKboil8tJS0sjODhYKFQyjrS3t5OcnExXVxcLFizA399/TAfyNm/eTEFBAY8/ft+YXVMgmEzEYhGeng5Mn+5LT4+cY8fK6e6emMngZGRra463twP5+VUMDCjPfsA4tnDhXG699ToeeeQRUlJSxvTaXV1dHDx4kOzsbIKCgrCwsKC7u3tMY5joPD09dR2C4DSEBF0wIYhEIj777HMMDAywsBh+O6ft27fT09Nz0jnvv/9+iopKqa6uPeGx5cuXIBKJePPNN4HBGcWSkhJCQkKQSCQkJSVhZWVFSkoKOTk5Qj/JYVKr1aSlpeHg4ICPj4+uwxEwOBNRVlZGamoq3t7ezJkzZ1Rap51JQ0MDDz74IMuWLSEmJmpMry0QTDampkZERnrj4mJNVpaMmhph5dd44e5uh42NGfn51RO+XsDzzz9OdHQ4iYmJ/PHHH6N+vYGBAbKzs0lJScHKyoqkpCQkEgkhISEUFxefVNhXcHoGBga6DkFwGkKCLpgwHB0d6evr47vvvh/WcR0dHSxevJhFixad9Ji7uzsALS1tJ3zd2dmRv/3tRtatW0dTUxOlpaVYWVkNzfQaGBgQFhbGggUL6OvrY9euXZSXl0/4D9qxoNVqhwq6REZGCsVbxgGFQsGRI0coKytj9uzZ+Pv7j/nPpbu7m6uvvhqxWMRrrz01ptcWCCYrkWhwNj0iwpuamlby8qpQKlVnP1AwqkQiEf7+rmi1UFpaP6EHTszNzdi69VOCgwPYvHnzqF1Ho9FQXl7Orl276O/vZ8GCBYSFhQ0lmY6OjlhaWiKVSkctBoFgrAgJumBC0dfXx8TEZFjHHJ/dPnjw4EkVK/38/LCwsODddz85aRb8wQfvRF9fj7fffpvy8nKCg4NPSlosLCyYOXMm06dPRyaTkZycTFNT03m8sqlDJpPR2NhIXFwcenpCYSpda2lpITk5GbFYzIIFC7C1tR3zGLRaLddfv5KcnGw2b/4Ae3uhQ4JAMJKsrEyZPt0XsVhEenoZHR29ug5pytPTExMa6kFbWw91dW1nP2Ac09fXx8PDlba20XkdTU1N7N27F5lMxvTp05k5cyYWFhYnPEckEhESEkJZWRlyudBuUDCxCQm6YNLTarWsXr0aAwMDXn75Zfr7/9yLZ2lpyUcffcTPP29n06bvTjjOxsaa6667kv7+fhwdHc+YuDg5OZGQkICXlxdHjx7lyJEjJy2pFwzuby4oKCAuLm7YAy2CkaXVaikqKuLw4cMEBAQQGxurs84EW7Zs4ddff2P9+teJi5umkxgEgsnOwECPkBAPPD0dyM2tpKKiaULP3E4GRkYGhIR4UF7eOGGLxh3X0dE14gO8PT09HDlyhPT0dLy9vUlISMDJyem0z7e1tcXR0ZHi4uIRjUMgGGtCgi6Y1CorK/Hz82PDhg0YGBjw8ccfc/vtq064Kbn22msJDQ3lyJGMk4739vZm1qxZBAUFnfVaYrEYX19fkpKSMDY2Zu/eveTn5wv7of6fSqXi2LFjBAYG6mSWVvCn/v5+UlNTqa2tZe7cuUgkEp1tNWhpaeH+++9n2bJLufTSJJ3EIBBMFSKRCDc3W6ZNk9DU1El2dgUKhfAZpUtWVqZ4eTlQVFSDWj1xK+5bW1vS3t4+IudSKpXk5+ezd+9ejI2NSUxMxNfX95wKlgYHB1NVVSVMkggmNCFBF0xqe/fupaenh3XrniU19Rc+++wdtmz5mquvvnrog7C9vZ3c3FzmzIk74ViFQoGenin5+fnD6g9pZGREZGQk8+bNo6Ojg927d1NZWTnlZypyc3MxMTHBz89P16FMaQ0NDSQnJ2Nqasr8+fOxsrLSaTxvv/02AwMKXnlF2HcuEIwVc3MTpk/3wdjYkGPHymhtFapf65KHhz2GhvpIpQ26DuW8ubg4UVVVeUHn0Gq1VFZWsnv3bjo6Opg3bx6RkZEYGRmd8zksLCzw8PCgsLDwgmIRCHRJSNAFk9qcOXMwMDBg3boPuOSSlXR0dLFu3bNs3bqVo0ePAoOJuFarxcrqzyRcq9Xy6KMv4enpTURExHld28rKitmzZxMREUFJSQkpKSm0traOyOuaaOrq6qivryc6OlooCqcjGo2GvLw8jh07RlhYGNHR0ejr6+s6LP744w+Skubh6Giv61AEgilFT0+PoCA3fH2dKSysoaysQSh0qiMikYigIHdaWrpobp6Y7VuDgvwpKio+7642ra2tpKSkUFJSQkREBLNnzz7vAeTAwEAaGxtPaJUrEEwkQoIumNT8/f35/fffWbbsKqKjY3jooadxdnbCwMCATZs2AeDs7IxE4s2RI8eGjqura8DXN5DffvuNn3/+mbfffvucZ8ALCwu566672LlzJyKRCFdXVxYuXIirqyuHDh0iPT2dvr6+UXm941F/fz9ZWVlERkYK+851RKFQkJqaSktLC/Pnz8fDw0PXIQHQ3NxMRkYGiYlzdR2KQDBlOTlZEx3tQ0dHL9nZFQwMCFXedcHY2ICAAFdKSuom5LaDwEBfVCrVsKuo9/X1kZ6ezqFDh064X7qQwXwTExMkEgkFBQXnfQ6BQJeEBF0w6SUlJfHuu+/y888/s3BhAn/724MolUp+/fVXCgoKeOyxx+jt7aOmpm7oGBMTC8LCQunoaCI3N5MHHniAgwcPnvVaSqWS1atX88EHH3DllVdSXV0NDM5UBAQEkJiYiFgsZs+ePRQVFaFSTe4bIa1WS0ZGBi4uLri5uek6nCmpq6uLlJQUTExMmDt37pj3Nj+TnTt3otVqSUiI13UoAsGUZmpqRFSUBCMjAzIzy+ntFapg64KDgxV2dhYUFdVOuG1xx47lYGJics4DwCqViqKiIvbs2YNYLCYxMZGAgIAR6+7i7+9PR0eH0FlHMCEJCbpgytDT0+PLLzejUAwuv5o5cyaffvopr732Gt3dXdxyy3XAYFIpkzXi5+fGG288i6enGyKR6JyWWn399dccOHCAV199ir6+Pt5+++0THjcxMSE6OprZs2fT2NjInj17qKmpmXAfxOdKKpXS399PWFiYrkOZkhoaGti/fz+enp5Mnz593LW1++OPPwgJCcTF5fRVeQUCwdjQ0xMTHOyOk5M1mZkyYV+6jvj5OSOXD1BTM3G2xGm1Wr755keWLVt2UvuzUz23pqaGPXv20NjYyOzZs4mOjh7xFXaGhob4+/tTUFAwae+xBJOXkKALphQnJyeee+45fHx8uOSSS1i5ciUWFhY4ONiRlZULQHNzFwMDKtzcbMnLK+LHH//gpptuGkoye3t7T1up9Pjs5LPPrgWgvr7+hLZux9na2jJv3jyCgoLIy8vjwIEDk26vVEdHB8XFxURHR2NgYKDrcKYUrVaLVColPT2dqKgogoKCxt3e/56eHn744Qcuv3yRrkMRCAT/TyQS4e3tSECAKwUFNdTUtAjJzRjT19cjONidioomursnRuu1rKw8ioul3HzzzWd8XkdHBwcOHCAvL4/g4GDmzZs3ql1dJBIJCoWCurq6sz9ZIBhHhARdMKlptVrWrFmDm5srq1atYsuWLeTn51NeXs7HH39MdHQ0KSkpVFXVsmXLj2g0GmSyJry9HdHTExMfP4OgIH+ysrLYtGkTX3zxBebm5tja2lJTU3PS9X7++WcAHn74bvT19fnqq6+46KIk5PKTlwuKRCI8PT1JSkrCzs6OAwcOkJmZecrnTjTHW6r5+/sLLdXGmEajITs7G6lUypw5c8bt1oL8/Hx6e3tZvHihrkMRCAR/4ehoRWSkF9XVrZSW1gvF48aYpaUpnp4OFBbWoFaP/+/9N9/8iLOzM4mJiad8XC6Xk5mZyYEDB7CzsyMpKQkPD49RHzjW19cnKCiIwsJC4XdYMKEICbpgUtu3bx9vvPEGM2ZE8/XXW7j++uv56quvANBoBtus+fv7IxKJSEqaS319B2IxODtbA4Nv7hs2rKWvr5ubb76ZW265ZejcDg4OJ11v3rx5AFhYmDNjRjQAqakHefXVV08bo76+PiEhISQkJKBUKtm9ezelpaUTuh9qfn4+hoaGBAQE6DqUKWVgYIBDhw7R0dHB/PnzsbGx0XVIp6VQKAAwNj739jkCgWDsWFqaMm2aD93d/eTkVKJUTu6aKeONp6c9Bgb6lJWN/9Zr+vr6dHV1kZOTc8LX1Wo1paWl7N69G6VSSUJCAiEhIWPaQeT4QEBl5YW1gBMIxpKQoAsmNUNDQwAuu+wiamqySU7+ceixtLSj5OXlYWJigp6eHoGB/lRWNiOROJ0wqhseHsLRozuoqMggP38/a9c+g1gspri4+KTrHd979cgjz3D48DFWrFiBj4/POe3BNjMzIy4ujri4OGpqati7dy8NDQ0TbnlhfX09NTU1TJ8+fdwtq57Muru72bdvH/r6+sTHx4/7ivm5ubkYGBjg7u6q61AEAsFpGBsbEBXljb6+HpmZMvr6FLoOacoQiUQEB7vR1NRJS8v4br32z38+SFCQH0uWLOHrr79GrVbT0NDA3r17qampGbq3MTMzG/PYxGIxwcHBFBcXT/rCvILJQ/dNcAWCUTRz5kxCQ0O5/fYHMDY24tJLkygqOkhjYxPz519JeHg4v/76K66uLjQ2duLl1YtIdOo3cCsrC6ysLLj55mv48MMvWLVqFfv27cPU1HToOceXvUdGhiKXq/j222+HHbODgwPz58+nsrKSzMxMrKysCAsLw9LS8uwH69j/tlT73++LYHQ1NTWRnp6Ot7c3wcHBE2JgZO/evUyfHomZmfB7IhCMZ3p6eoSGeiCTNZGZWU5IiAc2NuOnG8RkZmxsiL+/C8XFdVhYmGBkND7ruZiYGPPVV+u5994neeSRR1CpVNjZ2REcHIyXl5fOP5NcXFyQSqWUlZURGBio01gEgnMhzKALJjWRSERKSgoAR45kAODk5MDu3QeGPjBWrlzJPffcy7RpMfz7388xb94VdHaevnqtgYEBH3/8BoWFBdxzzz0olYP9StVqNfv27SMkJJCLL15AdXU1R44cOa+4xWIxEomExMRELCwsSElJITc3l4GBgfM631jQarVkZmbi6OiIu7u7rsOZMmQyGWlpaYSFhRESEqLzG6FzodFoSElJIT4+TtehCASCcyASifDxccLX14W8vCrq6tp0HdKU4eRkja2tOcXF47v1mq2tDS+99Bxvv/02KSkpODg44O3tPS4+k0QiESEhIUil0nF9HyUQHCck6IJJ73gF8Xfe+Yienl5gMEE4/kHX3d3NvHnz6O/vJz8/H2NjI4yMDM94zoiIUF566Z98+umn2NnZ4eMjwcbGhh9++IEbbriKvr5++vr6mDlzJr///vt5x25oaEh4eDgLFiygp6eH3bt3I5PJxmWxk7KyMnp7e4mIiNB1KFOCVquluLiYwsJCZs2ahaenp65DOmcFBQW0tLQQHz9D16EIBIJhcHa2JiLCC5msicrK5nGdME4m/v4u9PcPUFs7/lqvabVaamvbSEuT0tc3QHS0D0eOHOS2224dqjUyHtjb22Nra0tJSYmuQxEIzkpY4i6Y9CwtLVm/fj1///vf6e7uwdzcbGjWe/ny5ZiamtDY2Mibb77JrbdexwsvPHFOhatuueVapk+PZNeuFLq6erCwMKezs4vnnluHRqPB3Nycnp4eNm3axKWXXnpBr8HCwoKZM2fS2NhIXl4eMpmM8PDwUxaq04XOzk6KioqYPXu20FJtDGi1WgoKCqiuriY+Pn5CbH/4X8nJyRgaGhIbO03XoQgEgmGysjIjMtKbnJxK1GoNEonjuJglncz09fUICnInJ6cCa2tzzM2NdR0SAO3tPZSVNaDRaAkKcsPObrAOz9tvv8DChcvZtWsXS5Ys0XGUfwoJCWHfvn34+PgI2/AE45qQoAumhKCgIAAOHDjCkSMZfPLJZlatWsVzzz1HaWkpO3bsoKeni0ceuXtYe2LDwoIICxs8t1arZdq0RBITE/n000+xtrYmKyuLqKioEXkNIpEIZ2dnHB0dKS8vJy0tDXt7e8LCwnRSeOU4rVZLVlYWPj4+Qku1MaDVasnJyaGxsZH4+HjMzSfeXtD8/HwCAnwxNR3fhewEAsGpmZsbExXlTU5OBWq1Bj8/ZyFJH2VWVqa4u9tRUlLHtGkSnX6/+/sHKCtroKOjFy8vB9zcbBGL/1yU6+Pj9f/PG1993K2srHBxcaG0tJTIyEhdhyMQnJawxF0wJcyePZuEhARWr17D99//yiuvvMLHH3+Mvb09HR0dbNmyhW++2YCrq/N5XyMvr5DKymruuusuHB0dMTQ0JC4ubqiS/EgRi8X4+fmRlJSEkZERe/fupaCgYGhVwFiTyWQolUqh8MoY0Gg0ZGZm0tzcPGGTc7VaTWNjI5aWEy92gUDwJ1NTI6KiJLS19VBcXCcsdx8Dnp4OKJVqndUAUKnUlJc3kp4uxdBQn7g4fzw87E9IzmGwsODg88df1XR/f3+qq6vH1fJ7geCvhARdMCUYGBjw888/869//YuMjAwee+wxRCIRMpkMKysrampq+OmnbRd0jZ079wGDs/W9vb0jEfYZGRkZERUVRXx8PG1tbezevZuqqqoxvUnq7++nsLCQiIiIoQ9kwejQaDQcO3aMjo4O4uPjJ+TyvIaGBiIiIvjhhx/w9BQKCQoEE52xsSFRUd50d/dTWFgzLuujTCZ6emL8/V2QyZpQKMZuUF6r1dLQ0M7Ro1K6uvqIipIQEOCKoeGpF+Ie73M+HguyWVlZYWtri0wm03UoAsFpCQm6YMowNzfn+eefx8fHBxgc2ZXJZISGhnL//ffz2mvvsm7dB/T29qFWq3n77Q1Dld/PRWLiXAwNDfHz88POzo7bbruN7u7uUZ/Ztra2Zs6cOYSHh1NUVMS+fftoaxub0fW8vDycnJxwdHQck+tNVWq1mrS0NHp7e5kzZw7GxuNj/+Fwffzxx8hk5fz88ybeeedFXYcjEAhGgJGRAZGR3vT3D5CfXy0k6aPM1tYcW1tzysoaxuR6nZ19ZGaWU1HRjJ+fM5GR3lhYnHl7krGxEfb2dpSXl49JjMPl5+eHTCYblzP8AgGASCusSZqSurq6sLKyorOzc8IVmBopMpmMyspK5s+fj1Kp5Omnn+b111/H3NwMNzdnCgtLASgrS8PW1uaczpmTk49MVkVFRTVr175PT08v+vr63HXXXbzxxhujPsusVquRSqWUlpbi4uJCSEgIJiajs8+3sbGR9PR0EhMTJ2zCOBGoVCqOHDmCWq1m1qxZE7oI3/Tp0/Hycmbjxrd1HYqAweWqqalFzJkThL6+sAJGcGFUKjW5uZWIxWLCwjyEVVWjaGBASVqalJAQd2xtLUblGgqFkvLyRlpauvH0tMPd3R49vXOf11u+/Fb09IzZuXPXqMR3IbRaLcnJyXh7eyORSHQdjs4IucD4JcygC6YkrVZLWVkZvr6+iEQiDA0NeeWVVygvL+eee+4lJCSC0NBQrK2tzmkP+S+/bOfxx5/nhx/+YMuWH/jxxz9Qq9XAYIL1wQcfjMl+Jz09PQIDA0lMTARg9+7dFBcXD8UyUlQqFTk5OYSEhAjJ+ShSKpUcOnQIYMJXyK+srCQjI4MlSy7SdSgCgWAU6OvrERExWBwsJ6cSlWpkP3cEfzI0NMDHx4nS0nrU6pFdsaBWa6isbCItTQpAXJwfXl6Ow0rOAa666jJ27dpNWVnZiMY3EkQiEX5+fpSVlQm1EwTjklDFXTAl1dfXo9FocHNzO+HrXl5evPji4NLbq666ira2lrNWSt2zZz+33HIvHh4eaLUaQkPDiIubzZw589HX18fIyIgVK1aM6Z5hExMTpk+fTltbG7m5uVRWVhIaGoqrq+uIVH4tKSnByMgIb2/vCw9WcEoKhYJDhw5hbGxMbGzshJ+N+vTTT7GwMOeii+brOhSBQDBK9PT0CAvzpKCgmuzsCiIivDAwEG41R4OLiw0NDR1UVTUjkThd8Pm0Wi0tLV2UlTViaDg42GJldf73LcuWLeFf/3qFDz/8kNdee+2C4xtpbm5uFBYWUl9fj6urq67DEQhOILxrCqYcrVZLaWkpvr6+J1Ue/V9Lly5l69at1NbWExDge9rnvfrqf5g3bx579uw54/l0wdbWlnnz5lFdXU1ubu5Q/3QrK6vzPmdXVxfl5eXMnTtXaKszSgYGBkhNTcXCwoLp06ePu9+r83Ho0EHmzp2JpeXoLMcUCATjg56emNBQDwoLa8nOriAy0ltI0keBSCQiIMCFzEwZjo5WmJmd/2q27u5+ysoa6O8fQCJxwsnJ6oI/301NTbjhhqvYuHEjzz333LhbbScWi/Hx8UEqleLi4iLczwjGlYl/1ycQDFNbWxs9PT14enqe8Xk5OTkArFnzb7q7e85wvg5SUlKYN2/umFRvHw6tVotIJMLT05PExERsbGzYv38/WVlZ57XkXqvVkp2djbe39wUl+YLTU6lUHD58GDMzs0mTnAPk5xcQFOSv6zAEAsEYEIvFhIS4Y2xsSF5e1YgvwxYMMjc3wdXVltLS+vNaqj0woKKkpI6sLBmWlqbExvrh7Gw9YsnqbbetpLW1le+//35EzjfSvLy86O7uHrPCugLBuZocd34CwTBIpVIkEslZ9/M+/fTTrFixggMHjrBzZ8ppn/fGG89xyy3Xkpp6kN9//32kwz0vUqmU6OhpiMVivvjiC2Cw1VxoaCgJCQkoFAp27dqFVCodVsXdqqoq+vv7CQoKGq3QpzSNRkNaWhp6enrExMRMmuQcBgcehFk0gWDqEIlEhIS4IxKJhOruo8jb2wG5XElDQ8c5H6PRaKiubiEtrZSBARUxMX74+DiNeLFIX19vQkICSU1NHdHzjhQDAwO8vb2RSqW6DkUgOMHkufsTCM5Bd3c3TU1NQ63WzsTa2nqoRdpzz60jJCSer7/+4aTnzZ07kzfffJ6LLprP3XffTVVV1YjHPVxvvvkmmZlZACfNdJuZmTFjxgxiY2Opqqpiz549NDY2nvWcCoWC/Px8wsPDh3qcCkaOVqslIyODgYEB4uLiJvye878KDAwgL69I12EIBIIxNFjR3ROlUkVRUa1QkGsU6Onp4efnTHl5IwMDZ24bptVqaW3tJj29jMbGDkJDPQgL88TE5OzFcM+Xn583UmnpqJ3/Qvn4+NDU1ER3d7euQxEIhggJumBKkUqluLu7n/NeqM8//5xHH32UiIgo6usbeeyx50/Z11wkEvHee69iYmLEsmXLOHLkCGvWrGHNmjVkZWWN8Ks4u2uuuYbrrruOjRs3ctlll53yOY6OjixYsABfX1+OHTvGoUOHzvgBlZ+fj52dHS4uLqMV9pSl1WrJycmho6NjwrdSO50lSy5j9+59Z9wuIhAIJh99fT3Cw73o6ZEjlZ7fUmzBmdnbW2JlZUp5+ekH23t7FeTmVlFUVIubmx3Tp/tiY2M+6rFJJF7k5AzWwBmPTExMcHd3H5fV5gVTl5CgC6YMuVxOTU0Nvr6nL/j2V5aWlrzyyisEBgYCcMst15529tjBwY533nmRjIwMZs6cyebNm/j888+Ii4ujurp6RF7DuZo/fz5btmzhtttuO+NMrFgsRiKRkJSUhJmZGcnJyeTm5p40CNHc3ExdXR0RERGjHfqUVFRURENDA7Nnz8bIyEjX4YyK6667Drlcwe+/79Z1KAKBYIwZGuoTEeFFa2s3FRVNug5nUvLzc6GlpYuOjhNr4ahUaqTSejIyyjA1NSQuzg83N9sxK4p21VWXoacnIjg4mH//+9/jcquDr68v1dXVyOVyXYciEABCgi6YQsrLy3FwcMDS0vKUjysUilOO7B85coS1a9fy7LOP8txzj53xQ23+/Nls3Pg2//3vRvLz9/PZZ++gVCqpqakZsdcxGgwNDYmIiGD+/Pl0d3eza9cuZDIZWq0WtVpNdnY2wcHBmJiY6DrUSaesrIyKigpmz549pq34xpqnpycxMTHs3XtA16EIBAIdMDY2JDzcm7q6dmpqWnUdzqRjbGyAl5cDJSV1aDQatFotdXVtHDlSSl+fguhoH/z8XMa8Fkh4eDBHj+7gnntW8fzzz3P77beP6fXPhaWlJQ4ODpSXl+s6FIEAENqsCaYIpVJJRUUFcXFxp3y8oaGB2NhYPDzc+fjjTwgJCRl67Pj+bHNzM3JzCwkPDz7jtZYtuxSAw4ePceedD+Ph4UFMTMwIvZLRZWlpyaxZs2hoaCA/P5+Kigqsra3R19dHIpHoOrxJp6qqiqKiImbPno2FxeRvP2ZnZ0dra7uuw5h0NBotKpUKpVKDSqVGpVKjVmtQKtUn/PdfZ640msEByZKSOsTiwYFHsViMnp4YfX099PX1MDDQ+8t/i9HX1x96vkAwHGZmRoSHe5KTU4m+vh7Ozta6DmlScXe3o7Gxk5KSenp6+tFotAQGumFnZ67TNmJmZqb8618P4ePjxd13P87ll1/OsmXLdBbPqfj5+ZGWlkZAQIBQZ0egc8JvoGBKqKqqwszMDDs7u1M+vm7dOrq7uzh2LIO///3v7Nu3b+ix0NBQJBIJa9b8G3d3V3JzT1/RHQZn4jdt+p7HH3+eWbNm8c0330yoPcUikQgXFxccHR0pLi6mtLQUOzs7+vv7MTMz03V4k0Z9fT05OTnMmDEDGxsbXYcz6qqrq9m+fTtPPbVG16FMOFqtFoVCiVx+/N/A//8b/G+FYnBLilgsGkqkB/+dmGiLxSe+Dx1P2E1MDIc6Bmg0GlQqDX19iqHkXqX6M/E/ntQbGRlgbGyAsbHhX/7XACMjA6GnsOC0LC1NCQ31IC+vCn19PeztJ//g5FiRy5Xo64tpbOzA09MeLy+HcdUNZOXK5fz883buuecekpKSxtXAtJ2dHWZmZlRWVg5rK6RAMBqEBF0w6Wk0GsrKyggNDT3tTaOXlxc9Pb34+Hixf/9+brnlFv7973/j4+ODn58fpaWlBAcHY2t76uXx/+vzz7/hsceex9XVlT179kyo5Px/6enpoVAocHZ2xtDQkL179+Lr64u/v78wunyBWlpaOHbsGNHR0Tg4OOg6nDFhZWWFSCTC2XlqvN7zpVSq6OmR/8+/fvr7lWi12r8kxYZYW5sPJcWGhvrDvhFXqdRUVbXg4WF/zu2VNBoNAwOqvwwWKOno6B0aLBCJRJiYGGBuboK5ufHQP6HNnuA4GxtzgoLcKSysITzcE2trYfD3QqjVg3/LNTWtODpaoa+vx8CAalwl5zA4AfDKK/9i2rREfvvtN6677jpdhzREJBLh5+dHfn4+Eolk3H3vBFOL8GkpmPTq6uoQiUS4urqe9jl/+9vf2Lt3L1u3bgXgq6++or29jZ9//gWAgwcPUlpayubNH5z1ejExUcDgTHplZSV+fn4X/iL+ori4mO7u7lFdOt/V1UVNTQ0LFy7EzMwMiURCbm4uVVVVhISE4O7uLsySnYeuri6OHDlCeHj4GX8nJxtLS0sCAwPIyMjl+uuv0nU448LAgIru7n66u/uHEnKFQomxscH/J7UmODpaYWpqhJHR8BPw0SAWi4cGCE5Fo9GgUKjo61PQ0yOnq6uPuro25HIlRkYGQ8m6hYUJFhYmGBoKtyFTlYODJSqVmry8KqZN88HMbHIWyBxNWq2WxsZOZLJGjI0NiYqSYGFhQn+/gvT0Mtzd7TAzO7euNWPF29uTgABfUlNTx1WCDuDi4kJBQQF1dXW4u7vrOhzBFCZ8MgomNa1Wi1QqxdfX94zJpJGREV988QUmJiZs3rwZlUqFlZX10ON+fn54e3vzxBMvEhUVhqur82nPFR0dQXb2Xq6++naWLl3Ks88+y/Tp00dsyVR+fj5hYWHA4ODDubQ9Ky0tpba2loqKCpqbm1m0aNFpK7JrtVpEIhGFhYV4eXkNLWu3trYmPj6e2tpa8vPzkclkhIWFYWtrOyKvayoYGBggLS0NHx8fvLy8dB3OmIuNjSM9PUPXYeiMSqWmo6N36F9vrwJTUyPMzY2xsjLFzc12ws80i8ViTEwMMTExxM7uz+Wrf10Z0NzcRV+fAjMzI6ytzYb+netMvmBycHGxQS4fID9/MEk3MBB+/ueqq6sPqbSBgQEVvr7OODhYDt3nmJgY4exsjUzWRFiYp44jPZmHhyt1dXW6DuMkYrEYX19fpFIpbm5uwiSEQGcm7l2AQHAOWlpa6O/vx9Pz7B9QZmZmbNy4EbFYzJYtW7jhhhuGHnNxcWHfvn3MmDGDuXMvx9jYiOXLl/Dww3djZXXyHipPT3c+++w/LFt2C9deey2urq58/PHHxMbGYm9vf0Gvad26dQAEBgaedk/9ce3t7Vx//Uq2bdsODH74GBkZ8uijj/LSSy/xxBNPnPD8J598ktdee40771zNJZdcSlJS0gmPi0Qi3N3dcXZ2RiqVcvDgQVxcXAgJCREqvJ+FRqMhPT0dCwsLgoKCdB2OTixatIhNmzZRW1uPm9vZB5YmOrVaQ1dXH+3tgwl5d3c/JiaG2NiY4eXliLW16YROxofDwEAfGxvzE/ouK5UqOjr66Ojooby8kf7+ASwsTLC2NsPGxgxLS1P09HS/akAwury9HenpkQ8tdxeSojNTKJTIZI00N3fh4WGPh4f9Kf9OvLwcOHJESmdnH1ZW46tDiKOjPRUV4y9Bh8GOI0VFRbS0tEyZLWiC8Uf45BNMalKpFIlEcs57pg0NDfniiy/o6+tj8eLFJzzm4eFBcnIyt956G8uXX83GjVuIibmI5OTUU54rJCSA/Pz93HvvHdTV1XHppZdy0UUXXfBrSklJBuDyyy/H0PDUy0yPe+yxx9i2bTtr1z5DevpOKiqOUVWVyeLFC3nyySfZsmXL0HO1Wi0bNmxArVbj7u6Bu7s7xsanXhq3e/dujhw5wrx589BqtezevZuSkhLUavUFv77JqrCwkP7+fqKjo6fsDeiSJUswMDDg11936DqUUaNUqqivbyc3t5LU1CKKi+sYGFDh5mbLzJkBxMX54+/vioOD5ZRJzk/HwEAfBwdL/P1diYvzZ+bMANzcbBkYUFFcXEdqahG5uZXU17ejVKp0Ha5glIhEIoKD3VEoBigvb9R1OOOWRqOhsrKZtDQpGo2W2Fg/vL0dTzuIZWhogLu7HTJZ4ylbyOqSo6MDDQ0Nug7jlI53rSkrK9N1KIIpbGrfHQgmtf7+fpqbm4mKihr2sacr7BYQEDA0g/3444+zcuVKbrvtfqTSI+jpnbw0T19fnwcfvJO6ugb27k294GrdtbW1lJfLAGht/bOPbHd39ymroYaGhgLw8MPPYGBggKGhAQYGBjg6Ds7iX3/99VRUVPDEE08gEonYuHEjP/zwA4GBgUPH/tVXX301tLrg66+38Pvvf9DW1kZubi6VlZWEhobi4uIyZZPQU6murqayspJ58+ZN2KKBI8Ha2pqkpER+/nk7d955i67DGTEDAypaWrpoaemio6MXc3MTHBws8fV1xsTEUPhbOEdGRgY4OVnj5GSNVqulv3+A1tZu6uvbKS2tw9raDHt7S+ztLYW965OMvr4eoaGeZGaWY25ujJOTta5DGje0Wi0tLd2Ulzegr683rKJ6Hh521Ne30dbWc8KWE13z9HSjurqGvr4+TE3H1+w+gLe3Nzt37qS/v19YHSjQCWEGXTBpVVVV4ejoeN5vrps3byYsLIyvv/6agYGBkx7v7e2ltbUVc3OzMxZvsrGxZs2au5DL5cyaNeu8YjkuPT0dgJkzY8jOzqa4uJiZM2dgaWnJ6tWrTxolv//++6moqOCrr77ilVde4YYbbmTJksswM/uzGv1LL7009P+XLl3KTTfdRGRk5GkTyTfffJMZM6azbt2zbNu2nba2Nuzs7Jg/fz4BAQHk5ORw8OBBOjs7L+i1Thbt7e1kZ2cTExODubn52Q+Y5K666moOHUqnqalF16FcEIVCSW1tG9nZFRw+XExjYwe2tubExfkTHe2Dh4c9pqZGQnJ+nkQiEaamRnh42BMd7UNcnD82NuY0NnZw+HAx2dkV1Na2DbWYE0x8pqZGBAe7U1JST3d3v67DGRd6euTk5FRSWlqHp6cD0dE+w6p4r6+vh6enw7ibRY+NjUKlUg3d04w3JiYmODg4UFVVpetQBFOUMAQtmJS0Wi1VVVWnnQU+F2lpaeTn57Ny5UruvPNO1q9fP/SYUqkkKSkJIyN9vv56w1lvwp9/fh19ff384x//OO94gKFZ8rlzZ/D66+8RFBSEn5+ERx+9h9deexe5XM59992HRqOhrq6OiooK5HI5O3fuJDk5eajvMYCzszOJiYlce+21Q1+rrq5GrVbj7e192hg8PT34+edfaG4eTLBaWlqwtbXl6NGjWFtbk5iYSElJCfv27cPT05OgoCCMjKZmdV65XE5aWhpBQUE4OjrqOpxx4YorruDOO+/k9993ceutF1bBd8eOZLZt20NISCC33379BSXDvb19KJVKrK2tTvscrVZLW1sPdXVttLf3YGlpir29JUFBbhgZTd2VEWPB2NhwaL+tQqGkubmL5uZOysrqsbW1wMXFBltbc2FAZIKztbXA29uB/PwqoqN9MDScmn9XAwMqKiqaaGzswNXVltBQj/MuoOjqakNNTStNTZ3jZmVCcHAA5uZmHDp0iHnz5uk6nFPy8vKioKCAgIAA4X1FMOZE2vE0pCYYM11dXVhZWdHZ2Yml5dl7e080LS0tHD16lEWLFp13a6LMzEyWLFlCfX09AOXl5UgkEgAaGxtxdnbm5Zf/yd//futZz/X559/wwAP/IjExkdtuu43Y2Fh8fHxOuTc+OTkZCwsLpk+fftJj/f392NnZcc01l7N06SIqKqq49torMTc348svv+Opp16ho6Nr6PkmJsaYmJjg4+PFjTdeTXz8DOzsbKioqObjj7/ku+9+QV9fn4iIcAICArn00kvZv38/O3ZsZ+XK63nqqaeGYiwoKKClpYUZM2bwn//8hwMHDhASEsKLL77Iyy+/zD//+U9MTU355z//yZNPPklPTw/5+fm0trYSGBg45fqKqtVqDh48iKmp6ZTed34qiYmJKBQ9/Prr5vM6XqvV8tpr7/LKK+/g7+9HaamUZ599lPvu+9uwz1VTU8+PP/7O66+/R19fP/7+PnR39/Cvfz3EtddeAQzOltfXt9PQ0I5WO1h52tnZ+rStxiYKlUpNamoRc+YETdjq6XL5AA0NHdTXtyMSiXB2tsbFxUYYMJnAtFotRUW1yOUDREZ6T6nPDY1GS11dG5WVTVhZmeHj44Sp6YUPcDc0dFBR0URcnN+4+X4uW3YrlpZ2/PTTT7oO5ZTUajU7duwYkeK+49VkzwUmMiFBn6Im+x9lRkYGBgYGhIeHX9B55HI5Tz31FGvXruXLL788obL7ypUr2bbtD5544n5mzYohNDTwjB98v/22kzff/JBjx7KBwaJzBw4cOKHCfHV19dB/b9iwgb/97eSE45lnnuHFF19EpVLh7OzI4cN/YGU1+DPs75eTm1uIiYkxjo72ODranzExbGpq4euvf6CwsBR7e2eCg8P48cfvcHKy58svv+cf//gH77//PiqVisDAQMrLy1m9ejUffvjhCeeZOzeetLQ0BgaUXHRREjt27PyfazSRm5sLQFhYGE5OTqeNZ7LQarVkZWXR1dVFfHz8KesTTGU//PADy5cv57vvPiEpafizJxs3fsWaNf/mxRdf5IknnuBf//oXL730Er/+upk5c+LOeKxGoyEzM5dt2/awbdte8vIKMTQ05JJLLmHmzJnU1dXx888/M2tWNC+88BT19e20tfVgY2OGi4sNdnYWk2awZTIk6Mdptdqh/ert7b3Y2poLs+oTmFqtIStLhrm5MQEBrlPiZ9jW1k1ZWQMgwtfXGVvbkdsSpdVqOXasDGdnG9zdz9z9Zay8/PLbbNz4NU1NTeP255ubm4tSqSQ6OlrXoYyKyZ4LTGRCgj5FTeY/SqVSyfbt25k7dy5WVqdfrnqu1Go1xcXFBAcHn/Ah0trayu23r+LXX39DrVYTHz+Djz9+EyenM7flaGxsJiengIcf/jfW1rbs3Zs81Eu8p6dnaBl7UlIiO3fuOuU5ioqKCA4OxsTEmMrKjAsuPKZSqUlLKyUw0A07Ows2bNjEY489x1133cV7773Hxo0buf3227n++uV8++3PZGZmEhYWxtatW0lOTsbOzo53332XsLAwPvroI/z8/E44v0ajQSaTUVxcjK2tLWFhYZN6P3Z5eTklJSXMnz9fKDBzClqtloSEBKqrK9i79wcsLc+9eFFaWiaXXXYDd955J//5z3+Awd+vmTNnoNEo2bnzu5Nu9np7+0hOTmXbtj3s2JFCU1MzNjY2XHrppSxdupTFixcPvVc0Nzfz2GOPkZSUiI2N9aSZLT+VyZSg/y+5fID6+g4aGgZn1V1dbXF1tZlUr3EqUCiUHDtWjpeXA25utroOZ9T09SkoK2ugq6sPb29HXFxsEYtHPmFtbe2muLiWuDj/cfG3sHv3fq6+ehUlJSX4+/vrOpxT6uzsZP/+/SxatGhSFnidzLnARCck6FPUZP6jrKiooKKiggULFozJ9fr6+ti1axerV6+mo6OD+PgZLFqUwFVXLcHW9vRV2wsKSliy5Ho0Gi1OTo74+fnx3nvvM2vWLBobG/H09GD79h289dZbXH/99UP7tFpaWliy5FIKCwvZtet7AgJ8L/g1yGRNdHb2EhnpjUgk4tChdC69dCWLFi2ivb2NtLSjLF16MRs2vMHMmZeQmHgR9913HzExMZiYGNPd3YNYLMbKygp7ezvmzZvPM888g7u7+wnXUSgUFBUVUVVVhUQiITAwcNJ96LW0tHD48GFmz549NPAiOFlpaSkxMTHMnTuDV199CldX57POohQVlbJ8+W34+PixZ8+eE9oM7tmzh8TERN5992VuuOFqamrq2b59cJZ8//7DKBQKgoICWbr0cpYuXcqsWbNO2GKiUCgoLy+nsLAQqVTK3LnTCAryHrczOyNhsiboxx2fVa+ubqGvT4Grqx3u7rZTvr3dRNLZ2UdOTgXh4V7DKo42EahUaiorm6mra8PZ2Rpvb8dR/d3UarVkZ1dgbW2Gt7fua6J0dnYhkcTw8ccfs2rVKl2Hc1rJyclIJBK8vLx0HcqIm8y5wEQnJOhT1GT+o9y3bx8eHh5D+8XHSmNjI5s3b2bbtj+GZr4/+ugNrr566RmOaeazz76mp6eXjRu/oq9vsHLt0qUX88svO/Dx8aG8vBxnZ2ekUil1dXUsXbqUtrZWvvvuYyIjz78I3nEDAyqOHCklMtILS8s/251s3fobb7yxHj8/by6/fDGXXpqEsbERixdfi62tE0FBQXz99VdkZe3h6NFMSkrK6erqpr6+kf/+9zeMjU2QSqWnLBDX1dVFbm4uXV1dhISE4OnpOSkSIYVCwd69ewkKCjpjoT3BoJ9//plly5ah0WhwcXFi+vQIZLJqenv7cHV1wtXVGbVaTX19I3V1jdTW1hMUFMTOnTtxcXE56Xy33XYbX3zxBT4+XkilMvT19Zk3bx5Lly7lsssuO2llBwzWdZBKpVRWVtLR0cFrr72Gt7crX3zx7lh8C3Rqsifox2m1Wjo7+6iqaqazsw8XFxs8POyFfeoTxOCe7GZiYnwnxeCKVquloaEDmawRMzNjfH2dMTc3HpNrd3b2kZtbSVyc/7hoVbhw4XKCg8PZvPn86pGMhfLycmpra5k7d66uQxlxkzkXmOiEBH2Kmqx/lN3d3SQnJ7No0aITZtdGmlarpaSkBHNzcwwNDbn++pV0dHRw9dUrSEpKIiYmBoAXX3ySu+667ZzOeehQOpdddgNRUWF8+OFaYmMvBuCTT97ivvuexNbWjra2NpydHfj224/x8RmZ0dzS0noUCiVhYZ5nfzKwdu17vPjiW4jFYmJiItm+/duTnvPDD7+zatX9HDp0iJkzZ57yPIM3KQ3k5eUN1Quwsxsfe+POh1arJS0tDZFIRGxs7KQYcBgL1dXVZGZmsn//ftLT0/H398fa2pra2lqqq6swMDDE3d0dNzc3vL29ueGGGzAzO/VMmkaj4cUXX6SsrIxLLrmERYsWYW1tfcrn9vT0UFpaSk1NDSYmJrz11lts27aNBx5YzSOP3D0lOg9MlQT9f3V391NV1UJrazdOTlZD7fAE45dWq6WgoBqtFkJDPSb0e2tHRy9lZQ2oVGp8fZ11UtMiL68KIyMD/P1PHuQca8888zpff/0T9fX14/bnOjAwwPbt21mwYMHQFsTJYrLmApOBkKBPUZP1jzI/P5/+/v6hBHm03HPPPbz33nuYmJhw1113sW7dOqKiwigultLfLwdgxozpbNv2NTBYKdrU1PiMS94B6uoasLW1wdjYiG3b9mBvb0tMTBQpKQd54IGnSEqax7///TDm5iOz1K+/X8HRo2VMn+6Lmdm536SmpBxk795UIiNDWbbs0pMeHxgYICFhGV5ePrz66mu8+OKLWFlZsWjRIpYuXXrCsna1Wk1ZWRklJSU4OTkRGhqKqanpSecc7yoqKiguLiYhIWFUB4cmM61Wy5133klGxjE6Ozvp6Oikr6+PgIAAVq9efUKbQpVKxfvvv4+xsTG33347enp6ODg4kJiYyPvvv4+pqSnGxifPSvX19VFYWEhdXR2urq6kpKTwxBNP4OPjxXvvvUJ0dMRYvmSdmooJ+nG9vQqqq1toaurEwcESicRxUtYZmCyUShXp6WV4ezvg4jLxtg7J5QOUlzfS1taDp6c97u52Oqum3tsrJyOjnJgYP0xMdPs7n5ycyrJlt5Kbm0tYWJhOYzmT9PR0TExMLqh173g0WXOByUBI0KeoyfhHqdFo2LFjB9HR0aPWc/qRRx6hsrISqVRKZmYmMNgySiqVYmpqxG+/bSYvr4jvv/+FWbNiue66K/n++1/4298ewtvbk/T0HeOqondRUS0iEQQGuo34ud94Yz1vvbWBSy65hG+//ZagIH+KikpZuvQyfvzxp5NuTuRyOQUFBdTV1eHn54efn98p29CNR93d3aSkpDBjxgwcHM5cJFBwen19fZiZmREU5M/FFy/A0tKC1tY2PvjgMzw9PamsrBx67k8//cSVV14JDHZEiIqK4pdffjnhfLNmzeSjjz4mNDQUpVJJSUkJMpkMV1dX9PX1+dvf7iA9/Rj33nsHjz9+H8bGU2smdSon6MfJ5QNUVDTR3NyFm5sdnp72U/Z7Md61t/eQn19NdLTPhFn1oFZrqK5uobq6BQcHKyQSx3GxtaKoqBaAoKCR/+wfjv5+ORJJDM899xyPPvqoTmM5k6amJjIyMrj44ovHTZu6kTAZc4HJYvL8lgmmvKamJsRi8aglSLW1taxdu5bvvvuOiooKFi9eDMB1113Hf/7zHwoLS6ipqWfu3Jm8/faLXHfdlVRV1XDXXY/h5+dHRUUVb765flRiOx8KhZKmpk48PEanv+eMGdPo7u6mubkZAwMDduz4lrVrn+GXX36lvLwcgE8++YRFiy5my5YtGBgYEB0dzZw5c2hqamL37t3U1NQw3scQNRoNx44dQyKRCMn5BUpNTQVg7dpn+Pvfb6GuroGPP96Mo6MjzzzzzAnPdXV1Hfr/1dXVJyTnzz77KK+99m8OHTrM3XffTXl5Obt27aKjo4PZs2ezZ88e4uLiaG9vZdu2r3nmmUemXHIuGGRsbEhQkDtRURK6uvpISyultrYVjWZ8v+9MRTY2g63zCgtr0Gg0ug7njLRaLY2NHaSlldLe3kNkpISgILdxkZwDeHra09TUiUKh1GkcJibGXHbZRXz00Ufj+mfq4OCAWCymqalJ16EIpgghQRdMGpWVlaNabMzJyQlbW1uuv345SuUArq6uZGdnc8cddxAdHY25uTnXXHMH333389AHzdatv2FoaMjWrVt56KGHeOmlt3nrrQ/HRdJZW9uKra35qM1EzJkzg8TEuezduxelUolUKqO2tgF7e3skEgkdHR2sXr2agwcPcv311xMZGck333yDhYUFc+fOJSQkhPz8fPbv3097e/uoxDgSCgsLAQgODtZxJBNbR0cHN998M35+En7/fRfR0Un88MMfPP/885SXl3PbbSfWcoiJiSEqKhInJyfMzMyIjY1i9eqbWLPmH/j6etPd3UNcXBwPPfQQMpmMadOmYW9vz2WXLeHRRx/ljjtuICXlJ2Jjp+noFQvGEwsLEyIjvQkIcKO2to30dCktLV3j4r1a8CeJZHB1XEVFs44jOb2urn6ysmSUlzfi4+NEVJQES8vx1W7T1NQIW1tzamvbdB0Kt99+A1KplJ07d+o6lNMSiUR4eHhQVVWl61AEU4SQoAsmBblcTmNjIx4eHqN2DX19fVasWMG+fYd58sn72bhxI9deey1PPfUUl1++lJ6eHjw8vFi9eg0JCcvZtm0PSqUSfX19IiIi2LBhA3fffTfPPruWe+55HKVSdyPXKpWaurr2UZs9P+6KKy4BIDY2isjIUHbuTGHx4sXo6elhamqKRqPhhReeYMeOb3F0tOa6665j7tx4ent78fDwIDExEQcHB1JTU8nMzEQul49qvMPV3NyMTCZj+vTpk2rZmy6IxeKhgZxNm77nscceQyaT8dhjj52yKJxIJOLw4SMUFxfz+++/U1RUxoYNm1i37gOeeup1jIxsuO+++wgPD2fBggV8++23TJs2jcbGBn777SteeOEJTEzGpnKyYGIQiUTY21sQE+OHu7sdJSV1ZGdX0NPTr+vQBP9PLBYTFORObW0b7e29ug7nBAqFkqKiWrKzZVhbmxMX54+Tk/W4LX7m4WFHXV0bKpVap3HMnDmd0NAg3nvvPZ3GcTaenp40NDSgUCh0HYpgCpgYGzwFgrOoqanBzs7utNWdR8qNN97Ihx9+SHh4CMnJP/L882/wwgsvsHjxQmCwMnRycjJPPfUUK1feCYChoSGhoUHU1NRy9GgamzZtYtWqVchk1TzwwGo6O7vIzy/m2LFsnnjifmbPjh3V1wBQX9+OmZkRVlajW4zt8ssXIZXKuPvuwR6nhYUl3HXXvchkMlauvA6A0NBAYmKi2Lr1Mw4cOMLSpTfyxx9/sGLFChoaGmhtbWXhwoXk5+eze/duuru7mTZtGoGBgaMa+9kMDAyQkZFBWFjYpKns2tzcTF5e3tBe7b6+PqysrIiIiCAhIQF7+9Eb0LG0tOT777/nyJEj3HHHHedU0d/IyAgjIyPmzZtHXl4e+/fvx8bGBpVKhb6+Pq6urkgkEjZs2MD999/P6tU38fTTD2NmNvGKEArGjlgswtXVFkdHK6qqWsjMlOHmZouXlyN6esJAnK6ZmRnh6+tEUVHNuGi9ptFoqKlppaqqBVtbc2Jj/SZEwUFLS1NMTY2orx/9wfozEYlEXH31Zbz++vs6i+FcmJmZYWdnR3V19SlbdgoEI0koEjdFTabCEFqtlr179+Lv7z+qM+gw+EEcFRWJWj3A779vwcrKkr6+fkxNTdi1ax8rVtzO77//zqxZsygoKCAlJYVPPvkEExMDLr00iXXrPqC/v5/Dhw9z6623Du3FdnZ2xtjYGKVSwU8/fYGvr/covgYtaWkl+Pm5YG8/dj/73t4+3N0j+fDDD9m3bx87d27no4/eYN68WUPPKS+vZPr0JH7//XemTZtGcHAwHR0dLF68iOeee56SkhKampowMTGhsrKSJ598UifJsVar5ejRo2i1WuLi4sbtDMm5UKvVbNy4kU8++ZgjR9IA0NPTw83NBXNzM9ra2mloaEJPT49LLlnM+vUf4uam28JCp9Lc3Ex2djaGhoZERUUNva8plUqioqJwd3fkm28+0nGU44tQJO7c9PbKKS6uQ6lUExDgio3N6A4EC85Oq9WSn1+NSCQiJMRdJ+/BWq2W1tZuysoa0NfXw9fXGWvrifW70dzcRVlZA3Fx/ojFuvsc++abn/j73x+mt7d3XHdxqa6uprS0lISEhAn9uX/cZMoFJhthBl0w4XV0dNDf34+Ly+j39BSLxWzZ8jVz585lxYo72Lr106GWZ4mJc5k+PZJLL730/3thx5CSso+WlhbeeOMN8vKKmD9/HgYGBsydO5f8/HxqampwdnbG3Nyc2tpaEhMTufTS6/nuu4+IiBiddh7NzZ2IxWLs7MY2sTUzM2X27Fheeukl6urqWLPmHyck5wCff/4NMLhlYcuWLXR0dHDvvXfw6687iYuLAwZ/BpdeegnXXHMtH374IUuWLBnz/d9VVVW0tbVN+A/pxsZGVq5cSXJyMosXL+T9918lNnYaXl7uJ7TCq69vZNu2Paxb9wHx8fHs378fd3d3HUb+p4GBAfLz86mtrSU4OBgfH58TfiYvvvgixcXFrF//sg6jFExkZmbGTJsmoba2jfz8KhwcLPH1dRYGNXRIJBIREODKsWNlNDZ24Ox85hamI623V45U2kBvrxyJxBFnZ5sJ+Vlgb2+BTNZIc3MnTk7WOovD3X3w/k0qlRIRMX5bXbq4uJCTk0NHRwc2NmP7OyeYWoS1WoIJr6qqCnd39zFryRUaGsr27dspKpKyYsUddHV1A4M3DMuXLwEGi56kpR3lnXfe4bnnnuPHH3/k9ddf57vvvh86j7GxMX5+fpibmwPg5ubG/v378fT04uKLr+Wddz4iN7dwRIsUabVaqqtbcHe308nNxE03XUNlZSW33349Dz5450mPr1hxOZGRoSxfvpyHHnqIiIhQ7rjjRo4c+YOffvqC++9fTUJCPA88cBuBgU7U1FSTn59PVlYWAwMDY/Iaenp6yM3NJTo6GiOjiVv5W61Ws2TJEvLzc/nll0189dV6Vq5cjp+f5ITkHMDFxYnbblvJtm3foNEoufLKK8fs+30mdXV17NmzB7lczsKFC/H19T3h93rLli08++yzPPro3YSHh+gwUsFEJxKJcHe3IybGF4VCxdGjUpqbu3Qd1pRmaKhPYKAbUmkDfX1jsy9YqVRRWlpPRkY55ubGxMX54+JiOyGTc/jz97q6ukWnBREjIkIQiUQcO3ZMZzGcC319fdzc3IRicYJRJyxxn6Imy7IWlUrF9u3bmTVrFra2tmN67cOHD7N48WLc3JzZuvVTnJwc0Gq1VFXV0NjYwqJF1/Dyyy/z+OOPD+u8crmcNWvW8MEHH6DValm8eCEbNqzDwsL8gmNua+uhqKiGGTMCdLKXcnCAoA5Pz9MvkdZoNKSkHMTb2wOJxOu0z1u//jP+/e/XmTdvLs8++xwdHR0EBQXh7e09agXbtFotqampWFlZER4ePirXGCvfffcd11xzDdu2fcOMGdHnfFxWVh4XX3wNTz755Emtz8aKXC4nJyeH1tZWwsLCcHc/9RLXv/3tb+zZs5P09J0T9gZ6NAlL3M+PVqulqakTqbQBa2tT/P1dMTQUFiTqilRaT0+PnMhI71H7O9dotNTXt1FR0YylpQm+vs4Tphf72ajVGo4cKSEoyB1b2wu/zzhfM2dewsKFF/H+++N7L3pbWxuHDh1i0aJFYzYxNFomSy4wGQkz6IIJrb6+HhMTE50sNZo5cyapqal0dHRz5ZW30NXVjUgkwsvLA1PTwZYqmzd/SVlZ2bDOa2xszHvvvUd7eztffvkl27bt4bPPvgagq6ub3bv309p6fq1RqqtbcHOz1VmhI5FIdMbkHAaXsCckxJ8xOQf44otvGRgY4Oeff2H27NlMnz4dmUxGcnLyqPUqraqqoq+vb1K0VPvoow3MmRM3rOQcICoqDAcHO9LS0kYpsjNrbm4mOTkZkUjEwoUL8fDwOO1NuY2NDeXllcjlQtVdwcgRiUQ4OVkTG+sHiDh2rIz29h5dhzVlSSSOyOUDNDZ2jMr529p6OHasjNraNoKC3AgP95o0yTmAnp4YV1dbqqtbdBpHSEjAUNvS8czGxgZjY2Pq6+t1HYpgEhMSdMGEVlVVNaq9z88mNDSU3bt3U1vbwP33/3NoiVhYWBD79/9CU1Mjy5cvO6+lY1ZWVixcuBBDQ0N+/303N954F5GRCVx99Sr8/Wdy3XWrh9Xuo7u7n66uPlxdx3alwWi5+eZrMDQ0HBrBdnJyIiEhAS8vL44ePcqRI0fo6Rm5m2aFQkF+fj7h4eETftQcIDs7h7lzZw77uJqaetra2omMjAQG+8BnZmaOdHgn0Wg0FBYWcuTIEYKCgoiJiTnjFoOtW7fy+uuv4+rqrNOWhoLJy9BQn5AQd7y8HMjLq0ImaxT6puuAnp4efn4ulJU1olSqRuy8/f0K8vKqKCysxsXFhpgYvzGv3TJW3Nxs6erqo7tbdy0FjY2N6Ojo0Nn1z9XgRIyXsMxdMKqEBF0wYQ0MDNDa2qrzitJBQUFs3LiRH3/8gw8//Hzo62FhQSQlzSMvLx+V6vxuGlxcXPjll1/o7OxBodBwzz33kpWVxfr169m7N5Vnn117zueqqWnF2dlG5y1pLoRWq+WLL75l5co7ef75N9DT00Ot/rOHq1gsxtfXl6SkJIyNjUlOTiY/P39EErT8/Hzs7OzGpBjhaFMoFDQ1NeHm5jzsY597bi1WVtY8+eSTvPLKK4SFhREdHc0111xDS8vozMD09fWRmppKfX098+bNw9v7zEtZpVIpK1as4MorL+Ho0R1YWk7Om2qB7olEgy3ZoqN9aGnpJiurArlcGBAaa/b2llhZmVJe3njB51Kp1JSXN5CeXoahoT6xsf64u9vptMr5aDMw0MfZ2ZqamladxXDppUlkZWWxa9cuncVwrtzc3GhtbR0XtVgEk5OwB32Kmgz7TqqqqpDJZMyfP1/XoQCwZs0a3njjDRIT5zFjxjSqq+vYtOk7fH19kUqlI369559/npdeepH8/P3Y2p55ib9cPkBampTYWD9MTMZ/f9ZT0Wq1PPjgU3z++TdDBcEWLFjANddcw6+//kp6ejqGhoYsWrSIGTNmANDZ2Ulubi49PT0EBwef92qLlpYWDh8+zMKFC8d1C5hzVV5ejq+vL1u3fkpCQvw5H9fT04uHRxSvvfYaXV1dvPDCCzz44N/x95fwr3+9gqGhEV999RUJCQkjFmt9fT2ZmZm4uroSFhZ21tUL3d3d3HTTTaSkJFNQcAATE+MRi2WyEfagjyy1WoNUWk9LSzeBga5j2sZSMPg5d/RoGeHhnufV7kyr1dLQ0IFM1oSpqSF+fi6Ym0+d94/+/gGOHpUSF6ebPu5arZZFi65FrRZx9OjRUaslM1KSk5Px8fHB09NT16Gct8mQC0xW4/u3XyA4g/r6epydhz8DOFrWrl3Lp59+ilIJH374Jfn5Um699VZ27NgxKtdbvXo1RkbGXHzxNdTWnnkvVE1NK/b2FhM2OQfYvPn7oTZss2fP5vHHHyc4OBhfX1+WLVvGxo0f8+ab65g5cyZr1qxBo9FgZWXFnDlziIiIoLi4mJSUFNrahrd/X61Wk52dTVBQ0KRIzgFqamoAcHMb3moAExNjvLw8eOaZZ3jhhRd4+umHefrpNaxcuZzU1F/x9/cmMTGRhx566ISVDedDrVaTk5NDRkYGkZGRREVFndPWgkcffZSffvqJl156UkjOBWNKT09MYKAb/v4uFBXVIpXWo9FodB3WlGFsbIi3twOlpcP/vnd29pGRUU5VVTP+/i5ERnpPqeQcwMTEEDs7C53NootEIp555hEyMjJ47bXXdBLDcLi4uNDQ0KDrMASTlJCgCyYklUpFc3PzuFpuLBKJuPXWW0lJSaGlpYVjxzL49NNP8fHxGZXrOTk5cd9991FWVkFDw+mLoimVaurrO3B3tx+VOMaKqakpZmamTJ8eydtvv4Wvry/R0dHU1dWxb9/PFBQcQCpN4+WX/8lbb73FrbfeChxfgupKYmIiLi4uHDx4kPT0dPr7z22vnVQqRSwWj9rPUReOJ+jOzo7DOk5PT4/XX/83BgZ63H33Kh54YPXQY87Ojvzww2c8//zjvPPOO6xYseK8awDI5XIOHDhAe3s7CxYsOOdtLCkpKXz44Yc8+ug9rFy5/LyuLRBcKEdHK6ZP96Wrq4+srAoGBoQl72PFzc0OkQiqq88tyZTLlRQW1pCTU4m9vSUxMX44OFhO2a4PHh521Nd3oFRe2ADr+Zo9O5Y1a/7BE088wT333ENrq+6W3J+Ni4sLTU1NFzwYLRCcirDEfYqa6Mta6uvrycvLIykpacp+kObm5hIbG8uqVSt56aV/nvZ5lZXNtLf3EBUlGcPoRldvbx87diSTnJyKh4crDz989wmPf/LJZh5++BkqKirw8jqxGnx/fz8FBQXU19fj7++Pr6/vaWdme3p6SE5OZvbs2WPexm80ZWRkEBMTw8sv/5M777xlxM//xx+7uf32B7C2tmHDhg1cdtll53xsZ2cnhw8fxt7enqioKPT0zm3pdXNzM9HR0Xh7u/Hjj5+f83FTmbDEfXRpNBqKi+vo7OwjLMxzys3I6kpXVx/Z2RXExJx+S5daraG6uoXq6hYcHCyRSJwwMjIY40jHp6wsGba25nh6Oujk+hqNhnff/YS1a98nJiaGPXv26iSOs9FqtezatYvw8PBxtZpzOCZ6LjCZCQn6FDXR/ygzMzMxMDAgLCxM16HohFwuJzY2Bo1Gye7dWzE2PnU1a41Gw5EjpQQEuE7a6rN/1dLSyhVX3ExBQQk33XQTLi4uLFmyBJFIxJ49e1i5ciUBAQG0tbWRm5uLQqEgNDQUV1fXEwZ7tFothw4dwszMbKhi+WSyevVqvv32G44e3YGDg92In7+qqoaHH36WnTuTeeSRR3j11VfPOphWX1/PsWPHCAgIwN/f/5wH31QqFRdffDG5uTkkJ/8w7KX7U5WQoI8+rVZLVdVgIhgU5CbsSx8jJSV1yOUDhId7nfS+3tzcRXl5I4aG+vj5OWNpOTm2Lo2U1tZuSkrqmDHDXyf7wLVaLdnZ+dx++wM4Ojpz6NDhMY/hXOXl5aFUKpk2bZquQzkvEz0XmMyEJe6CCWewkEvDuFrePtZ++eUX8vLyWb9+7WmTc4DW1h7EYhG2tuZjGJ1u/fHHHgoKSkhISGDTpk2sX/8Bl112Gc899xzPPPMMSUlJ9PT0YGtry7x58wgKCiI3N5cDBw6c0OKltraWrq4uQkJCdPdiRtFLL72ERqM9ofPASPL0dOebbzbw/POP8/rrr/PPf55+lYdWq6W0tJRjx44RHR1NQEDAsFbGvP/+++zbt4/PPntbSM4F48pgSyYHAgPdKCyspaqqRWjFNgYkEid6euQ0N3cNfa27u5+srArKyhqQSByZNk0iJOf/r6CghJ9++oO0tEzEYjVisYi2tpFrU3ou6uoauP32B/D3n0lCwjL09AzZtOnLMY1huJydnWloaBD+pgUjbuL2WxJMWceLfE2mJcfDVV9fj7GxEWFhQWd8XkNDO87ONlNqG0B0dARisZi9e/eSlDSfe++9nSuuuJns7GzEYjFtba3cc889fPbZZ4hEIjw9PXFxcaG0tJQDBw7g5uaGn58feXl5hIWFYWAwOZc92tvbc8stt/D551t4+OG7zzjQc75EIhH33HM7Wq2Wp59+GYlEwt/+9rcTnnO8CF9zczPx8fFYW1sP+zoGBgaIRCJCQ8/89yAQ6IqDgyXGxgbk5VXR36/A399l3FepnsgMDPTw9XVGKm3A3NyY6uoWmpo6cXe3w9PTU9gC8xcPP/wMhw4dHfrvu+++i7i4GCIivPDy8hj1e4jU1COsWvUg+voG/OMfdzFv3jzi4+MxMTEZ1eteqOP3oW1tbdjZjfxKNMHUJXw6CCac49Xbp1LS+VcGBgbI5Qp6enrp6OikrKzipH6cCoWS9vZenJysdROkjoSGBvLttx9jY2PNiy8+wccff4mdnR3Ozs7ExU3j+ecf5/PPP6ekpGToGAMDA0JCQkhISECpVLJ371709fUn7L6yc3XvvffS0tLKDz/8NqrXueee27n99hv4xz/+wc6dO4e+rlAoOHToEF1dXcybN++8knOAefPmoVKpyM8vHqGIBYKRZ2FhQnS0Dz09cnJyKlEqVboOaVKzt7dAX19MeroUlUpNTIwfEomTkJyfxlVXXUVWVhZffvklfX39mJlZsnDh1URGJvDOOx+NyjW1Wi0vvfQWS5feREhIKBkZGTz//PNcdNFF4z45BxCLxTg5OQnV3AUjTkjQBRPK8eXtkz1xOhtfX18APD2nIZHEEBNzEd7e07n88pt4772NtLa20djYgbW1KcbGk3MG+EwSE+dSVpZGQIAvAQG+tLa2UlhYyPPPPz7UKs3B4eQCOGZmZicsaU9OTp7Uy9cCAgJYvHgRH3zw+ai+RpFIxCuv/IsFC+Zwww030NTURH9/PwcOHMDQ0PCCZ0rc3d0RiURUVFSNYNQCwcgzMjIgKkqCgYEeWVkyFAqhwvtI02q1tLR0c+xYOTD4viaROE3oNqOjafC+qglbW1siIyO54YYb2LhxIw4ODnz66ae4uLjxn/98cspji4ulfPrpFsrKKk57fqVSydatv/Gvf73MV1/9l6KiUrRaLWq1mkcffY7XX3+P559/nl27duHk5DRKr3L0uLi4UF9fP2nvEwS6ISxxF0wo3d3dyOXyUyZXU0liYiK7d++msrISc3NzbGxsyM7OJiUlhWefXctzz63jo482UFFRypdfVqFUKpHLFXR2dtHZ2Y2lpTkSiScSiRc+Pl6EhgYOu+XWeHd8hcV99/0NmayK22+/AT8/CQ899G9mzIjDxsbmlMcVFhbi6elJREQElZWVZGZmYmVlRVhY2KQsovLYY4+TkJDA77/vYsmSi0btOvr6+rz//qvExl7MBx98wOzZs4cqtV/oahhLS0ucnJwoLi4boWgFgtGjpycmJMSDkpI6srJkREZ6Y2wsJI8jobdXTllZA93dciQSR1xcbCgpqaOioomQEA9dhzcu7dt3CJmskhtvvPGEr/v4+FBUVISZmRlxcScXQXv11f/wyivvAGBubkZKyk/4+Ax2TdFqtZSUlNHb28cddzyETFaJh4cH77//KVqtlunTI9FqtWRl5bFhw4aTtj5NJA4ODsjlcrq7uyflPYJAN4QEXTCh1NfX4+DgcNq2WFOFnp4eCxcuPOFrSUlJrFmzhubmZr799lsMDY34/vufEIlEGBgYYGJigrW1DRKJM+3t7ezenYpMthmlcnAGx9HRgZiYSOLj44iPn0FoaNCk2CNpaWnBJ5+8xf79h5k161IGBlRs3779lM9tb2+nsbGRxMRExGIxEokENzc3iouLSUlJwdvbm8DAQAwNJ8/N9IIFC7jooiQee+x5YmKicHIavcEvc3MzzM0t8PHxwdnZmbCwsBHZqlJaWkpDQwMzZ8aMQJQCwegTiUQEBLhSVtZAVpaMiAhvTE1Hvg7EVKFUqqisbKa+vh0XFxuCgz0wMBhcyu7t7UhaWind3f1YWIz/ZdNjrampBeCkwrsuLi7k5OQwbdo0du3aftIxr7zyDo899hhr1qwhLCyMd975iLfeeoHGxmYeeuhpfv99FzCY6GdnZxMREUFXVxd79+7lk08+QavV8uqr60hKShqbFzpK9PX1cXBwoKGhQUjQBSNGaLM2RU3U1gopKSlIJBI8PT11Hcq4lpmZiZ6eHhEREWd8nlqtprKykuzsbDIyMkhNTeXgwYMoFAr8/CTcffcqrrtu2agUEBtrS5Zcz8GDRxGJRMybNw93d3fi4+O5+eabh5a9p6amYm1tTWho6EnHd3V1kZeXR2dnJ0FBQXh5eU2KAQyA6upqZs6ciZOTHb/99hUmJqPTr7mgQEppaSPp6eksXryYJUuWjMh577vvPrZs+Ypjx3ZiaTk12gmOBKHNmu5ptVpksiYaGtqJiPAWeqUPk1arpb6+HZmsCQsLE3x9nTEzO/nzqrx8cFY9MtJ77IMc5+RyBRERC1i+/CrWr19/wmM5OTmUlJSwYsUKPvjgNTw93cnIyGHLlq2UlVVSWlqKh4cHb7zxBmvWrCEmJpL8/GIsLCx54403cHFxISoqatIX9a2srKSiooL58+frOpRhmai5wFQgJOhT1ET8o+zv72fnzp0sWrQII6OJnzD+lVKpZNeuXaSkpCCVSgkODmb+/PnMnj2bnp4eHnzwQXbv3o1CoUChUDAwMICBgQHu7m5ERkYRFRXFtGnT8PT0pKKigjlz5mBjY4NGoxn6d3w2/UyzlnK5nNTUVN5//31++OEH7O3tuOaay7nkkkRmzIiesKsXGhqa2Lz5v3R0dFJf30hVVS0ZGYOzA9u3b0elUpGenk5SUtJpZ8i1Wi2NjY3k5eWhp6dHWFjYpNlucezYMeLj47GxseKtt17g4osXjOj5u7r6yM2tpL6+mvXrN5CRkUNycjLz5s0b9rm+/fZbUlJSqKioQCwWk5+fj6WlGcnJP4xozJOdkKCPH5WVzdTUtBIe7oWlpTDLey7a23soK2tAo9Hi6+uMra35aT/blEo1aWklBAd7TKm2o+dq7dr3WLduPcnJycyYMWPo6x0dHRw4cIBNm77g22+/A8DY2JiFCxN48cWXiIqKAgY/G7/44gt27NhBcHAwd91116RPyv+XQqFg+/btE6a43XETMReYKoQEfYqaiH+UMpmM2tpa4uPjdR3KqEhKSmL37t04Ozvi7+9DQUEJra1tmJqa0tfXB8DDD9+FhYU5hoYGGBoaMjAwQFVVLXl5ReTmFtDR0cXChQtZunQpDz744CmvIxaLMTExwdLSAm9vb667biUmJibY2dlx0UUXYWHx5wxkaWkpb7/9Nv/9739paGjA1taG0NBAVCr10NJ4fX09enr6cHV1Ijo6gpiYKBIS5kyI2eWcnHyWLLmBNWseZsGCBbi5ueHv73/W4zQaDeXl5RQXF+Pg4EBoaChmZmZjEPHoOnr0KLfccgvNzU3k5qaM2MqJjo5e8vKq8PZ2xN3djvb2Dnx8Ylm/fj133nnnsM6lVqsxNTXFycmB0NBAALq6epg7dwaPP37fiMQ7VQgJ+vhSU9NKRUUTYWGeWFtP/PeT0dLfP0B5eQPt7b14eTng5mZ7Tp83VVXNNDd3ER3tM6W7wJxKZ2c3V1+9iuzsfDZv3syKFSuAwcQ7OTkZX19furu7EYvFeHt7T6gkdKwcb9MqkUh0Hco5m4i5wFQhJOhT1ET8ozx48CBOTk5DFcwnE61Wi7GxMY89di8PPngnIpEIrVZLcbGUX37ZzksvvQ1Ae3vpGc9RU1OPTNZKf38XDQ01iMVixGIRenp6iERitFoN/f1y+vvldHf3kJNTwI4dyUMz7EZGRixatIgVK1Zw5ZVXYm4+ONOg0WhIT0/np59+oqysDCMjIwwNDdFqtSiVSszMzCgvL+Po0XTa2tpYvHgh69e/jpXV+PvdSk5O5bvvfsbV1Zk5c+J4/fX3CA+PZtmyZSQlJQ2rBY9cLqeoqIiamhp8fHzw9/ef8H3Ts7OziYqK4pprruCdd1684NUqnZ295OZW4evrjIvLYGG+r7/+gX/841Fqampwc3Mb1vlqamrw8PDg6683sGhRwgXFNtUJCfr4U1/fTllZA+HhnlhZCUn6/1Kp1FRVtVBb24qTkzXe3o4YGp77ii61WkNaWim+vs44OlqNYqQT08DAAKtWPcBvv+2kuroad3d3AMrKyqivr5+0kyMjRSqV0tTUxOzZs3UdyjmbiLnAVDEx16oKphylUklLSwuRkZG6DmVUtLS0MDAwQEDAnyP7IpGIoCB/goL8uffev9HY2HTGc4hEIuzs7JDJOli4cAYGBnPO6drt7R1oNBp6enr59ded/PTTNm666SZMTEy44ooruOmmm7j44ouJi4sjLi7ujOfSarX8+uuv3HzzzSQkLOfzz/9DeHjwuX0TxsDBg0dZtuxWfH196ezcx9q176Ovr8+99z5EUFDQsPvjGhsbExUVhbe3N7m5uVRVVRESEoKHh8eEnaGJjIzkiy++4I477qC1tY3Nmz847yS9p0dObm4VPj5OQ8k5wE8/bWP27FnDTs5hcK8fgKen+3nFJBCMZy4uNmi1WvLyqoiMlAh70jm+tagTmawRY2NDoqIk51XsTU9PjLe3IxUVTdjbWyIWT6z36P5+OdnZ+dTVNdDc3EJzcystLW309fWjUChobW2nrq6RpqZmIiJCWb58CddfvxxT07N/rxoamkhNTUMmqzppi5e7uzsFBQX09PQMDdoLTubi4kJBQQFKpXLCD9QLdE9I0AUTQmNjIxYWFpNiGfGp1NbWAuDicuoeoMbGRnh5nb1FTENDB/b2FhgYnPufto2NjeiL0QABAABJREFUNQB2drbcffcq7r57FVVVNXz//a98//0vfP3117i4uHDzzTdz6623EhQUdNpziUQili5dyrFjx7jqqqtYtOga3nrrBa655opzjmc0Ha9W293dza233sr111+PSqWiq6sLD4/zb8FjbW1NfHw8dXV15OfnI5PJCA8Pn7B78G666Sbc3Ny49NJLeeSRZ3n11acxNjYa1qBDf7+CnJxKPD3tcXX98/vQ1dXNnj0HeOWVV84rtqamwYEqB4eJ+b0VCM7G1dUWpVJNTk4l06ZJpnT/7s7OPsrKGhgYUOHr64yDg+UFDX46O1tTU9NCQ0P7Ce9L41Fvbx8HDhzh4MGjHDqUTlZW3tDWMiMjI5ycHHFwcMDc3BxjYxM8PHyYPXs+dnZ2pKQk8/jjz7N27XssWXIRAQE++Pn5YGpqQnd3z9C/lpY2tm/fS3p6FgDh4WHs27dvaPb8+LWcnZ2HBqAFp2ZmZoa5uTmNjY0nfP8EgvMhJOiCCaG+vh5nZ2ddhzFqzpagn4vBWYYOAgJch76WnZ3Piy++ycGDR9m9+78EBvqd07k8Pd156KG/8+CDd5Kdnc9XX21lw4YPefXVV5k5cwa33baKG2+8caj6+V/5+Phw8OBB/vGPf3DnnQ9TWlrOE0/cr/N96VdeeQlBQb/zn/98zNq1a9FoNFx00UVERERccGwikQg3NzecnJyQSqUcPHgQFxcXQkJCJuR+vYULF/LBBx+watUqNm36joiIUNate4aYmKizHqtQKMnJqcTJyQoPD/sTHtu+fS8DAwNcddVV5xXX8dkdpVJ1XscLBBOBp6c9KpWanJwKoqIkGBlNrRk5hUJJeXkjLS1deHjY4+Fhj57ehX9+iEQivL2dKC2tx8nJatirpkZTb28fmZm5HD58jAMHjnDoUDoDAwO4uroyd+5cbr55FXPmzOH/2LvPwCartoHj/+y06d57l1VGWQUFREQRBAEVRBFQxImK4gRRQXEPEFBURAVRnKACKogsZcmGsimddO90pG3W+6Fv+4g0bYGmScr5fXke0zv3ObnJuK9zrnOd6OhoXF1dGx2oeO655zhz5gwffPAB69f/ztdfr6K6uvq8YyQSCW5ubgwcOJCvv36G6667zuJ9VlhYGIcOHaJjx44Omx3WGgIDA8nJyREBunDZRIAu2D2j0UheXl6zinc5qszMTKRSKX5+Pk0fbEFRUTkAXl4u7NjxD1988S2rVq2r//ulFPySSCTEx3cmPr4zc+c+x/r1m1m5cjUPP/wwzz//PJ9++im33HJLg891cnLiiy++oFOnTsyYMYOzZ1P56KO3bV6Bv0OHWG68cRArV66mZ8+eZGVl8fnnnzNjxgx69Ohx2eeXy+X127AdO3aMTZs2ERsbS0xMjF3dDDbHPffcQ35+PgqFgpUrVzJq1CT+/HMVHTta/izq9QYSE9Nwd9cQFeV/wc3cL7+sp0+fhEveKjE9PR2oXU8qCG2VRCIhKsofvd5IYmIa3bpF1u/r3ZYZjSbOnSskPb0AHx9XeveORa1u2cEJHx9XMjIKOHeuiPDw1tuFY8eOf5g372Pc3d2JigqjW7c4UlLSOXLkOEePnuTMmWRMJhNubm7063c177zzDkOHDiU2NvaSguLY2FgWLFgALMBkMpGSkoJer8fNzQ03Nzc0Gk2zz1u3W0leXh7+/pc+kdDWBQYGsmPHDoxGo8P93gv2xf7LLAtXvIKCAhQKBe7ubbeoS92WaZezhVlOTgkBAR588MFnjBgxgX37EpHL5Xh6evDPP+ublSLfGJVKxahRw/juu085cOBP+vXrxa233srs2bMxGBqezZRIJDz77LOsWrWK337bxCOPzMBksn1gFRERiotL7ZY8S5d+yg8//MCrr77aom04OTnRq1cvrrrqKrKzs9m0aRNZWVk4Ul3Oun+/6dOns23bNoKDg3nxRcup6UajiaNH01GrlbRvH3TBzV9ZWTl//vkXY8aMveQ+vfjiiwwffgPBwW03o0YQoPbz1759EGq1kqNH09r0oJTZbCY/v5S9e5MoKNDStWs4HTuGtHhwDv8b/MjIKGi1TJz09ExGjbqbM2fSKC6uYMWKVUya9Chvv/0h2dmFXH/9jXzyySccPnyYoqIifvvtd6ZNm0a7du1aZMZaKpUSHR1Nhw4dCAoKqv/9u5jnh4aG1g+QCg1zd3dHLpdTWFho664IDk4E6ILdy83Nxd//wpm4tkSj0VBdXY3RaLyk5+v1BgoLy1Aq4Z13PuThhx8mJSWFjh07MHLkjbRrd2Hl+9JSLa++Oo8lS1aQm5t/Ue2Fh4eybNkiZs16grlz59K3b19OnTpl8fhbbrmFr776itWrf+WVV9676NfX0rp06cSwYcNISkpi5sxHCAjwo0OHDhw7dozbb7+dJUuWtFhb3t7eDBw4kPbt23PkyBF27NhBaWlpi52/tTg7O/P662+wadNf7Ny594K/m0wmjh3LQCKR0KlTSIOf140bt1FdXc2YMWMuuR9OTmpiY8U2ScKV4d+fp2PHMuxigLOllZfrOHw4lTNncoiI8KVHjyjc3RtePtVSPDw0uLioycoqtmo7dXx8vDCZTDz33HNs2bKF7OxsMjIy0Gq17Nixkw8++ID77ruPrl272u3Ma1hYGDk5ORekygv/I5FICAgIIDc319ZdERycCNAFu1dYWIiPz6WnfjuCur3Hi4tLLun5ubmluLk5sWnTNsrKynnxxReRSCS4urqi01U1+Jz58z/hvfc+4rnnXiEubgBTpjyBVlvW7DYlEglPP/0If/zxPWVlJVx11VUcO3bM4vFjxozhvffeY8GCJXz//S8X/RpbktlsZsKE8fTo0Z4BA/pSXFyKq6srw4cP54cffuDBBx9k165dLdaeRCIhPDycwYMH4+npyd9//82hQ4cc7kbntttuo2vXLsyb9/EFf0tKykGvN9C5c5jF9fxr1qynV69eREREXHIfevXqza5d+y75+YLgaKRSKZ07h6HXG0hKyrF1d1pMTY2B06ezOHgwBTc3JxISYggI8Gy1wbfQUB8yM4taZdDD2dkJX1+f+iKXUqmUkJCQ874r9Xo9ZWVl1NTUnPfc/Px8xo4dy4gRI3jooYd4//33bTLI6+LigoeHR33NHKFhPj4+YgZduGwiQBfsWk1NDVqtFm9vb1t3xar69u2LTCbj5ZffpaKisv7x1NR05s//hPnzP2Hv3oMW06MLCrT4+rrTuXNthfWzZ88CkJDQh7/+2nXBDcjKlatYsGAJwcHB3HfffRiNRlav/pW1azdcdN979Yrnjz++JzDQlzvuGHfBzcW/TZ8+nVGjRjFv3sc2TfXOySnB2VnN1Vd3B2qL8z3//PNkZmZy4MCfuLq68Pfff7d4uwqFgri4OK699lqqq6v5888/OXv2rMPMikkkEmbMmMmmTX+RmHi8/vGsrCIKCrTExYVa3E+7oqKSP/7Yelmz51A7SPDPP/tJSUm7rPMIgiORy2XExYVSUKAlK6vI1t25LCaTiXPnCtiz5ww1NQZ69YomKirA4neHtXh5uaBQyMjNLbF6W0VFxeTl5VNTU1Nfib1OcXExs2fPxsfHp35t+FVX9WXmzJkUFxej1Wr58ccf+fXXX/nkk0+YPn06hw4dsnqfGxIcHEx2drZN2nYU3t7elJaWXvDvLAgXQwTogl0rKipCo9GgVrftvWBDQkL4+OOP+eGHtXTpMpC7736UiROnctVVw5k//xPmzfuYIUNuZ8iQ29m06fzAUa83UFpaibu7mhUrfgCo395r7Nix5OTksXv3/vrjKyoqefnl9xg8eDD5+fn89NNqbr99FB9++Ca33XbzJfXf3d2Njz9+l5MnT/HWW281euz06dM5dSqJnTv3XFJbl8tsNnPuXCEhIT71MzUdOtRWt3/qqYeJjAynY8dYEhMTrdYHFxcX+vTpQ+/evUlLS2PLli0OkxI3duxYIiMjWbhwKQAlJRWcPZtDp06hqNWWt4P6889t6HRVlx2g33rrrXh7e7No0WeXdR5BcDRqtZJOnUI5ezaHkpIKW3fnkhQWlrFv31mys0uIiwulc+cwnJxsUzhUIpEQGupNRkah1QeMFQoFvXt358033yQ0NJTHH3+cpUuXMnbsWEJDQ3nnnbeZMOE2PvvsfV577XkCA31YvPhDbrxxCD4+Pvz000+EhYXh6enJvHnzGDhwoFX7a0lgYCCFhYWNDsRf6dRqNRqNRsyiC5dFYnakikVCi9Fqtbi7u1NaWoqbm5utu2PRsWPH0Ov1xMfH27orrSIlJYVPP/2Uf/75B4PBwNChQ5k2bRoqlYqNGzcyZ84c9uzZw3XX9WfOnGfp0qUjOTklpKXlMnfuK/zzzwFmzJiBm5sbkydPxsvLi/DwcHr0iOOzz95HJpPx6KMzWLXqV37++WeGDRvGb799w1VX9WqR/s+dO48PPvisfjuWhpjNZnx9fZky5U5mzny8Rdq9GAUFWs6cyaZPn9j69ML09HOcOZPC4MEDAHjiiRc4ePA4hw8fsXp/TCYTqampnDx5Ei8vL+Li4uqXPNir+fPn89xzz3Hw4BbS0oqJiPBrck/he+99gtTUTA4cOHjZ7b/zzjs8//zz7Nv3x2UXP7ySGQxGduw4Sb9+HVp99lK4dFlZRaSm5tGjR1Sjg2L2pLKymrNnc9BqdURE+BIU5GUXdSRMJhP//HOG2NhAfHysfy+UmHiCr7/+kV9//ZNz57Lo3r0Lw4ffwIQJY/D3P7+i/JEjxxg1ahKdOsWxfv0GXFxcAM67bmazGYPBgELRetvwbd26laioqEveieNKcPDgQZRKJXFxcbbuSqMcJRa4EokA/QrlKB/Kv/76i8jISEJDr9yb8H379vHdd9+xffvf7N9/AJlMSlBQMMnJyfTu3Z277prIgQOHWL9+PatWrWLMmDHk5ubSsWNHdu7cydq1a5k8eTK9e3fHy8uD3377kxUrVtCxY0d69erVogF6VVU1AwbcjEQi55NPPmHQoEENHjdq1ChKSwv4+eflLdLuxTh4MAVvb1fCwizXNfjmm9U88sgM8vLyWq3+QU1NDSdPniQtLY3IyEjat2/fqjddF6O4uJjIyEgWL/6AmJgw2rULavR4na6K2Ng+PP/8LJ5//vnLbr+yspKoqCiGDx/Me++9fNnnu1KJAN1xnT6dRVmZjvj4yBbZH9xaDAYjqan5ZGcXERjoSXi4LwqFfe3wm56eT2FhOd27R7Zam2azGa22HHf3xgdj9+8/zC233MM111zD2rXrzgvON23axPXXXw/A4cOH6dq1q1X7XOfUqVOUlpaSkJDQKu05ovT0dFJTU7nmmmts3ZVGOUoscCWy32914YpnMBgoKSlp8+vPG7NkyRISEhL4+usVBAX5EBMTSVVV7drllStXEhPTgeDgUMLDw9m/fz9yubw+VfrEiRNs3ryZiRMnsmnTJgwGyMjI4euvv2bChAmsWLECb28vevTo0mL9VatVfP31R3h4uHDjjTdSXNxwhdx+/fqxb98hi9uzWUtpaSUVFVUEBXk2ety11/bDbDbz559/tlLPQKlU0rVrVwYOHIhWq+XPP/8kNTXVLrdl8/Dw4LXXXiMnJ4/o6Ka3O9u06S8qKiovO729jrOzMxMnTmTduo2XvPOBIDiymJgApFIpp05l2uV3hNlsJiuriD17zlBRUUWPHlHExATaXXAOEBTkRUVFFVptZdMHtxCJRNJkcA7Qs2c3Pv10Hr/++hu33347S5cuZevWrSQnJ/P222/XH/fDDz+0aP/MZjPr1q3j1ltvRa1WI5FIOHKkNqMsMDCQvLw88d3bCB8fH0pKSlr9HkdoO0SALtitoqIi1Go1zs7W3W7FXiUmJjJ16lTuuecOEhO3cf/9E0lKSuGuu+4iMjKSO++8k/feew8PDw9efvllQkJCCA8PP2/WtaSkBICBAweyd+9ejhxJZPz48QCsWfMLQ4cOQqVq2fV/7dpF89RTD6PX66mqariCfP/+/amoqOTo0ZMt2nZTzp0rIDDQs8nZwsBAfzp1aseGDRdfNO9yubm5cdVVVxEfH09SUhJbt26loKCg1fvRmDNnzuDn58crr7zCiROnmzx+06a/6dChPe3atWuxPtxyyy3k5eWzZ8/lp8wLgqORSqXExYWi1erIyLCv74eSkgr2708mI6OQdu2C6No1HI3GfuvIyOUyAgM97e461rnxxkF8+OGb7Nu3hwceeIBBgwYRHR3NqVMn+eKLL8jIyOCVV15psfbMZjNPPvkkN998Mz/99FP9biN1FehdXV1RqVTk51/c9qxXEicnJ9RqNUVFjl3QUbAd+xvKFIT/V1hYeEXPnmdlZWE0GunQIYbPPvuad9/9iL59+/L555/XH5OTk0NAQEB92ltgYCA1NTWYTCaqq6txcnKyeP5+/fqzbt1ann46nYiIS1tLVlhYxPLl3zNw4FX07Nmt/vG6kXW5vOGvmNjYWAAyM7OJj+98SW1frMrKagoLy0lIiG3W8QMG9L2gIF9rkUgkBAYG4ufnR3JyMv/88w9+fn7ExcXZfMCqoKCA06dP89Zbb1FaWsr27bvrdw+wRCKRoNcbMBqNLbbHb9++fQkPD2f58u9abImGIDgSpVJOXFwohw6l4ObmjIeHxqb9qaqq4ezZXIqLywkP9yU42Mvilov2JjjYmz17zlBZWY2zs22K1jVm/PjbGD/+NqqqqklPP0dGRhbz5n3E5MmT6dq1C4MHX09paSnXXnstEydObPRclZWVZGRkUFpailarpby8HIPBgMlkIigoiN27d/P+++8zfvytrFu3kX79+rNw4UJiYmqLqdb9PmVnZxMQ0HQG1ZVIIpHg7e1NYWEhfn5+tu6O4IBEgC7YrcLCQkJCQmzdDZu57rrruPHGITz33FwUCgX9+/fju+++R6msLQpkNpvJyclpcB2YVCptNDgHWLhwIdu3b2fu3Hl89tn7TfbHaDSyfPl3XHPNVcTERFJZqWPQoFvJyMhk6VJ/du36DXf32jVMdduLWFpD7elZm2JeVFTSZLst5dy5Qvz83FCrm7euOzo6kk8//Qqz2WyzYkYymYzY2FhCQ0PrlyxER0cTGxtrcfDDmvR6PQcOHCAyMrL+pmPs2JFNPu+WW27iiy++Yd26dYwaNapF+iKVSpk2bRrPPfccL730FEFB4kZRuPK4ujoRGenPyZOZ9OoVbZNaAkajkfT0gv//jnUnISEGpdI+62dYolYr8PV149y5wiZratiSWq2iXbto2rWLZtCgfqxZs4ENG7bw44/fYzIZ+fzzz/nll1946aWXiI2NxcnJiczMTNavX8/vv//O7t27m9zH3MPDA4BvvvmJnj17snLlyvrH6gQEBLB3716b/j7aO29vb86dO2frbggOSgTogl0yGo0UFxdfMdXbG6JQKFi/fgOpqakEBgZekIpelzpVt6XaxfLw8CAmJobMzJwmjzWbzcyc+RqffroClUrF+vXfUlFRSUZGJt999x133303X331I488ci9QO5MC1A8mNHQ+AKm0dX7Ya2oM5OaW0L17VLOfU3eDWV5ebvOq6mq1mu7duxMREcHRo0dJT0+nU6dOhISEtNrNkdls5vDhw7i6uvLUU0+xYcMG+vTpgbd30++/f/7Zj0wmo3379i3apylTpjBnzhyWLv2al156qkXPLQiOIjjYi6Kick6fzqJjx9b9TsjLKyU5ORe1WkF8fCSuro0PDNuz0FAfDh5MJiLCD6XS/m+PpVIpo0cPY/ToYfWP/fzz7zz99BxWrVqFk5MTCoUCrVaLRCKhV694xo4dQWxsJOHhIbi7u+Pm5oKzsxMKhRIwc/JkEnfc8QCBgYGMGzeOOXPm4O7uDtQO0O7YsYPk5GTy8/OJi4ujqKjois50bIy3tzeJiYktmjkmXDns/xtIuCKVlJSgUCjQaGybsmcPIiIiGny8Lr3sUm/Gli1bxp9//snSpfObPHbJki/59NMVzJs3j08//ZR58z7ijTdeAGrT2IOCAsnN/d96tMLC2v3rLaVj162pbk5w1xIyM4twd9fg4tL8dZDXXNMXk8nEpk2bGD16tPU6dxE8PT3p378/mZmZHDt2jJSUFLp06VKfkWBN586dIz8/n0GDBvHkk0+yYcMGOndueCu9f0tPP8d7733E9OnT6dCh8VT4i+Xu7s6UKVP44ovPefzx++szOAThSiKRSOjQIYh9+86Sl1eKv7+H1dvUaitJSsqhpkZPdHQAvr5uDj+T6uKixt3dmaysIiIiHDMtefToYQwa1J+jR09w8GAiJpOJiIhQ+vfvg5dX078Tffr04Ntvl/DYYzN5//33WbhwIZ07x9GpUxwbN26s39vbyUnNfffdz549e3BxqS0K261btybOfmVxcXFBoVBc8cWOhUvjGIuDhCtOQUEB3t7eDv+Dby116e2Xuv7r1KlTPProo0ycOJbbbhvR5PELFnzKpEmTmD59On379iUnJ5/g4ED8/X3Ztm0bGRnnCA+vXY6QnZ3LrFmvc8MN11s8X11xGW9v6weWJpOZ7OxiQkIu7gcyMjKc2Ngo1q1bZ6WeXRqJREJISAiDBw/G19eXHTt2cODAAXQ6ndXarKio4MiRI3Tv3h21Ws2QIUOYO3cuX3zxDTt37m30uTNmvIq3tw+zZ8+2St+effZZamoMzJ//iVXOLwiOQKlU0L59MGfOZKPT1VitnepqPSdPnuPw4VS8vFzo3TsWPz/3NvNbHRLiTVZWMSaT/VXGby53d1f69Uvg0UenMG3a/YwcObRZwXmdPn16sHv37/z11y/Mnz+Xzp1jOXXqGBMnjmHbtp/JzT1Gaup+unfvQExMNC+/PIf4+Pjz6uMI569DF4SLJQJ0wS5d6QXimlJWVkZVVdUlFx+ZP38+np7uvPHGC+zatY/Y2L68/PK7FxxXUlLKq6/OIzs7t37tsE6nQ62uTbf38fHmww8/xGg0ctNNtQH5q6/Ow9/fnzlzLO9PXXcz1xq7AxUVlSGVSvD0vPhsjAED+rJ79y4r9OryyeVyOnbsyHXXXYfRaGTTpk2cPn26xbe+MZlM7N+/n9DQ0PMGhGbMmMGAAQO4777pFBQ0fAOyfv1mfv99E/Pnz8fFxaVF+1UnMDCQJ598kk8++ZJz57Kt0oYgOAJvb1f8/d05efJci2+9ZjKZSE/PZ+/eJEwmM717xxAR4WfXe7BfCk9PF6RSCUVF5bbuik1JpVK6dOnEpEm38+GHb7F582pmz36arl3jUCqVKJVKRo68Hk9PT44e3c7o0cOYPXu23e04YmsiQBcuVdv6ZhXaBJPJJNY1NSE7OxtfX99LXte0du1aRo8eRmZmNrfdNpmCgkK2b99d//cdO/7hzjsfpGPH/ixa9BmzZs3i1ltvBWoDdIVCzq+/biQpKQWj0cjgwQMIDPQHYNeu/dx1112NprvV9bu83Po3QTk5JQQEeFzSDE90dARnzybb5T7DdZydnenduzdXXXUVWVlZbN68maysrBbr8+nTpzEYDMTFxZ33uFwuZ+XKlRgMJh566NkL2tPpqpgx41Wuv35wi+1/npOTw4YNGy5o65lnnsHV1ZX33lvcIu0IgqOKigrAYDCRltYyW2CZzWYKCrTs3ZtEfr6Wzp3D6NQpFLW64foijk4ikeDv70FOTrGtu2L3ZDIpnp4uaLXVvPDCk1RUlNOxY0f++OMPW3fNbtQF6CaTydZdERyMCNAFu1NaWopUKsXNTawntSQnJ4fAwMBLfr5MJuX06bNMmTKdsLBwRo4ciUTyv6+Dp59+mfXrNzN37lzS09N59dVX6/+m1+vZvHk7EyZMra8RMH78bf/frzxSUtLo2bNno+1/9dVXuLm50qdP48ddrpoaA0VF5Ze8JrNudsgR0je9vb0ZOHAg7dq148iRI+zcuROtVntZ5ywuLiYpKYmePXs2OBgUFBTE0qVL2bTpL3bu3HPe3xYsWEJWVg4ffPBhi12/N954g6FDh3LjjUPq9+SF2r3jAwICOHr0ZIu0IwiOSiaT0rFjCBkZBWi1lZd1rvLyKo4cSeP06SzCwnzp0SPK5lu5tYaAAA+KisqpqTHYuit2z8fHlcLCMqKjI9i9+3cMBj2//PKLrbtlN9zc3JBKpZSWltq6K4KDEQG6YHfq0tsdISiyBZ1OR2lpaaPrz81mM3v37uXtt9/m4MGDF/y9U6dObNy4jfT0TBYtWsS2bdu4+ure9X9/+umpQG01fX9///Oe++qrr/LGG2+wb98+EhJ6ExsbxYgRNwCwdetOAK6/3vL68+rqapYuXcodd4xGo7Hunt65uSW4uzvj5HRpsz3FxaWtVsiuJUgkEsLDwxk8eDAeHh5s27aNw4cPU11dfdHnMplMHD58mNjY2Poqvg0ZMWIEnTp14t57p/PHH1sBSElJ4/33l/DUU09dduV2s9lMYmIi69evZ/Xq1fj4eHH48GF69erF6dOn649LSUkhM1OkuAuCi4uasDAfzpzJvqRMGr3ewJkzWRw8mIyLi5qEhFgCAz2vmN9kJyclbm5O5OaW2Lords/b25WyMh3V1XokEgklJaVcddVVtu6W3ZBIJHh5eYk0d+GiiSrugt0R688blpWVxY4dO/Dy8sLLy8viFmYZGRncfffdbNmyBYlEwnvvvcehQ4fOm3H/8ssVnDlzhs6dO3PPPfcgkZjrt0gDuO22EZw6lcSMGTOIjY2tT28H6N69O927d+frr79m/foNfP75gvo9uf/+exfx8d0aXRufl5dHfn4+ffv2utxL0qjaQnolhIX5XPI5iopKLnkbO1tSKBTExcURHh7O0aNH2bRpE+3btycyMhKptHnjssnJyRiNRmJiYho9TiqVsnnzZu6+exLjxt3PrbcO58yZZPz8/HjhhRcu63UYjUZuuOF6tmzZCoC7uxvr13+Lq6sLo0ffzbhx49i9ezcqlYp27WLp2rVlt3ETBEcVGupDbm4pmZmFhIQ07zvQZDKTlVVEWloebm7O9OwZjbOzqukntkGBgZ6kpxcQEiImCxqjUMhxd3emsLCMzZs3I5FIGDJkiK27ZVfq0tyb+i0VhH8TM+iCXTGbzSJA/4+kpCQmTpxIWFgYt99+O9u3b6eqqsri8Y8/Po0tW7Ywb94rHDv2NzpdJR9//PF5x/j5+dGvXz++//57fv75Zz788G28vDzOKzA2Y8Y0brnlJiZMmMChQ4fOe35iYiKTJ0/mzjtvOW8P1jNnUoiP797o6wkNDaVdu1i2bt1xEVfh4tWN6vv4XPpSieLiEry8HPe96OLiQt++fenZsyepqals2bLlvNRwSyorKzl58iTdunVrVp0Df39/fv99PUuXLmX//qMkJp5gwYIFl71N4rp169iyZStLlrzHwYObSEzcRocOsQQHB/LZZ/M5cuQIK1asAGoHfsQ2a4JQSyqV0q5dEKmp+VRV6Zs8vqionP37k8jOLqZjx1C6dAm/YoNzAB8fN6qr9ZSVWW93jLbCx8eVggItW7fuJD4+/pKL17ZVdQG6PdeyEeyPCNAFu6LVajGZTI2m1F5JiouLGThwIFu2bOK112Zy6NBm4uLimDJlCs8884yFL/za0f4ff1xLYKA/t946nC+++KLB6t5nzpwBaovCdezYn2HD7qSmpnaLHqlUygsvPIlOp+Pnn38+73nvvvsuQUEBzJ8/F4lEgtFo5NdfN3LwYKLFfdv/rUuXrhw/frrJ4y5HTk4Jfn7ul1VlWCaTUVNz8enh9sbf359BgwYRERHBvn372L17d6MF+hITEwkKCsLHp/nZBxKJhClTppCUlERaWhq33HLLZfd70aJF9O7dnbFjRxIREYar6/8qwXftGsfgwdcwZ84ctmzZwrlzmSQk9LjsNgWhrfDw0ODj40pSkuWlH5WV1SQmpnHiRAaBgV707BmNl5d1dlxwJDKZFD8/d3JySmzdFbvn5eVKaWkl8fGdOXbsmKjk/h8eHh6YTCbKysps3RXBgYgAXbArhYWFeHl5NTsNt63btm0bWVlZ/PTTMh588G48PLxwdlZzxx0jeffdd9m/f/8Fz6l77JprrqKqqpoJE8aQkZHBrl0Xbhc2depUrr9+MIsXf0F+fgF79x4kJ6e2+u/Zs6mMHDmR4OBgHnnkkfOe5+HhQVlZOUVFJQD88st6JkyYilwuZ+jQoU2+rr1799C3r/UKxBmNJvLySgkI8Lis80REhJKSktoifbI1qVRKdHQ0gwcPxsnJiS1btnD06FEqKyupqKioPy47O5vCwsILqrY3l1wuJyws7LL7W5eaf//9Eywes3Dha8hkEq677jpcXDQMGNDnstsVhLYkKiqA0tJKCgrOLxhpMBg5ezaH/fvPolYrSEiIJSTEG6lUpHPXCQjwIC+vFKNRVOBujJOTEplMysiRwwH48ssvbdwj+yKVSvHy8hIDF8JFEVGQYFdEevv56lLZly37FrPZTElJJR4eGgYN6g/Q4N7SL774IgBvvrmQa68dRc+e3XBx0TS49YmLi0v9zUf37l1Yt+4rwsKCAZgx41XMZgkzZ85k27Zt520TMmvWLJycnLnuulvp3/9m7rtvOn36JFBRUUGfPk0HSTU1elxcrFcNuKBAi0qlwNXV6bLOExERSk5ODpWVl1cN2Z6oVCq6devGNddcQ05ODqtXr+bWW29l4MBrOHbsGImJicTFxaFS2S691Ww28+CDDxAREcaoUZYHfAIC/Pjjj+9ZvPgtfvjhs/Nm2AVBAKVSTlSUP0lJORiNRsxmM9nZRezZc4by8iq6d48iNjYIhUKUJPovV1cnVCrFBYMbwvkkEgnu7hrMZhkDBvQR26w1QOyHLlws8Y0s2JXi4uJmpUhfKcaMGcOePXuYP38+48aNAjR4ebny4osfEBcXR7t27c47fufOnUybNq3+v6VSKSaTiV694jl27NgF53/88cfZs+cfvvvuU264YeB5xXBOnDhNVlY2jz76KAAffPBB/Uy6n58f69at46233sLV1ZXnnnue22+/vdmZDxER4aSkpF/s5Wi2y9n7/N8iImpngpOTk+ncuXNLdM1uaDQa7r//frp168L9908hLy+fFStW0K1bN06ePMmmTZu44447cHa2bqX9hpw4cYKdO3excuXHFosh1vH39+XOO29t9BihdtDDaDRhMBjrB+Xq/reyshqlUo5cLkMmk4qiWG1MQIAHOTklnDqVhU5Xg8FgpF27ILy9XcW/dSMkEkn9tbvUrTqvFB4ezhQWlqPTVeHi4oTZbBbvrX/x8vIiLS3N1t0QHIgI0AW7odfr0el0Yv35v8jlcp544gnmz59PZmYOLi5BpKUlsXnzdn766acLAuJz586h0+nw8vLkxx8/o3v3LgCEhARy+vSFPw6urq4AbN78N2fPpnDTTdcTHh4KwGuvzeT48dOMHTuSDz74jJkzZzJq1ChCQkIAiI+P55tvvrmk1xUeHsG5cymX9Nym6HQ1lJZW0rFjyGWfKyKi9lq0xQDdbDaTlZXFAw+M57rr4jl1KpOgoGAOHDjARx99REFBAenp6cyZM6fV+3b48GGA87b+ExpnMpmprKymsrIana6Gqqoaqqr0VFfr0esNGAz/y4D5b12Gw4fTzsuQkculKBRyVCoFarUCtVqJk5MSZ2cVzs4qkQbtYKqr9chkEvLztQQFeREd7S+WkTWTv78HKSl56HQ1l7xd55XA3V1DSkoet9wynGeemUPPnj245pqBSKVSioqKGDhwIBMnTqzf8eVK4+bmhk6nQ6/Xo1AobN0dwQFcmZ8UwS5ptVpUKlWTM2ZXmqCgIKKionj//c945plnmD59FrfeeiujR4++4NixY8eiVCqZNWsWEyZM5ciRrchkMlxdXRosCvb666+j1+vZsuVvTp8+w1dfrWLHjnUAjBo1jFGjaiu0v/zys3z11Y98+umnvPzyy5f9mk6dOknHjlGXfZ6G5OaW4OXlglJ5+V9v/v6+qNUqkpOTW6Bn9kWhUNCv39V8+OEXTJo0DpPJjL+/B1df3YuePZeyb98/vP/++8THxzf4XrOm7OxsNBpnUZXdArPZjE5XQ0lJBWVlOsrLq6ioqEYqleDsrMLJSYlarcDNzRm1WoFCIUcul14wQ24wGNmx4yRXXdUOmUxaP8NuMJjQ6w1UVempqqqhsrKawsIyKiurMZnMaDQqXFzUuLo64eGhwclJKWbL7JDRaCIjo4CMjAJ8fd3x83OnpsYggvOLoFTK8fJyITe3hIgIUZ3cEo1GhUQC48bdSkCAL+vWbWTNmp9RKOQ4OzuxfPlyliz5hJ07d12R3xUqlQqVSoVWqxXLOIVmEQG6YDe0Wi1ubuKG/L/kcjlbt25l2bJlnDx5iujoaD744IMGj5VIJIwePZrKykruuusuKioqcXOrTWNsqOK7l5cX8+bNY8qUKZw+fYabbhp8wTHLl3/Hq6/Ox2g00r1741uoNUdBQQGHDh3mnnvGXva5GpKfryU83LdFziWRSIiICKuvdt/WvPrqa/Tr14+HHprBffc9SN++7VCpQtBqK3FxUdGhQxzz5s3jl19+4Z133rmoqu6Xw2g0ilmG/9DrDRQWllNSUk5JSQU1NUbc3Jxwc3MmNNQHFxf1ZQXKEokEuVyGXG55W726gYHy8irKy6vIyyslKSkHpVKOh4cGDw8N3t4uYj2zjZnNZvLztSQn56BUKujWLQI3N2eqq/Xs2XMGrbYSN7fWX7riqPz83ElLyxcBeiPq1qGXlFQwYsQQRow4fy/0H39cy/33P8nff//NNddcY6Ne2pabm5sI0IVmE8Oogt3QarUivd2C0NBQhgwZwh133ME//+whMDCw0eMNBgMAanVtoS9LATrAypUr+fnnn/noo3d4/vknLvj7W28tIi6uM5s2bbromdTvvvuO6Ohofv311/rHvL296dixI1u2bL+oczVHXXpvS24T1L9/H7755huKiopa7Jz24uqrr+azzz6jT5+rOX36OCpVbVDs5uZMjx7R9OzZjscfn0anTp248cYbWbp0aYPb9bW0pKQk3NxEwbeaGgNZWUUcPpzKrl2nyMoqQqVS0L59MP36dSA+PpKoKH/8/NxxdlZZfWZKIqmdoffzcycqyp/4+Ej69etA+/ZBqFRysrKK2LXrFIcPp5KVVURNjcGq/REuVFam49ChFM6ezSEy0p/u3SPrg3GVSkFwsDcpKXliT+aL4OXlgk5Xm0kiWObu7kxpacMFVYcNG0xcXAcGDRrE448/jlZ75RXeqwvQBaE5RIAu2A2tVlu/Jlo4n9lsvqgK99XVtTcSdbOQjQXoBkNtymO/fgnn3eAbjUa+//4XsrNzmTJlCtddd91F9/vDDz8kOTmZm2++mfHjx1NSUoJEImHq1KmsW7eRrKyciz5nYwoLy/D01DQ6C3ixnnnmEfT6mhZJ7bdHw4cPJyYmhjlzXuWxx2bywgtvMHz4eIqLSwgI8OTaa7tw1VXdef755zl8+DA33TSMrKwsq/Vnw4YNLFmyhHvuudNqbdgzk8lEfn4pR47UBuW5uaV4e7uSkNCOHj2iiIz0x9PT5YJ15LYik0nx9HQhMtKfHj2iSEiIxdvbldzcUnbtOsWRI6nk55eet8ZdaHk1NXpOncrk0KEUPDw0JCTE4O9/YaHMsDAfysurKC6usHAm4b/kchkeHhoKC8U+1o2pC9AbutfQaJzZsmU1s2c/zdKlnxIXF8fff/9tg17ajgjQhYthH7/wwhXPbDaLFPdGlJWVYTKZmp1hUF1djUp1/oyapQD9nnvuwdvbm+uvH8OECVPZuXMvW7fuYMSICTz44NPccsstjB3bvHR0o9HI22+/zW233cbSpUsZP348AC4uGn79dR0PP/wwAJMmTcLJyYlly75t1nmbq6CgDG/vlh3k8fPz4YknHmTx4sWsW7euRc9tSXl5OXv37rX69m5ms5njx4/TuXNnnn32WfbsOcyHH37Ozp17+fLL7wGQyWR07hzB1Vd35IYbrmXy5Ht544030Ol0VunTvn37cHJS88QTD1jl/PZKp6shOTmX3btPk5yci4eHhr5929G9eyQhId6o1Y6R8q9WKwkJ8aZ790j69m2Hh4fm/1/XGZKTc9HpamzdxTbFZDKRnl7Anj1JGAwmeveOITLSH5ms4UFKuVxGWJgPycm5Yhb9Ivj4uFJQIAL0xri4ONUXq2yIQqFg2rT72bXrd0JDA7n22mt55ZVXrpj3YV2AfqW8XuHyiABdsAs6nQ6j0Shm0C0oKCjAy8ur2cV9nJ2dqampqZ9Jb2wG3dXVlR07dnDXXRNISkpn+PDx3HLLPVRUVLFp0yZWr16NWq1uVrvPP/88M2fOJCXlDPfffz9//vknr7zyCmVl5Wi1Zfz5559A7Q/VhAkTWL78e2pqWuaGvabGgFZb2eIBOsAjj9zLDTcM5Oabb2bevHktfv5/Kysro127diQkJBAXF0d+fr7V2jp37hx6vZ6OHTsye/ZsTp06jcFgwM/Pj4qK8wcHnJyUXHNNN3x81MTExLB27Vqys7Nb/GbDaDSiVCrrl2m0deXlVZw4cY69e5PQ6Wro0CGEhIRYwsJ865ccOCqVSkFYmC8JCbF06BCMTlfD3r1JnDhxjvLyKlt3z6GZzWYKCrTs3XuWvLxSOncOIy4uFLW66SKrwcFeGAxG8vJKW6GnbYO3tytabaVYttEIqVSCu7sTJSWNDyyHhQWzZs2XPPXUw8yePbvVBr5tzdXVFYPBQFWV+O4TmiYCdMEuaLVaNBqNxVH/K93FpLcDdO/eHbPZzLp1GzGbzRcEW/8VFRXFvHnzOHr0KDt27GD79u0cPnzkotLaT58+zfz583nuuUfZvHk1y5cvYsuWzSxcuJDXX3+dp556isWLF9fvxz516lTy8vL588+WSXMrLCzD1dXJKkGNWq3iq68WM27caN5+++0WP/+/GQwGsrOzefDBSZSXl3HHHXfUD7S0JJPJxMmTJ+nQocN5n7sTJ06Ql5dHQkKPBp/Xq1dnkpIS+frrrzl48CC7du1q0bS9m2++mdJSLX//vbvFzmmPtNpKjh5N5+DBZORyKb17xxAXF4qXl0ubq3IskUjw8nIhLi6U3r1jkMulHDyYzNGj6Wi11s0SaYsqKqo4ciSN06ezCA31pmfPKDw8NM1+vlQqJSLCl9TUPLH0oJlUKgWurk4izb0J7u4aSkubXj4hl8uZOfNxrrqqNzNnzrwi9giXyWS4uLiINHehWUSALtgFkd5uWd3684upoB0fH8+IEcO5777p+PvH8fnnK7nuugsrtP+XXC7n6quvpl+/fhcdJDz55HQCA/157LH7ARg5cii7dv1GaGggzz//PPPnz+f222+nc+fOTJo0iZMnTwLg798ylcELCrT4+FgvA0MqlTJkyLXk5uZSXFxstXY8PDzw9PREo9GwbNkCduzYwYMPPtjiM9Xp6enIZDJCQ0PPe/yjjz7C29uLAQP6WnyuQqFgzZo1+Pr64urqyrZt2zhy5EiLZEPEx8fTvn07vv561WWfyx7pdNUcO5bB4cNpODsr6dMnltjYoCtmj2UnJyWxsUEkJMTi5KTk8OE0jh3LEKnvzaDXGzhzJpsDB5LRaFQkJMQSFOR1SQM6/v4eSKVScnJKWr6jbZSPj6sI0JvQ2Dr0/5JIJLzxxiyKigro1KkT06ZNY/ny5Rw+fLjNDhyJdehCc4m9UAS7UFZWJgJ0CyoqKtDr9Xh4eDT7ORKJhO+++55Vq1ah1WoJCQlh+PDhVuvj/v37+fXX31i+fBEHDhwGoF+/Pvj5+bB48Vv8/PPv+Ph4Exjox969h1iwYAmZmZl4eXnSs2e3y27faDRSXFxBdHTAZZ+rMXU3DdbM9JBIJIwaNYpffvmdF16YzoIFr/HQQ09z1VVX8eCDD7ZIG2azmaSkJNq1a3fezX1BQQFffPEFjz9+f/0OAP/10UdfMH/+x7zxxhv07t0bgIiICI4ePcqff/5Jhw4diIiIuOS9liUSCQ8/PJWnn36a7OxcAgP9L+k89kavN5CWlk92djF+fu4kJMQ4fAr75VCpFERHBxAS4k1qah779iURGOhJeLiv2KbtP8xmM1lZRaSm5uPm5kTPntE4Ozf8+WwuiURCaKgP6en5BAZ6trmsDWvw9nYjLS0fo9FkN0Ua7Y2bmxN6vRGdrqZZ79Fu3eLYvft33nnnQ9au/YVFixYBEBQUxJgxY3jggQeIi4uzdrdbjQjQheYSv4KCXdBqtQQFBdm6G3apsLAQT0/Piw4KnZ2dmThxopV6db6UlBQAPDzcGTFiAgB79mwgNjaKDh1imTEjFoDdu/ezcuVqfH192bt3D+3bx7RI+0VFFajVisu+aW3KoUNHCQ4OtnqthHHjxrFs2TKOHj3JuHGj2LVrL0899RTDhg0jLCys2eepG1CoqqoiLy+PiIgIAHJycjAajYSEhJx3/OLFiwEz9913FyUlpSxd+jVdu3biuuv6Yzabee+9j3jrrUU8++yzzJgxo/55rq6uXHXVVeTm5nL06FFSU1Pp3Lkzfn6Xtm/wuHHjeOKJJ9i4cRuTJt1+SeewF2azmdzcUs6ezcHV1Ynu3aNwcWleTYcrQd22ccHB3iQn57BnTxLR0QH4+7uLoBEoLi4nKSkHs9lMhw7BLVpjw8/PjZSUXAoLy/DxEQPkTXF2VqJSKSguLhfXywKpVIqbmxOlpZXN/j12c3Nl7twZzJ07g7Kyco4cOcbatX/w3XffsHDhQkaOHEm3bt3Iz8+noKAAFxcXhg8fzvDhw3FycrLyK2pZbm5uVt0FRWg7RIAu2JzJZBIz6I0oKCi4qPXnttChQwcARo2aVP/YggVL+OCDN+v/+6uvfuDJJ2fTt29fSkqKUalk/Pjj5y3SfmGhddPb62zZsoMbbrjB6oHD4MGD8fT05Oeff6dLl468/PJzbNy4jYcffoh16369oP2NGzdSXV3NiBEj6h8rKCigX7+rycnJRa1Wk5eXR9euXbjvvvvp1q0b0dHR581yV1ZWsmjRIsaPvw1vby+WLFnBa6/NB8DDww2QUFZWzuzZs5k9e3aD/fb398fX15eUlBT27t2Lj48PcXFxuLhc3J7mdTcwTk6OHcjqdDWcOZNFRUU17doF4esrvuMscXFR07VrBPn5WpKSssnLK6Fdu6BmFT1ri3S6as6ezaWkpIKICF+CgryRSlv2e0cqlRIS4k1GRqEIOJtBIpHg7V1bzV1cL8tq09wrCAz0vOjnurq60K9fH/r168MrrzzHjz+uZfHiZRw4sA8vL0+8vT04fjyfZcuW0bFjR1avXl1//+EI3Nzc6nfludQsM+HKIN4dgs2Vl5cjlUpxdna2dVfs0sUWiLOFuLg4vvzyS1avXs2wYUPx9PTg4YcnA7VFz2bOfJXHHnueyZMn89lnn5GYeJQHH7wbd/fLD6pr1+iX4+1t3RumlJQ0jh8/xfXXX2/VdqB2jXddmrvZbMbd3ZV33pnDb7/9ztdff33esW+++SZDhgzh5ptv5pNPPqGyshK9Xs+ECRNIS0tn8uQ7GD36RpYunU94eCAff/wxBQUFhIeHn3ee5cuXU1RUxCOP1P67HT16gh49unPw4EGmT3+Kp556mj179jBnzpxGByikUinR0dFcf/31qFQqtm7dyrFjx9Dr9c1+/d27d+fGG4cwZ847TRY4tEdms5nMzEL27TuLWq2kd+8YEZw3k6+vG717x6BWK9m79yyZmYVX1LZEBoOR5OQc9u07i1IpJyEhlpAQnxYPzusEBnpSUVFFaanjfc5swcfHjcLCsivqPXmxagvFXf77SalUMn78bWzfvpbExG1s2/Yzq1cvY8eOX9m+fR0mk56EhASH2k/d2dkZqVRKeXm5rbsi2Dkxgy7YXF2BOJHOeCGdTkdVVRVeXl627kqjJBJJfTr9N998g1KpYOfOvRw5coyvv17F7t37Wbx4MQ8//DB6vZ7w8HDWr9/MmDE3X3bbJSWVSCQS3Nysl+pmMpl47LHnCQsLY+TIkVZr59/+nebepUtHbrppMGPHjuSRRx5hwIABhIeHU1ZWxgsvvMCDD05Cqy3joYce4uWXX2bAgAFs2LCBTz55l9tvH1V/zptvHsKqVVvYsGEDQ4cORaGoXQNtNBp59913GTnyRiIjawN3T08PEhOPUl5ezksvvXTR/VepVMTHxxMZGUliYiKbNm2iY8eOhIWFNflZl0gkfPTRx3To0IElS1YwfXrLrL1vDXq9gVOnsigvr6Jz5zA8PZtfXVuoJZfL/j/jwJ1TpzIpLq6gffugNr02vXYpRAnJyXk4Oyvp3j0SFxfrp+/K5TICAz05d64Ad/fmL5+5Urm5OSGRQGlp5UVVzr+SuLs7UVWlp7pab7U6G3Fx7dm48QfGj3+I0aNHs2fPHqKjo63SVkuSSCS4urqKwshCk8QMumBz4ovKstLSUjQaDXK549yYzps3j/j47jz//GtMnfocWm0lGzdu5OGHHwZqZ4fHjRvHnj0HW6S9uvR2aw7wLFnyJTt27OGLL76w+vrzOnVp7qtX/1r/2DvvzMbd3YW77roLvV5PZWVttVxPTw8WL36bjz56m+zsbL7//nvGjRtNSko6I0bcxT33PMabby7kuuvG4uPjx6pVqzh8+HD9eVevXk1ycjKPPXYfAEePnuTcuSz0ej0zZ868rNfh7u5Ov3796NKlC6dOnWLbtm0UFRU1+bzIyEgmTpzIkiVfWmWbOWsoKalg//6zAPTsGSWC88vk6amhZ88oAPbvP0tJSdPbNzmi0tJKDh5MJjU1n9jYALp1i2iV4LxOcLA3hYXlVFY6xufMlv6X5i4KfVkik8lwdlZSXm7d/b5dXV1YseJDXF013HfffQ6T1SAKxQnNIQJ0wea0Wm2rBT2OxhEHL0JCQli/fgOVlZWUl5dz5EgigwYNOu8YLy8vSkpKLyrt2ZKSkgo8PS9ujfPF0GrLePXV+UydOvWi9oW/XAqFgkmTJvHZZ1+Tl1cAgLu7G59+Op89e/bw5JNP4u/vz7Rp03jzzYV8++1PfPLJl/Xrvb/77mc++mg5/v4hZGTk8e67i5ky5T4qKyuZMGECVVVVRERE0K/f1UyfPp0OHWLZu/cg1147mgEDbmbnzv3MmjWLb775ptl9TktLY8qUKTzwwAMUFBTUPy6RSAgODmbw4MEEBgayc+dO9u/fj06na/R8Tz31FDk5eaxate4SrmDrMZvNZGQUkJiYRmioD3FxoW16trc1KRRy4uJCCQ31ITExjYyMAoe5EW9KdbWeEyfOceRIGt7erv+/FKL1i+Op1Qr8/Nw4d66wVdt1VF5erm12sKilaDRqKiqsG6BDbWHa99+fy9atW/n885apaWNtIkAXmkME6ILNabVa3N3dbd0Nu+SIAXodhUKBRtPwDOLQoUMpKytny5Ydl9WGXm+goqIad3fr1S9YvfpXdLqqy55JvhQvvfQSUqmMDz/8341Hnz49eP31WXzwwQd8+eWXvPbaa0yePJmHH36WxMQTrFmzhl9++YUtW7aQn5/PqlWr2L9/P2VlZcTExHDLLbfw/vvvc+zYMdLS0ti5cxeZmZmcPHmGF198i6iodvz000+kp6fz6quvXlDpvTEPPvgAP/zwPZ9++im///77BX+XyWS0b98ehUJRn/Z+6tQpjEZjg+fr2LEjI0YMZ8GCT1tkMMcaTCYTp09nce5cId26RRIc7C2W67Sw2gEeb7p1i+TcuUJOn85y6H2SjUYTqal57NmTBEBCQgzh4X423borJMSH3NwS9HqDzfrgKNzdnamoqBbXqhG1AXrrZGRce20/xo+/9f+35sxulTYvhwjQheYQAbpgU3q9Hp1O57BBqLU5coBex2g0snz5chYuXMju3bsBCAio3a88P7+gsac2qW4rF6XSerOV33zzE0OH3nhRgWpL8fLyYty4cfz668bzHp8yZTwTJozh3nvv5csvv+Szzz5j8+bNHDlyhEGDBjFy5Eiuvfba+jXmUFsZ3dPTs/79NHnyZK6/fjD+/v6MHDmSjz76iOzsbFavXs3o0aPPe25z/PHHH2zY8Ad33z0OoNH37ejRo5k8eTKlpaXk5OSwadMmMjMzG5wZnTv3VZKSUliwYMlF9ac16PUGjhxJo7y8ih49oqxaB0GoXf/bo0cU5eVVHDmS5nABktlsJi+vlL17kygqKqdr13A6dgyx2jrdi+HiosbFxYnc3FJbd8XuKZVynJ2VlJY2ngF0JdNoVK0yg15n7twZKBRypk2b1mptXio3Nzd0Op3dDjoL9kHk4Ak2pdVqUalUKJVX5lY6jTGZTJSXlzt8gJ6WlsY999xTv4/7+++/Xx+I3XTT5VVELy2ttOrsOUBqagbDh49q+sB/MZvNLTaLOnjwYJYsWUJmZjbBwYFA7Yzi+++/ipOTEw8//DAHDx5k/vz5FndCMJvNpKenn1dER6PRsHHjny3Sx+LiYqZMmULfvr345Zf19OmTwE033WTxeE9PD7Kzc3j33Xc4cOAgGRkZJCYmkpKSQufOnfHw8Kg/Nj4+nhkzZvDmm29x1VW96dcvoUX6fLmqqmo4ciQNjUZFly7hNp39vJKoVAri4yM5efIcBw+m0LVruENsxVZWpuPs2Rx0uhoiI/3tcp/3wEAPzp0rJDjYy+76Zm9qK5VXtMr2no5Io1FTWVmDyWS22g4E/+bl5ckbb8zivvum8/PPPzN69Girt3mpVCoVKpWKsrIyuy8ALNiOuKMQbKotzBBbS1vZfs7HxweA+fPn8sADE3nsscfqR7m12rLLOndpaYVVA/S1azeQl5dP165dm/2csrIyunePp127WN555x0Mhsub5bvhhhvw8PDg1Vfnn/e4TCbj7bdfYsGC1/jiiy/w8PBg4sSJ9XuI/1tpaSkVFRUEBQVdVl8aYjQaeeCBBygv19KlS0cyMjJZuHCRxRn42sELKe3bR3Po0GGOHz9OWFgYgwcPxsvLi+3bt3Po0KHzCsPVVaa/997HycnJa/HXcLF0umoOHUrFw0NDp06hIjhvZTKZlE6dQvHw0HDoUCo6nf0WN6upMXDqVCaHDqXg5uZM794xBAR42GUA7Ovrhk6nt3pxr7agdq9vsTWdJWq1AolE0qqfzVtvHc4NNwxk2rRpTdY3sTWR5i40RdxVCDYlAnTL2sr2c3V7lF51VS9ef30WH330DhpNbVBdWnrpP1AGg5Gysirc3a1TKTsnJ48nnniRW265hVGjmjeDbjabueeee0hOTqZ79zhmzpzJTTcNa1bVcks8PT2ZN28e3377Exs2bLng75Mm3c6uXb/x4otPsn7974wefWFf09LSCA4ObvHdAAoKChg+/CZWr17Nc889xrJl3zJ27FhefXUukydPJicn54LnfPXVV2RlZTF37kw8PNzr93VXKBR06tSJQYMGUVNTw59//klSUhImkwm5XM63336LVCrn4Yeften644qKKg4dSsXX143Y2ECH/3w6KolEQmxsIL6+bhw6lNqq6bTNYTKZyMgoYM+eMxgMRnr1iiEqyh+5XGbrrlkkk8nw83MjJ6fE1l2xe+7uGsrKdBgMDdfPuNJJJJL/T3NvvQBdIpHw+uuzyM7OZuHCha3W7qUQAbrQFBGgCzZVXl4uKrhb0FYGL0pLa9c0Bgb6A3DHHaM5dWoXJ0/upGvXuEs+r1arQ61WoFa3/PpNs9nMo4/ORKlUsWTJkmYHYd9//z2rV69m8eK3+OSTd1m16nP2799P7969OXPmzCX355577mHo0Bt5/PFZpKefu+Dv0dERPPbYfcyd+xx79+6rv+ZQO8OdmZlJWFjL7XGcn5/PzJkziYyMZM+ePfz442eMGHFj/dZva9euY9myZWzduvWC5/7666/06dOTG24YyIgRN7B27Zrz/q7RaEhISCAhIYH09HQ2b95MTk4Ofn5+rFixgm3bdrJo0dIWey0Xoy44Dwz0JCrKXwTnNiaRSIiK8icw0NNugnSz2UxhYRn79p0lN7eEuLhQ4uLCcHKy/zR8gIAAD/LySh26CF9rqPvt0Wrte6bWljQaVatnY8TERHLvvXfy+uuvn7eTiL1xdXWlrOzyMgiFtk0E6IJN6XQ6h0/htpa2EqCr1WqA81LONBpn/P19L+u8tent1pk9/+KLb9i06S8+//zz+hT9plRVVTFjxgyGDRvMiBFDABg48Go2b16FTAbDhg2juLj4kvojkUj44otlaDSuDB16B7t377fQh2okEsl5gWN2djZKpbJF1rrl5OTw1FNPERERwQcfLGLKlPH88896Bg3qj5eXB1AbgNfp06fPBec4c+YMoaG1qfZRUREcPXqMZcuWkZ+ff95xlZWVdOnShejoaA4ePMju3bvp06cPTz/9NK++Op8DB45c9uu5GDpd7Zrz4GAvIiL8RHBuJyQSCRERfgQHe3HkSBpVVTU260tFRTWJiemcPJlJSIg3PXtGW3ULSGtwc3NGoZBRUCCCh6bUprmL7dYscXFpna3W/uvZZx8FzLz88sut3nZzOTs7230avmBbIkAXbMZsNqPT6XByEpWPG9JWAvTw8HAA0tMzW/S8JSWVeHhYZ3Dnq69+5JZbbmHYsGHNfs7ChQs5d+4cL7/87HmPh4eH8v33n1JQkM/06dMvuU8BAQFs376dmJh23HTTnUya9Ah79x6s/7tWW8aHH37OsGFDz3vfpKenEx4efkkB5ZkzZ8jJySE7O5tp06YRGRnJ0qWfMnXqPRw+vIU5c57B19cbAKVSwfXXD2TQoH707t2dhITeREZGnnc+g8HA4cOHad++tljd7bePpH//Ptx77734+fkRGRlB//79mD17NhEREfj5+fHaa6/RuXNnXFxc2Lp1K+PHj6dv375MmTKdsrLyS7mUF62mxkBiYhq+vm6Eh1/ewJJgHeHhvvj4uHHkSBo1Na1b3V2vN5KUlM2BA2dxdlaSkBBLUJBjFlqTSCQEBHiQk3Npg4lXktpCcWIduiWtudXav3l7ezF9+oN8/PHHHD9+vNXbbw4nJyd0Ol2DO5cIAogAXbChmpoaTCZT/Qyr8D9tafu5vLzaol4t+e9sNJooK9NZbQbdaDRdVGaHyWTivffeY9Kk24mNjbrg7xERYbz22kyWL19+3gzzxQoMDGTTpk18/PHHnDqVwpAht3PNNaN46KFnuOGGseTnF/H22+/UH19ZWUlBQQGhoaEX3dbnn39Ou3btCAwMJCgoiBUrvmT69Ac4cmQrs2ZNx8vL87zj5XI5P/ywlG+++YS9ew9y6NBh3nzzzfPW38vlcjp27EBKSjoAwcGBrF37FSdO7OCjj95h9Oih+Pl58P77/yuI9/PPP9GjRw+KiooYOHAglZWVPPHEE3To0IlNm/6+6Nd1sQwGI0eOpOHq6kR0dIBDBl1XAolEQkxMAK6uTiQmprXK2mCz2UxWVhF79pyhsrKGHj2iiIkJRKGw33XmzeHv70FJSaVNsxEcgYeHM1qtTiwHsECjUVFdrbfJOv2HHrqH8PAQHn74YbsMgtVqNSaTiZoa8RkTGiYCdMFmdDodSqWyxQtXtQVarRa1Wu2Q288ZjUb+/PNPli1bxvz583nsscfo3r0L7dpdGLheqrIyHQqFzCrrz/fsOciRI8e44YYbmv2cffv2kZeXx5gxN1s8Zvz42+jZsxufffbZZfVPoVDwwAMPcOLESX7++We6du3OuXN5xMf3ZNOmTcTF/W9df1ZWFr6+vpc0OLJnzx58fb1ZunQ+Cxa8xoEDf/Lss4/h7t74oJFSqWTIkEFoNM7MnfsK7du3Z+HChTz99NNERUVy9Ogxunc/vyq+v78vd9wxmtmzn+bzzxdw+vQufv55Of/8s55//vmdjh1juOmmm9i0aROenp4sXryYO++8g+DgWIqLrZdiajabOXHiHEqljPbtg0VwbuckEgnt2wejUMg4eTLTqjfmxcXl7N9/lnPnCunQIZguXcLQaNrGYLNKpcDDQ0N+vihi1Ri1WolCIRPr0C1QKOQolXKbzKKr1Sree+9l/vrrL5YtW9bq7TdFLpejUChEmrtgkYiMBJvR6XRi9twCR0xv1+v1rFy5kjfeeINTp04BtWvNw8JC+PTTeS06EFO3vZo1AqbNm//Gx8eHiRMnNuv4goICXnnlFTw83OjdO97icRKJhK5dO3HgwLEW6adUKmXUqFGNVpjPzs5ucvZcq9Vy8OBBnJ2diYiIwM3NjR9//JEvv/ySm24azG23jbiofkkkEr799hOMRiOFhcW8+OKbPP744wC4u7uxdOl8Ro9ufOmASqVi4MCr6//722+X8OCDT3HrrbcCtYWArr66IzqdiWPH0vH01BAVFdDihbhSU/PQ6Wro3j2qVfbyFS6fVCqhY8dQDh5MJjU1j8hI/xY9v05XQ3JyDsXFFYSH+xIc7IVU2vbmOnx8XMnNLSU0tHk1OK5EEomkfrs1Dw/rZHM5utpK7lVW3Q7VkoEDr2bs2JE888wz3Hzzzc2uJ9Na6tLcPTw8bN0VwQ6JAF2wGbH+3DJHC9DXrFnD448/TmpqKsOGDWbRorl06xZntQyAkpJKfH2tc30qKirx9m76pruoqIinnnqK7777DpVKybx5c5schPDx8SIj48Iq7NZQVVVFcXExvXv3tniMwWDgqquuanCd3pAhg1i06I1LalsikSCXy/H392XJkveYN+8VMjKyiI4Ov6T3hLOzE19++SFbt+4gOzuXUaOG1W/V5+/vQUpKLvv2JREc7E1YmE+LbGWVl1dKZmYR3btHOXzK8pVGoZARFxfKwYMpuLio8fV1v+xzGgxG0tMLyMwsxN/fg4SEWJTKtnsL5e3typkz2dTUGNr067xc7u4aCgq0ojaFBbXr0G23u8Krr86kT58beemll1i8eLHN+tEQJycnqqpsv/OEYJ/Et65gMyJAt0yr1dYXV7N33333HePHj2fw4AGsWLGIzp07WLU9s9lMWZmOqKiWnRmro9NVXfC+NJvNpKamsm/fPvbv38/+/fvYs2cvUqmEp5+eysSJY+uLpVliNBpZvfpXrrvuOqv0+79yc3Px8PBoNEslOzub48ePM23a/dx663DS0jIoKdHSrVscXbt2arEMBRcXDR07xl7WOSQSCYMG9b/gcaVSTvv2wQQFeZGUlMPevUlERvrj7+9+yf2vqKjm1KksOnYMQaNRXVa/BdvQaNR06BDMyZOZODurL/nf0Ww2k5tbSkpKLk5OSuLjI3F1bfu/WyqVAldXJwoLywgM9Gz6CVcoNzcnUlJyMZvNYglMAzQaNdnZtis46Ofnwy23DGfHju0264MldTPogtAQEaALNlNVVSX2QG+A2WxGq9Xi7n75sz7WptPpmDZtGjffPITPPnsfmcz6M43V1XqMRpPVAie5XEZycgpPP/00SqWSM2fOsH37dnJycoDawmbdusXx6KOTueuuMQQFBTR5TrPZzMyZr5GSks4333xvlX7/V3Z2NoGBgY0eExoayvXXD2bTpr95+eVn6dbt0veltzVXVyfi4yPIz9eSnJxLVlYR0dEBF51aaTKZOHnyHMHBnvj4iO8nR+bj40ZgYCUnT56je/fIi05FLy2t5OzZHGpqDERHB+Dr63ZFBWE+Pq4iQG+CRqPCaDRRXW2wSk0UR1eX4m7LAYxu3eJYvvw7Nm7ceFG1ZaxNrVZTXt46O5EIjkcE6ILN6HQ6fH1FWth/6XQ6jEYjLi72vX+u2WzmiSeeoLCwkNmzn26V4BxqZzednVVWW/c5ffpDFBQU8dNPqzAYDAQFBXDnnaPp06cHPXp0bXKmvCELF37Kp5+u4OOPP2405bylGAwG8vPzzysYZ8mkSXczadIkCguL8Pa+/L3SbUkikeDn5463tysZGQUcOZKKj48bUVH+qFTNu3lOSanddSAiws+aXRVaSWSkHwcPppCSkkd0dNODaVA7CJicnEtBgZbQUB9CQ32QydreOvOmeHu7kZaWj9FouiJff3NIpVKcnZVUVFSJAL0B9jCAMWHCGNau3cAdd9zB8ePH8fe3TvbdxXJyciI/P9/W3RDslAjQBZsRKe4NKy8vR6PRtFrAe6l27tzJkiVLGDr0Oqqqali1ah3JyalUVdVQXV3N2LEjrTIjW1FRZdW0Y39/X5Yund/0gc20Zs165sx5h1mzZvHggw+22Hkbk5eXh7Ozc7MyVAYNGoREIuGzz77m2Wcfa4XeWZ9MJiUiwo+AAE9SUnLZsyeJsDAfQkK8Gw00iovLycoqpmfPqDZZ+OtKJJVK6dgxhP37k/HycsHT0/LAp9Fo4ty5QtLTC/DxcaV379grOuhydlaiUikoLi7Hx8dxaqK0trp11t7eIuPmv6RSKU5OSiorq232WZLJZCxY8BqdO1/Djh076ouN2ppIcRcaIwJ0wSbMZjNVVReu9RVq9652hOvSs2dPunXryvr1m1m/fjMAvr6+9SPCEonESgF6tcNsZ5SXV8D06S8xZswY5s6d22rtZmdnExDQvNnCkJAQXnjhBV599VVuuOFaunfvYuXetR61WkHHjiGUllaQlJRDTk4xUVEB+Pi4XpBuaTSaOHUqi+hof5ydxbrztsTZWUV0tD+nTmXRu3fMBYM0ZrOZgoLapRFyuYyuXcNtUnXa3kgkEnx8XCko0IoAvRG1adytv5WYo1CrFVRX623ah6CgAFxcNJw9e9am/fi3uiJxon6B0BAxRSDYRHV1NSaTySEC0dbmKAMXarWagwcPcfLkSbZs2UJmZiYjRtRuyTV16mRmz37aKu1aewa9pZjNZp566iVkMjmLFy9utR9gk8lEbm5uk+vP/2327NlERkayZMkKK/bMdtzdNfToEUVYmC9nzmRz+HAq5eXnV89NTc1DpVKI9bZtVGCgJyqVgtTUvPMeLy+v4vDhVM6cySEszJcePaJEcP4v3t5uFBaWW3VPeUdn60rl9k6lsn2ALpFIiIgIIykpyab9+De1Wo3JZKKmpsbWXRHskJhBF2yiqqoKpVJp92nctuBIqf8SiYT27dvTvn17Zs2axRdffMHixW9x553WSSEzmUxUVjrGDPpPP/3GunUb+eGHH1q11oJWq8VsNuPp2bxA02g0smjRIrKysvDwGGDl3tmORCIhMNATX1830tPzOXgwGX9/DyIi/KipMZCVVUSPHlFiJqONkkgktGsXyIEDtf/uSqWc1NQ8cnNLCA72pnPnsBbZnq+tcXNzwmw2U15edUVUr78UGo2aysoaTCaTWBrTAHsI0AHi4trz888/ExkZydixY4mOjrZpf+RyOUqlEp1Oh0pl/5MOQusSAbpgE44UhLY2nU6Hl5fjFeuqC0Lfffcjvv32Z7y9vVCplLi4aJgyZTwdOlzeNlsAlZU1SKVSu18XWlNTw4svvsltt93GmDFjzvub2Wxm0aJFHD9+nEGDBjF8+PBmFQQ8evQozz33LIcOHUKj0dChQ0e6d+/Oo48+et4AQGFhId7e3s0ONN977z1mzJjBffdNYPbsZy7uhToguVxGVFQAAQGeJCfn8s8/p1Eo5AQHeznEwI9w6TQaNUFBXhw9mo5eb8DT04VevaJxchI3x5ZIJBLc3Z0pLa0UAboFarUCiURCZWUNLi7iO+S/VCo5Wm2lrbvBc889SlVVFa+88jIzZ87kjTfe4LnnnrPpoKxarUan0+Hh4WGzPgj2SQz1CTYhAnTLHPXaPP7446xZs4ZRo24hICCU0lId587l8fvvW+jf/2aWL//ustuoqKjC2Vll97Ocq1atIysrh1deeeW8x7Oysujbtw+PP/44Gzb8zh133EFwcDBvv/12k+e8++5JHD9+jLvuupUbbhhAZWUp778/n9jYWObNm1efJldQUIC3d/MrzScnJ9OpU3vefvsl1OorJ1BxdlbRuXMYwcHe1NToKSjQUlhYZutuCVZUWFhGQYGWmhp9/ay5CM6bVhugV9i6G3ZLIpHUbycmXKh2Bt1g624QGRnOsmWLOHPmH5555hFmzpzJ1KlTMRqNNuuTKBQnWCJm0AWb0Ol0qNVipPm/zGazw14biUTCzTffzM0333ze49XV1dx77728/PK73HbbCFxcNJfcRkVFtd3PUNTOkH/GiBHD6dSpU/3jZWVlDB8+nLy8HNasWcGAAX1JT8/kgw8+47nnnsPX15fJkyc3eM6ioiIOHjzEBx+8wfjxt9U/XlhYxOuvL+CZZ55h5cqVrFq1iqKiIqKiojh79izZ2dlkZGSwbds2SktL8fHxISAggPDwcJycnHBycuLkyZMcO3aSM2eSiY2Nsvr1sScmk4n8/FJiY4P+f//zTNzcnIiODhCF4tqQyspqzp7NQavVERHhi1QqJT09v/7/C43z8NCQkVEoilk1QhSKs6wuxd1e3j8ajTPPP/8EoaHBTJ/+InK5nEWLFtmkLyJAFywRAbpgE1VVVc3aAupKYzAYMBqNDjmDbolKpeKVV15h5cqVbN26gxEjhlzyuSoqqvDysu/94Tdu3MaJE6f55JOl9Y/p9XrGjLmN5OSz/PbbN8TFtQcgLCyYt956kUOHEvnll18sBuh//fUXZrOZ/v37nve4t7cX7733MhMnjmXixEeYNu0x7r//Aa6++urziuG0axeNn58PR44cJDs7l+LikvPO07dvL4KCmlf1vS3Jzi5GJpMSEOBRv4d6amo++/efJTDQi4gIX7Eu2YEZDEZSU/PJzi4iIMCTDh2CUSjkmM1mzp0rJDu7mODg5mebXKlcXNQOVf/DFjQaNcXF5bbuhl1SqRQYjSaMRpNdfZ9OnDgWrbaMl156izFjxjBw4MBW74OTkxNlZSJzS7iQCNAFm9DpdPj5+dm6G3ZHp9Mhl8tRKOx7jfXFio6OJjg4mH37Dl9mgF5NaKhPC/as5S1c+Cl9+iTQv39/oHZG/YEHHmDLlq38+ONn9cF5HYlEQm5uAYMGWb4uW7ZsITw8lLCw4Ab/Hh/fmXffncOyZauRSCQolUp8fb1Zs2YF/v6+eHp6nHd8RUUlNTU16HRVyOVyfH2bv2a9rTAYjKSl5dOuXXD9a1co5MTGBhIU5ElSUg579pwhIsKPwEDPK+76ODKz2Ux2djGpqXloNGp69Ig6L7CUSCRERvpx+nQW/v4edhU02COpVIqbW+06dBGgN0yjUXPuXKGtu2GXZDIpMpmU6mq93X3WHnhgIr/99idDhgxh6dKlTJw4sVXbV6vV5OXlNX2gcMURAbpgE466ztra2up1qampwcPDg9OnL30PUr3eSHW13q63WNu+/R927NjDqlWr6gO6OXPmsGzZMj755F2uueaqC55jMpnIyMgkMjLS4nm3bNlM//4JjbZ9ww0DOXw4mYyMDDp37kxOjrvFwnwajTMajTPNLPTeJmVnF6NWK/H2vjAjQ6NR07VrOIWFZZw9m0NWVjExMQF4eFz68gyhdZSU1O55bzSaaNcuCG/vC/e8B/D2dkWtVpKdXWz3g372oK5QXFCQ4xUwbQ0uLiqqq/UYDEa7C0JtTSKRoFIpqKrS290Aj0KhYPXqL3jqqdlMmjQJLy8vhg8f3mrtixR3wRKx+EpodY68ztra2uJ1MZlM3HvvvZw5c4aHHrr7ks9TWVmNUilHobDPccXi4hIefPBp+vfvz6hRowBYtGgRr7zyCi+99DS33z6qwedJpVJ8fX3Izc1t8O/5+fkkJh69IL39v4xGI7Gx7TAYDOTk5ODrK1J3LTGZTJw7V0hYmI/FmXGJRIKPjxu9e8fg5+fG0aPpHD+eQVWV2LPWHlVV1XD8eAZHj6bj5+dO797R+Pi4NfrvGxrqQ2ZmISaT2OO7KR4eGkpKKsR+6BYoFHKUSrlYh26BSiWnpsb2W601RKVSsWjRG0RFRfDHH3+0attOTk5UVVWJz5VwARGgC62uuroas9ncJmeKL1dbnEF/6aWXWLlypcUZ5OaqrtajUtlv6v/s2W9TUaHjm2++QSaT8eWXXzJt2jQefXQKTzzxQKPPjYgIITk5ucG/bdu2DYABA/o0eo49ew7j6upKz549SUpKIjIy7NJeyBUgP1+LTCbF27vpOhhSqZSwMF96945BKpWyd28SKSm5GI2mVuip0BSj0URKSi579yYhk0lJSIghLMynWcXffHxckUql5OeXtkJPHZurqxN6vZGqKvsMsuyBvez3bY9qZ9BtX8ndEolEQnh4MJmZmQ3+vbS0lPXr15Ofn9+i7To5OWEymaiuFgM7wvnscypKaNN0Oh1KpRKZTKSB/ZdOp8PZ2dnW3WgxOTk5vP322zz33GOMHj3sss5l7wH6mjUbuOOOOwkJCeGXX37h3nvvZdKk23nllab3WQ0M9OfcuXMN/m3z5s1ERUUQHBzY6DkOHTqBm5sPO3bsICsri/79Gw/or1Rms5mMjAJCQi5u3b1KpaBDh2CCgrw4ezabnJwSoqL88fNzF+vTbcBsNpOXV0pyci5qtYL4+MiL3qdbIpEQEuJNRkaB+Hdsgkwmxdm5disxJyelrbtjl0SAbpkjXButtpyoKI8LHq8t0NqPo0ePoVKpqKioaLH7V5lMhlKpbJPZk8LlEQG60Or0ej1KpfiBb4hOp7uoPaztXWJiInq9nnHjGk7vvhj2HqDfdddtLFu2goSEBB5++GFuvnkI8+a90uRNv9lsJiUlg27delzwt+LiYr766ismT76jyfZLSysoKirn/fff5623XmTgwKsv+bW0ZaWllVRXG/D397ik57u5OREfH1kfHGZlFREdHYibW9vKfLFnWm0lSUk5VFfriY4OwNfXcip7U/z9PUhJyaO0tFLUGGiCRqOivLwKHx83W3fFLqlUcrsPQm1FpVJQWlpp6240Kjs7lxtv9K//77/++ouvvvqK+Ph4jh49BsDHH3/c4pNLCoUCvV68b4TziQBdaHUGg0HMnltQVVXVplLcd+/ejVQqbXL2tzmqq/W4udlvdsHUqZNZvPgLpkyZwuDBA/jkk3ebfJ+bzWZeeuktjhw5xiuvvHbB37/++msqKiqYOrXh7df+fR6lUs2xY8eYM+cZHnhg0mW9lrYsJ6cYf393ZLJLX+ElkUjw9/fAx8eN9PQCDh9OwdfXnchIP7seRHJ01dV6UlLyyM8vJTTUh9BQn8v6d4TamWF/f3dyckpEgN4EjUZNWZkoaGWJSqVAqxXXpyEqlcJu16ADFBQUkpWVQ3x8PABbt27l+uuvR6Nx5tNPP2X+/Pm4u7tzzz33tHjbcrkco9HY4ucVHJtYgy60OoPBgFwuxob+q60Vz1u2bBkvvfQS99xzR4tsG1ddbUCttv/gJzQ0mOXLP2gyS6S6upqHH36WDz74jIULF9YXlvu3qKgoTCYTQ4fewaRJj/Dttz81WEzGZDIRHh7O4MFX8/jjja93v5IZDEby87UEBLRM+XqZTEpkpB+9e8dgMpnYuzeJ9PR8TCaxPr0lmUwm0tPz2bs3CZPJRO/eMURE+F12cF4nIMCT/PxSDAZxk9wYjaY2xV1omCOkcduKSiWnqspgt8XQiopKAPD392f//v2MGjWKq6/uzU8/LQMgPj6eyZMbHyi/VHK5HIPBftfnC7YhoiSh1RmNRhGgN0Cv12M0GtvEDHpiYiIPP/wwEyaM4d1357TIOaur9SiV9hugBwcHcvjwVkJCApssUJWfX8iECVM5fPgYK1eu5M4772zwuKFDh/L555+zY8cOPvvsM9au/YP+/fsSEvLfjAQJfn5+9O3bv4VeTduUn1+Ks7MKF5eWHQRTq5V06hRKSUkFZ8/mkJ1dTHR0gMUtvoTmMZvN9VvdyeUyOncOs8ost4uLGmdnFfn5WgIDr+C9B5vg4qJGp6vBaDS12OBIWyICdMtUKgUmkwmDwYRCYX8ZlD4+tdsHHjlyBLPZjFarZcKEMcyd+x4+Pj7069fPam2LAF1oiIiShFYnZtAbptPpkMvlLTLbbGuvvvoqISGBvP327BYJUEwmEzU19j+DHhYW3OQxBw4cYfLkaVRXG9i2bRt9+pxfzC0vL4/ly5ezadOf7N79D6Wl/6swff31AwkK8v/vKamsrEYul6FUis9VY3JySgkI8LDa+T08NPToEUVOTjGnT2eh0aiJjg5o8QGBK0F5eRVnz+ZQUVFFZKQ/AQEeVh3sCAjwICenRATojVAq5cjlUiorqy+6IN+VoDaN24DJZEYqFQNz/yaXy5DJpFRX6+0yQPfy8mTcuNHMmDGDrVu30r59ex588GkCAwP59NNPrXpfJgJ0oSHibk5odSJAb1h1dXWbSG/X6XRs2rSJu+++HSenlnk9NTW1P16OHIAajUbef38Jb765kO7d41m1ajWhoaHnHbNhwwYmTZpEWZmWfv368Oij9xIZGYZer6d37+5ER0c0eO6Kiio0GpWYrW1ETY0BrbaSuLgQq7YjkUgIDPTC19edtLR8Dh5MJiDAg4gIPxQKx33/tha93kBqah45OSUEBXkRFxeKXG79G3ofHzeSknKoqTE49PeMNUkkEjQaNRUVVSJAb4BKVfu+qanRo1aLQrj/pVTK63/L7dG7787h4MFEHnjgfvbv38/WrVu59tpr+euvv9i7dy+9e/e2SrsymUysQRcuIH6FhFZnNBpFkbgGtJWBi3feeQetVstdd93WYuesreAud8gAtLy8gu+++5lPP/2K06fPMnPmTObMmXPeiLxer2fWrFm88847DB48gI8+egdf3+ZX8y8vr0ajcfzBHWsqLCzDzc2p1ZZJyOUyoqMDCAz05OzZHPbsSSIiwpfAQC8xu9YAk8lMVlYRaWl5uLk507NnNM7OqlZrX6VS4OrqRGFhmZhFb0RtgC72bG6IRCJBqZT/f70UEaD/l1wuw2i03/ocLi4ann56Kg888BQ1NTUMHz6cL7/8krvvvhuAc+fOERzcdJbcxRIz6EJDHD8aEByOwWBApWq9Gy9HodfrHTpANxgMvPHGG8yZM4fHH3+AqKjwFjt3dbXBoapjm81m9u07xMqVq1m9+le02jI8PDzYtm0bAwYMOO/YDRs28MQTT5CUlMTLLz/Lo49OaXIN+39VVoqtj5pSUKDF29u11dt1dlbRpUs4RUW1a6mzsmrXp3t5ubR6X+xVUVE5Z8/mAGY6dgzBy6v1/50AfHxcRYDeBI1GRUGB1tbdsFtiHbplMpnU7meK67LUUlJS8PT05ODBg/V/O3LkiNUC9OpqMeglnE9U+RBaXVuZKW5pjlo8z2Aw8OWXX9KxY0dmz57Nc889xgsvTG/RNux9D/R/W7r0a7y82jFkyO0sW/YtWm0ZACUlJZw+fRqoDeCPHTvG7NmzGTp0KD4+7mzevIpp0+6/6OAcoKpKpFQ2xmg0UVxcYdNBDC8vV3r2jCEw0JMTJzI4ejSdysor+6assrKao0fTOXEig8BAT3r2jLFZcA61ae5FReV2Pctna2q1kqoqEYBaIgJ0y2oDdPv+bEVE1C47S05OBuCJJ56o/9vVV19tlTbFDLrQEMeLBgSHJwL0hjnidSkqKuLWW29l27Zt3HTT9Xz++Xt06dKpxdtxlADdYDDwzDNz6v/bzc2VAQP6sn37P5SWavnwww/57rvvOHbsGFlZWahUKh555F7mzp1xyen7ZrO5fgmA0LDS0kqUSnmrpkw3RCqVEBLijb+/O6mpeezff5agIC/Cw31bZZ21vTAYjKSl5ZOVVURAgAcJCbF2sT7f2VmFUimntLRSZDhYoFLVpnCbzWaHXHJkbSJAt8wRAnRPTw98fLxZvXo1Y8aMITw8nPz8fAoKCnB3d7dKm2INutAQ2/8iClccsQa9YY4YoH/++eds27aNtWu/on//Pk0/4RJVV+txd3e22vlbilwuJzPzCKWlWpRKBZ6eHkilUqqqqlm4cAk7d+5DpYKxY0fQv38frr66N87Ol1dsyWAwYjKZHWIAw1ZKSyvw8LCf949CISc2NojAQK//X59+plUqldua2WwmJ6eElJRcNBo13btH2V2Few8PZ0pLK0SAboG9b5dlayqVHK220tbdsEuOEKBLJBJefXUmDz30NFdddRWPPfYYPj4++Pj4WK1NMYMuNMSxogGhTXDEQLQ1OOLARc+ePQFITU23aoCu1xvtYoatOZydnS4IutVqFc8++5hV2quuNiCTSa+oGdiLVVpaib+/h627cQEXFzVdu4ZTUFBGcnIOWVlFxMQE4O7e8nt921rdHvEGg5F27YLsdo94d3cNubkltu6G3bL37bJsTamUo9eL2dCGOEKADjBu3CgOHjzC008/zW233UZQUJBV2xMButAQsQZdaHUiQG+YI16XQYMGcc899zBz5mukpqZbrR2j0YRMJr6uGuIo6f+2YjKZ0Gp1dpuBIZFI8PV1o3fvGHx93UhMTOf48Qyqqmps3bUWUVVVw/HjtWvu616nj4+bXQbnAO7uzmi1Okwm+w8kbEWkcVvmKEGoLTjStZk58wnUahULFiywelsiQBcaIu54hVbniIFoa3DU67JgwQJ8fHx54okXrdaGCNAtEwF648rKqpDLpTg52XcRPalUSliYL717xyCVSti7N4nU1DyHuaH9L6PRRGpqHnv3JiGVSujdO4awMN9LKoLYmpyclMjlUsrKqmzdFbslAnTLHCkIbW2OdG3c3V255547+PjjjyktLbVqWyJAFxpi37+UQpvkqIGotTnqdXFzc2PatGns2rXPam2IAN0yUSCucRUVVWg0arudsf0vlUpBhw4hdOsWQVFROXv3niEvrxSz2WzrrjWL2WwmL6+UvXvPUFRUTrduEXToEOIwg0gSieT/9/oWAboltYXiRIDeEEcKQlubo12bhx++h6qqKj7++GOrtiOKxAkNEXe8Qqsym80Ouda6NTjqdTlx4gTffPMNwcGBVmtDBOiWOdoe8a2toqIajca+CpE1h5ubM927RxIZ6c/ZszkcOpRKWZnO1t1qVFmZjkOHUjl7NofISH+6d4/Ezc0+lxY0RqNRUVFxZW+B15jaGXQx49cQRwtCW5OjXZuAAD/uvPMW5s+fT1WV9Qbs6mbQHWUQVmgd4o5XaFUmkwmz2eyQM8XW5ogz6G+++SZdu3aloCCPRYtes0obtYM6IkC3RKS4N66iogoXF9tur3apJBIJ/v4eJCTE4OHhzKFDKZw6lUlNjX3NXtbU6Dl1KpNDh1Lw8HAmISEGf3/HrUjv4iJm0BsjUtwtqwtCRbB1IUcL0AHGjRtNbm4uR44csVobcrkcs9ks6l4I53GsaEBweHXrbBwtEG0Njhigv/7664wePYxFi95ArbZOEGQy1d7oiAC9YUajUVRwb4SjzqD/m0wm+/9t2DxJTs5hz54kwsN9CQ72sumabpPJxLlzRaSn5+Pp6UKvXjF2v9a/OWpT3MUMuiVyuczhAq3WUvc7ZTKZkckcc4DKWhwxQM/MzAYgJibGam3U3fc5ahalYB2OFQ0IDs9gMCCRSOy+UJAtOGKA3qlTRwoLi6wWnAP1P+giQG+YyC6wzGAwYjAY20TQCLUFzOLiwigpqSApKZvs7GKiogLw9nZp1dlqs9lMYWEZZ8/mIpNJ6Nw5DA+PtrM1nFqtrH/viMGvCzlioNVa6r6LxffyhRzxfZOfX4BKpcLT09NqbdTdDxsMBpTKtvFbJVw+8e0htKq6EUJHTX20JnsePd2xYwcffvghR48ePe/xm28eyfbte6yazmc0GsWgTiPEjaBl1dV6pFJpm7s+Hh4aevaMJiTEm1OnMklMTGu1lOyKiioSE9M4fTqL0FBvevaMblPBOYBcLkUqlYh11hY4YqDVWiQSCRIJ4vo0wBHfN5GR4VRXV5OZmWm1NiQSiajkLlzAsabrBIfniLPErcFsNtvttdmwYQMjRozAbDZjNpu56667ePDBB7n66qs5evQo8fGdrTrgIgLQxonrY1l1tQG1Wt4mBwQlEglBQV74+rqTlpbHgQPJBAR4EhHhi0LR8t8jer2B1NR8cnKKCQz0olOn0DY7uyyRSOrXWWs0jlm/wJocMdBqLRKJRFwfC/69Pt9RvpPbtYsGaovhhoSEWK0dEaAL/yXu6oRWZa9BqK3VbbFhb9emrKyMsWPHct11/cnIOMRrr83k77+30b9/f4KDg/n2229xdbXu7JkIQC2rHdgR18eS6mo9SmXbLqCnUMiIiQmkR49odLoa9uxJIjOzsMWyWsxmM5mZhezZk0RVVQ09e0YTExPQZoPzOqIQmmW1gZZRFEKzoHbbLBGg/9e/1+c7Cg8PN6D2XsiaRIAu/Jd9RQNCm2fPady2ZK/F87Zv305ZWRmvvz4LJyc1Dz10Dw88MIlt23by+++b6d07nptuut6qfRABumV1N8ji+jSspsZwxewRr9Go6NIljKKics6ezSErq5iYmAA8PV0u+ZzFxeUkJeVgNpvp0CEYb2/XFuyxfVOp5NTUiBvmhshkUsxmHGomtDWJGfSGOeL6/PLyCgBcXC79e7Q5xF7own9dGXcugt2QSCRi1L0B9rrOuu7f6uzZVEJDg1AqlUilUgYN6s+gQf1bpQ+O9GPe2kQBvcZdaQOCEokEb29XPD01ZGYWcexYBh4eGqKjAxoslCeVSggP90UqPT/I0ulqOHs2h5KSCiIifAkKsm21eFsQQZZl/w60rrT3RXOI907D6t4rjrSdWGpqBgARERFWbcdsNovPknAe8W4QWpVUKhUBegPsdeCiY8eOeHp6Mm7c/bRvfzVffPFNq/fBaDRfEEAItQyG2hsdcX0adqUO7kilUkJDfUhIiEWplLNvXxIpKbkXfMdIpVIiIvzqbwzNZjMpKbns25eEUiknISGWkBCfK/LGUQRZltV934jr0zCpVCKuTQP+9/3jOL9XWVk5AISHh1u1HZPJJLJRhPNceb+6gk1JJBKHGj1tLXVfzPYWpEdGRpKXl8eePXsoKytnyZIVtu6S8C8mU20AKn7YG3alBuh1lEo57doFER8fiULRdLE8iUSCQiGne/dI2rULQqm8cpPsxDpiy0QhtKaJr2TLHOnaVFVVI5FIrL79mVguIvzXlfvrK9iEvc4U29q/Z7Ds7UtaLpfTu3dvevToTkxMaKu3L5GAeMsIl+JKD9DruLo64erq1KxjQ0K8rdwbx1BXCE0QLpbZjN39jtuDuns/R7o2arUKs9lMWVkZbm5uVmvHHu/9BNsSdy5CqxIBesPqvpjtObsgMjKS7777hQ8++KxV2xXvGcvEtWlc7Y2yrXshCG2PCCgsq702tu6F/an7qXKk9018fGcA9u3bZ9V2TCZRz0E4n5hBF1qVVCq16yDUVuw1xf3fVqz4it27/+HFF9+kvLwCk8nEjTcOokePrlb9wa1d72i/18WWbJFdMNZrZus2eBmGPjOA7JP5HF570tZdERxM/MiO+LfzYc6Aj2zdlWb7oeiNVmtLzBJbJgYvGva/GXQbd+QitGsXjZubK7t37+a6666zWjviPSP8lxiuEVqVmPFrmCME6Eqlkq+//prQ0FBWrPiRzz//luuvH8NNN92JXm/N/YIlIsXdAvF5apzJaEYqUtyFSyCVSTCLNdYWiVliy8TgRcMcMcVdKpXSs2dXtm//26rtiABd+C9x5yK0KhFQNOzfa9DthcFgYMuWLXzxxRecPHmSzZs38/fff/PMM8+wceOf5Obm8tNPP/HPPwdYseIHq/WjdpbYfq6LPXGEgR1bMhlNSGXipscn0pOuw9s369iuw9vjE+Fp5R7ZP4lMiskoPlcNccRAqzWJwYuGOWKKO8ANNwxk06bNlJaWWq0Nsc2a8F8ixV1oVSJAb5i9rUE3GAwMHTqUTZs2nfe4i4uGmho9NTU1DBo0iCVLljBhwgTeeedDJk++0yo/vOI9Y1nd5RZrrRtmMpiQKa+cfdD/y8ldRd+74ml3TSSH1pxo5nPU3PbmjZzelsLulYfQlVZbuZf2SaaQYjTYx/exvREBeuPEbGjDHDHFHWD06JuYO3ceL730EgsWLLBKG2KbNeG/xHCN0KrEPugNs7eZ0GPHjrFp0yY++ugdsrISWbXqc959dw7p6QdJTz/AsmULSU1NZuDAgYSHh1NZqbNaX2q35rPa6R2avb1v7E1VWTVqF5Wtu9HqpHIp8SM7MuHDUahdVXzzxDr+WXm4Wc/9Z+VhvnliHWo3FRM+HEX8yI5I5VferYLaVUVV2ZU5ONGU/82E2rYf9koE6A1z1IGdwEB/Zs2azqJFi9i5c6dV2hDvGeG/rrxfXcGmxD7oltnTTHF5eTkAMTERODmpCQjwZ+/eQ/TocT3PPvsKZ84kM2LEDWRlZfHll1/Sv38fq/24iBR3y0SA3jidthq165UVoEf0Cmb8ghF0HBzN72//xe9v/YU2p/yC46RyKX3u7EafO7tdEIBrc8r5/a2/+P3tv+g4OJrxC0YQ3jO4tV6CXXASAbpFjhpotRaR0dQwRw5CH3robnr06Mr9999vld9bR742gnWIFHehVdlTEGpv7KnCfc+ePQkNDeXRR2fg7OzMwYOJhIaGMmTIEHbs2M6GDdvq12Olp6fz2mvPWa0v4j1j2f9S3MX1aUiVtgon9ysjQPcMcaP/5F74x3qze+Vhjv1xBrPJ8vtCppDR+/YuABz4+TimBtK5zx3J4dvpv9L5xlhuePxqcs8UsP2L/RSf01rtddgLJ3c1utIqW3fDLokAvXEi2GqYIw9cyGQypk27j7vvfoyCggJ8fX1b7Nxms1msQRcuIN4NQqsSM36W2VMgqlar+fjjjwEZMTEdWLlyJUlJSSxdupQTJ06Sk5ODTqfjqaeewsvLkyFDrrVaX2qvi9VO79DqftANYq1sg3Taapzc1LbuhlWpNEr639uTce/eREmWlhVTf+Ho+tONBucXw2wyk/j7aVZM/YWSrDLGvXsT/Sf3RKVRtsj57ZVIcbes7vumdgtM4b9EgN4wR78uYWEhAKSlpVnl/I58bYSWJ2bQhVb172rl4svofPYUoAPcdNNN3HTTTRb/bjAY+OqrrxgzZgRKpfVu1kWKu2USiQSFQoZeb8TJyda9sT/lhZW4+mps3Q2rkEgldLohhr7ju5GfXMR3T/9O8TnrVRmuLq/h78/2ceyPM/S/tycTPhzJ7pWHOf5nUosNBtgTV18N5QWVtu6GXdLrDSgUcvEbboEjzxRbk6Pf94WGBgGQmppKr169Wuy8dZmTjnxthJYnAnShVf27WrlI5zmfvQXoTTly5Ai5ubmMGjXMqu042nVpbQqFHL3eYOtu2KXS7DJUGmWbmw0N7uzPgHt7IVfJ2LRoF6n7Mlut7aKMUta8vJmIXsH0n9yTLkPb8ffn+8g8mttqfbA2tZsKlUZJaU6Zrbtil/R6I8oreHeEpjh6IGotjj5w4eXlSUhIEFu2bGHMmDEtdl6xZERoiAjQhVYlUtwtc7QCenWF5Hx9va3ajkwmwWQyi5seC+pm0IUL6asMVBTp8AhyJeeU4wfobv4u9Lu7B6HdAtj7fSKHfz3V4Nrx1pC6L5P0Q9l0G96e4TMHknE4h+3L9lOWV2GT/rQkj0BXKooq0VeJga+G6PVG5HIRoDfEbDZjMon1xA1x9N9wiUTCsGGD+f3331r0vCJAFxoivkGEViUCdMscbQu6qqraAkoqlXXXoioUcsxmM0aj4wxetCYxg964kmwt7oGutu7GZVGo5fS9qxt3LhhBVXkNK6au4eAvJ2wWnNcxGUwc/OUEK6auoaq8hvELb6bvXd1QqB177N8jyI2SbDF7bkldirtwIaPRhNlsRqEQAxj/5egBOkDv3vGkpKRSWFjYYuesm5gRgzrCv4lvWKFV1X0BOdJMcWtxtFTuyMhIAE6dOltfPMUaZDIpEomYtbFEzKA3riRLi1eIu627cWkk0H5gJFdP7E5pTjmrn/+D/OQiW/fqArrSKrYs3s3R9acZMKUXHa+LZueKg5zalgKO85VWzzPYjZKstl+p/lKJFHfL9HojEokEmUwEW//l6CnuAEeOHEej0SCTNf3+1+l0GAwGXF0bHyAWM+hCQ8Q3iNCqxAy6ZY6W4h4TE0NQUBB//bXLqu3UFkITs8SW1Abo4tpYkne2CN9o6y7DsAb/dj6MeXMofcfH8/fn+1k9yz6D83/LTy5i9aw/+Pvz/fQdH8+YN4fiH+t4194vxpu8JPu+1rak1xuQy8X8TkNqswtkIthqgMnk2DPoiYnH+eSTL3nuuefw8PBo9Ng9e/YQHh5OcHAwZWWNZ+OIAF1oiAjQhVYlAnTLlEoler3e1t1oNolEwqBBg9i+/R+rtyVmiS2rHbwQ18aSvDOF+MV4gYPc+2i8nLh+2tWMfvl60g9k8fWja0jaYZ1tfawlaUcaXz+6hvQDWYx+5Qaun3Y1Gk8H2WZAUhegt1wKa1uj1xtFCrcF4tpYZjA49rV5/fUFxMbG8uyzzzZ57OLFizEY9JSVlfHbb42vWa9L/RcBuvBvIkAXWp2jrbVuLUqlkupq+y1kZTKZePnll1m8eHH9Y0OGDOHw4WOsXv2rVduWy0WAbokYvGhcYXoJcqUcDztfhy5TSOl5Wxx3fTASqVzK14+tYc93RzDUOOa/raHGyJ7vjvD1Y2uQyqXc9eFIet4Wh0xh37cdHoFuyBQyCtOKbd0Vu1U3SyxcSKzPt8zRr83u3fsYN24cKpWqyWNdXFwoLi4BoEOHDo0eazKZRHAuXMBxPymCw3K0VO7WolKpqKmpsXU3LFq4cCFz5szB1dWVqVOnAnDXXXexceNGHnjgKbp27URMTKRV2lYqRYq7JSqVgqoq+33f2JrJYKIgpQj/WB9Ksuyz8Fd031D63dOTqvJq1s7dTPaJfFt3qcWUF1Tyx7ztBHb0ZcCUXnS6PoYdyw+QvDvD1l1rkH+sNwUpRZiMYhDZkqoqPWq1wtbdsEtiBt0yR782AQH+nD17tlnHzpo1i6KiIvr160e3bt0aPbYtFM8TWp59D2ULbZJcLsdgEMHWfymVSrsO0JOTkwG499576x+TyWR88sknSCQSfvllvdXaFrPEljk7K6mpMYgq943IOp5HcBd/W3fjAt4RHox+5XqueSCBvT8k8v0zv7ep4Pzfsk/k88Oz69n341GufTCB0a9cj3e4h627dYGQLgFkHsuzdTfsltFooqbGgJNT07OIVyKRXWCZo1+b4cOvZ+3atc3KAA0MDGTlypU88sgjTR5rMIiaDsKFRIAutDp7D0Rtxd5S3NPT01mwYAEbN24EYN68eZw8eZL58+efd9yPP/6IwWBg0KB+VuuLXC5m0C1RKOTIZFJ0OvGZsiT9YDZh8UG27kY9tauKgQ8mMObNoeSeKeSrR9ZwYtNZh6x4fjHMJjMnNp1lxdQ15CUVMvatoQx8MAG1q/0Ee6HxgaQfyrJ1N+yWTleDTCZ16EDLmmpniUWw1RBHvzZqtXW+p6qrq1EqrbtdreB4HPeTIjgslUplV4GovbCngYtdu3Zx9dVXA+Dv78+5c+eQy+W0b9/+gmP/+usvunaNo0ePrlbrj1Ipo6Kiymrnd2QSiQQnJyU6XQ0uLmpbd8cuZZ3IQ6VR4hXmTlF6qc36IZVJ6DKsPQl3dCXrWB7fTv+V0itwv229Ts/OLw9ybGMS/e/pyYTFI9nz3RGO/n7apqnl3mEeqDTKNpvF0BJ0uhqcnJQiJdcCvd4ovoctcPQU9x079hIfH9/i7/2amppmrWsXriwiQBdanT0FovbEntag1/1YJCT0YM+eA2zcuJFhw4ZZPN7ao+Jim7XG1QboYtDLEpPBRObRXMLig2wWoIf1CKL/5J6YTWbWv/MXGYdzbNIPe1KaXcavb2wltFsg/e/tSecb27H9832kH8y2SX/CugeSeTQHk0EsF7FEp6vGyUnM9lni6IXQrMmRr82xY6fYunUHX331VYufu6amRsygCxcQKe5CqxMBesPsKcW9R48evP766+zdexCAr7/+2uKxGRnp+Ph4WbU/oop74+pm0AXL0g5kEpkQ0urtegS5MWLWIIY80Y/E307x7fRfRXD+HxmHs/nuyV85+vtphjzZnxGzBuER5Nbq/YjoHULaAZHe3pi6GXShYY4+S2xNjnxt5s37iJCQEG6//fYWP7dIcRcaIgJ0odWJAL1hddfFXrage/bZZ+nfvz8A2dmWZ7SCgoI5fToZo9F6AbRSKQL0xjg5qUSA3oSzu9IJaO+Lxqt19uNWOivod08P7ph3E9r8cr565BcSfz+N2WQfn297YzKaOfLbKb6augZtfjl3zLuJfvf0QOncOtXCNd7OBLT3JWlnequ056hqA3SRjmuJo6+zthaz2eywM+hHj55k9epfmT17NgpFy38fiRR3oSEiQBdanT3NFNsTlUqF2Wy2WYX7iooKNm7cyK+//sr69esxm82sXbuW5cuX8/HHH1t83sMPP0xKShqffWZ5lv1yKRRyDAYjJhHcNEjMoDetsqSKrGO5xPQLt2o7EqmEuBtimLh4FD6Rnvzw7Hr+WrKXqjLx79McVWXV/LVkLz88ux6fSE8mLB5FpxtikEitu+Y5tl84mUdz0ZWKWheNETPolplMZgwGx50ltiaj0YTZjENemxMnTgNwyy23WOX8IsVdaIgI0IVWZ09rre2JXC5HIpG0+rV577336N+/HyEhIQwZMoQRI0YwbNgwFi5ciLu7O5MmTSI2Ntbi8xMSErj//vt5442F6PV6q/RRqay9NtXV4n3TECenuq3WRJZBY07/nUq7ARFWO39QnB+3vzuMHrfGsXnxbn6ZvYnC9BKrtdeWFaaX8MvsTWxZvJuet8Zx+zvDCOrkZ7X2YvtHcGZ7qtXO3xYYjcb/32JNBBMNqaqqQSKRoFQ63iyxten1BiQSCTKZ44Udffr0BGDVqlVWOb8I0IWGON4nRXB4IsW9YbU/7K2fXfD222+zY8dObrllGLt2/cbx49u5/fZRzJs3jxkzZrBmzZomzzF58mRKSko5evSkVfookUhQqxViltgChUKGUimnvFxkpjQmeXcGPhGeLb6+2dVXw41PD2DErEGc2Z7G14+tJWXPuRZt40qVsuccK6et5cyONEa8MIgbnx6Aq6+mRdvwCHLDJ8KD5N0ZLXretqa8vAqlUu6Qs6CtoTa7QCEq3Degbv25I16bsLBgbr11OE8//TSnT59u8fOLNehCQ0SALrQ6EaBb1prXpqSkBJPJxMaNG/H19aWgoJAOHWIJDPRnwoQxZGZm8tZbb/Hkk082ea66HxdrzuCKNG7LJBIJrq5OlJVV2rordq26ooaknel0Hmo5I+RiyFUy+tzZjfELb8ZQZeCrR9ZwYPUxUQW8hRn1Jg6sPsZXj6zBUGVg/KKbSbizK3JVywSKXYa148yONKorxPdLY7RaHa6uTg4ZZLUGsT7fMkcuEAcwf/5cAgJ8mTz5nhY/t1iDLjREBOhCq6tLcbeXYmj2pLXS/0+ePElAQAA+Pj689NJLTJo0ibVr/+CPP7YCMGBAXw4d2syDD05CrW76h2PDhg2oVCri4jpYrc+iEFrjagN0sX62KYm/n6LjddEo1JeXhtrumggmfDCSkK4B/PTiRjZ9sIvKYl0L9VJoSGWxjk0f7OKnFzYS1i2QCR+MpN01EZd1ToVaTodBUST+3vIzY21NWVltgC40TKzPt8xRC8TVcXNz5bnnHmPnzl2kp7dcIUmTyYRerxcz6MIFRIAutLq6LyIxi36h1ppBnzt3Ln5+Pjz44EROnTrO8uXLiYmJ4amnZlNQUAhAeHgoVVXVqNXqRs9VWFjI22+/zfjxt+Lk1Pixl8PJSUllpXjPWOLq6oRWKwLEpuScKqA0p5x210Re0vP9Yry57Y0buXpid3auOMiqmRvISyps4V4KjclLKuTHGRvY+dUhrp7Ug9veuBG/GO9LOle7gZGU5pSRe7qghXvZ9ogAvXEiQLfM0WfQAfz8fADIy8trsXPW1e0RAbrwXyJAF1qdTCZDJpOJAL0BrbkGPSDAj+eee4xff/0aV1cNmZmZnDuXxaxZb9QfExkZRmLiUc6cOWPxPF9++SWVlZXMnPm4VfsrUtwb5+qqpqqqBr3eNrsAOJLE30/RdXh7uIhMXWdPJwY/dhW3vHoDGUey+erRNZz+K9VqfRSadnpbCl8/uoZzR3K45dUbGPzoVTh7XkQAKYGuN7UXs+fNoNcbqKrS4+pqvUFYR6fTVYsA3YLaGXTHDdBNJhOLFi0lPDycHj16tNh5q6ur6++JBeHfRIAu2IRYh96w1kpxT0hI4MiR4xw+fAwvL09++GEpERGhAOdVWY2L60BNTU2jKV1ffrmcoUMH4et7aTNYzeXsrKSqqgaTyYzRaOT06bOUlpZZtU1HolDIUauVIs29GU7/lYLaRUlUQmiTx8oUUnrcGseED0ciV8pY+dha9nxzBEO1qJhvD/RVBv755jArH1uLXC1nwocj6XFrHDJF07c3UX1CUWmUnP4rpRV66tjKynQ4OSkdOk3ZmkwmE1VVehGgW+Do+8MvW/YtGzdu44MPPkAqbbnQSaw/Fyxx3E+L4NBUKpXYC70BSqWSkpISq7czduxYlixZwqBBtxAdHYmfnzcJCd3p1asbL774VP1x3333MxEREQwaNKjB8xiNRg4dOsyNNz5m9T6rVLXVcXW6ah54YDq//fYnUqmUJ598iFmzplu9fUfg5uZEWZkOLy8XW3fFrhn1Jvb/dIzet3ch+R/LlbsjE0LoP7knNZV61r26hazjLZfaKLSssvwKNrz7N0Gd/BgwpRdxN8Sw/Yv9jVbT7317Fw78dAyjXhT1a4pIb29cVZUeiUSCSqWwdVfsUk2NARcXx8y+KCws4pVX3uPee+9lxIgRLXpuscWaYImYQRdsQsygN8zZ2ZnKSutX4g4KCuLw4cN8/vnnREXFUFFRw/Ll3/HDD2uQy/+XatWzZ1cyMjJIS0tr8Dx79uwBQKNxtnqfJRIJTk5Kjh49zW+//cn777/PpEmTWLhwKTqdmDWG2jT3sjKxDr05jv2RhLOHExG9Qy74m1eYO6PmDGbQ1L7sX32M75/5XQTnDiLreB7fP/M7+1cf47qpfRk1ZzBeYe4XHBeZEIKzuxPHNibZoJeOp66Cu9CwuvXnosJ9w6qq9KjVjhmI7tt3mNJSLS+88EKLn1sE6IIlIkAXbEIE6A1zcXGhoqKiVSrcp6am8tlnS/njjz84fPgwUJvS7ubmWn/MpEnjkMvl/PLLLxc8v6qqipEjR9K3by8eeGCi1fsLtevQExNP4e3tzSOPPMJtt91GTU0NZWXlrdK+vXN1dUarrRQ7JDSDscbIgZ+PkTCua/1adLWrkmse6M3tbw+jMK2Er6b+wvGNSZhN4no6ErPJzPGNSayY+guFaSXc/vYwrrm/N2rX/78RlkDv27vWzp7XiKUKTTGbzWIGvQmiQJxlZrPZoa9PeXkFAD4+Pi1+brEHumCJSHEXbEKkuDfM2dkZk8mETqfD2dm6s9KnT59m+/YdBAcH4ubmilwuY9myRecVK3F2dqJTp3YcO3bsgucXFxdTUFDAokWvtdoaKq22lLNn05k0aRJyubz+GuXm5tVXWL2SubqqMRpNVFRUO2w6YWs6uuEM3UZ0oOOgKBRqBQl3dCXnVD7fPvkbJVlaW3dPuEw1lXq2f7GfoxvO0H9yTyZ8OIo93x5BX21A7ark6B+Wi18K/1NRUY3RaBYF4hohCsRZVl2tx2w2O+wMekVFbVajRqNp8XOLNeiCJWIGXbAJMYPeMKlUirOzM+Xl1p8RHjZsGNdddx2ZmdmcOHGaxMQTrFjx/QXHBQcHkJFx4TpdLy8voHZ9liXZ2bmsXv1ri/S3pKSUL7/8lnbt2vHGG7WV5vv06UNERASzZr2BySTWkUqlUjw8NBQXi4yC5jDWGDm1LZlBD/el803t+GP+dta9tlUE521MSZaWda9t4Y/3d9DlpnYMergPp7Ymi9nzZiouLsfDw7lFi2O1NY48Q2xtlZU1qNVKpFLHTv+3xvIFkeIuWCK+bQWbEAG6ZXVp7tZkNpu588472Lx5c/1jEonkgj3PTSYTaWmZDf6AqFQq/P39yfo/9u47vK3yeuD492pbsmXJtuS9V/Z2QiZZEEYIZUOB9gelLWWvMstsKXuUUkoHlD0DhISdBEL23tN7D9nW8JC17+8Pk0BInNiJbUn2/TwPDyDfcSTL0j33fd9zauu7PM+f/vQYv/nNLaxZs/GkY/7886Xs27efIUOGHLrjrNPp+Pe//82qVetZsWLNSZ9jIIiJiZQS9G6ITozi7HtmMvLMfFqb2inbUEXltrpghyXpQ5VbaynbUE2rpZ2RZ+Vz1j2nEp0gFVQ8Hqu1TSo8eRxSgt61cH9tDna2+fkgwO7du/nwww9P6lpWStAlXZGmuEuCoj/7fYcbnU7X5wn6mjVreP/9D3jqqYc499wzsFptpKYmo9UevsZw1ar17Nq1l7///aWjHiclJZmamqMn6C6Xmw0btgLwxRfLmDp1Yo9i3LVrL4sWfYXZHEtBwVgMhmiqqqrweDz4fD4Uis6Pr1NOOQXgmDcKBhOjMZKSkgb8/sBhLfMknZQRSgouGsGos/LZ920Jb123jsg4LRc8No99y0uw10qt+wYqQ1IUI8/O56O7v6bN6mTSZaO59Pn57Pz8AJsX7sbb4Q12iCHH7w/gcDjJzU0Mdighy+fz43J50WqlqcpH09HhQasN3yQ0Kqrz5lRTUxPx8fFA5xK/goICXC4X6enpfP311+Tn5/f42G63W5riLjkq6epNEhT91e87HPVHgr5t2zZkMhmXXXYeJlMs+fk5RyTnABZLEwDjx48/6nFSUlK7TND/8583qa+3MGrUKD74YDGLF3/Vrdg6OlzMn38FM2acy2uvvc+DDz7FnDkXcMUV12Gz2ZDL5Ye1oouMjGTatKn86U+PU1MjjYBGRKhQqRQ4HH37Hgo7Agydk82VLy3AnBPLh3d9xff/3oSr1U1TmY29S4uZfcNkhDCfhik5OkEmMOeGyez5poimchuuFjff/2sjC+/+ivjcWK74xwKGzsk+VDBQ0slub0etVoT1CGhfa2tzoVIppBZrXQj39fkjRw4FYOvWrYcea2pqwuVy8fjjf8Lv9/LnP//5hI4tjaBLuiIl6JKgOFgkTqo2faTIyMg+X4M+depUNBoNF1xwNUVFpV1uFx2tB6ChoeGoP09NTT3qyLXX6+Wf/3yN//u//+Pzzz9n0qRTuPrqW7o1yr1+/WbWrNnACy+8QH19PQ6Hg9WrVzNlymR+97vfYTKZDkvQBUFgyZLPEAQZ//73m8c9/kAnCAIxMZFYrdI094MSh5q4+KkzKbhoJN//ayOLHlhGc4X9sG3WvbUNrSGCUWf1fBREEvpGnZ1PhCGC9W9tP+zx5nI7ix5Yxsp/b6TgopFc/OSZJAwxBSfIEGSztWE0Rkrtw45BqnB/bB0dnrAtEAeQkZGG0Whg/fr1hx7z+zvrVwwfPgSdTntC17KiKEoj6JIuSQm6JCgOVit3uaT+1T+n0+lwOvu2Vda4ceP49ttvKSmpYOLEeVx99c34fL4jtnvvvU9IS0sjNTX1qMdJSUk5atK9ZMk31NU1cPPNN5OSksJbb72FTCZjyZKvjxvb8OFDkMlkVFVVoVQqUavVTJ06lTVr1vKvf/0Lo9GIzWY7bJ+SkhLa2towmWK7+QoMbEZjJDabNIIeGafl9Numcc79sylZV8nbNy6mZP2RBQ8BfG4/3764jlMuH0N0YtRRt5GEJ0NSFKf8cgzL/74WXxeF4UrWV/H2TUso2VDFggdmc/pt04iM69tOGuHAZpPWnx9Pa2sHer2UoB+NKIo/TP8P3wRdEASmTi3gu+9+rNlzcD36Bx98yoEDxZx//vk9Pq7L5SIQCPR5xx5JeJISdElQ9Ge18nCj1XbejXU6nX16nkmTJlFRUcELL7zAJ598wdatuw77udfr5fPPl3HTTTd1OQUrPz8fu93Bzp2Ht2FbsuRrJk2ayMiRIwEwGAycfvppLFp0/GnuZnMc//d/l/LUU0+xbdu2I35uMBgOG0FfunQps2bNYuTIofzmN5cf9/iDgdGow+l043INzjW1CpWciZeM4vK/LyDgC/D2DYvZ8tEe/N5jV/qv3Wth77JiTrt5CjKF9PU4EMgUMubeNIW9y4qp29d4zG39Hj9bFu7m7RsWE/AFuPzvCyi4eCQKlfyY+w1ULpcHp9ODwdD77aUGkpYWaQS9K53fQeHbYg06l93V1NRjtf44MJCbm8v48eN5880PycjIYPbs2T0+bltbG1qt1B1BcnTSu0ISNP2x1jocHbx50R+vjVarPbS+/KOPlhxWuG/lyvV4PB5mzJjR5f7z588nNzeHxx574bDHt27dybRp0w977MILL2LDhi3U1R19uvxBgUAAhUKOwWAgNzf3iJ8bDAacTif19fX84he/YN68eUyaNI7Fi98kIkLq0wugUMjR67VYrYOv4FnutHQuf3EBaeOSWPTgMpa9sJZ2a0e391/75jbkKjlTrhzbh1FK+suUK8ciV8pZ++aRN/u60m7tYNkLa1n04DLSxydz+YsLyJma3odRhiartQ29XotCMThvUHSHx+PD7fZKCXoXDk5vD+clEnff/WcOHCjh9ddfP/SYUqlk7dq17Nu3j3379mE0Gnt83Pb2diIjpdkpkqOTEnRJ0EgJetf687UZPXo05513Hv/+95vcdNN9hx5/+eXXGT16FBMmTOhyX4VCwcUXX8L27bsPe9xiaSItLe2wx84++2xEUWTt2k1HPZbb7ea//32bCRNO59//fpNzz11w1C8vlUqFTqdj9+7dfPrpp9x33628++7LREZKozw/ZTLpsVgcwQ6j35iyYjj/r6cz7arxrH97Owvv/oqGwqYeH8fv8fPVU6sYOiebrFOOvrRDEh6yT0ll6Jxsvnpq5Qn1PG8obGLh3V+x/p3tTL96POc/ejqmrJg+iDQ0WSwOTCZ9sMMIaa2tHUREqKSbGF0I9wJxDkcr77//KQ8++OARxXJVKhVDhgw5oj1td7W1taHTSdctkqOT2qxJgiYyMpKmpp5fQA8GOp2uX6b/u91unn32WZYvX05CgpkrrrgQgPLySpYt+55XXnnluHe+q6urSUyMP+wxjUZzRBu9g2vqOzoOH810udy88cYH/O1v/6a+3sLFF1/MG2+8xdSpU7s850/vVufkZBxquSb5kcmkp7S0HrfbO6CrC0dEazjl8jHkzchgx5J9LHnkW7yuI+sp9ISjrpVvX1zHnBsm01xuw1EvLcUJN9EJkcy+YTLLX1x3cr8/EQ6sKKN0fRXjLxjO+X89ncKVZax/ewcdjoFbQ8Xt9tLS4mTo0JRghxLSpAJxxxbuPdBXrlyL2+3mvPPO6/Vjt7e3ExcX1+vHlQwM0gi6JGikEfSuRUZG9strs3jxYh544AHOPHM2a9d+zvTpnT3FD1Zv786d4R07tjN06OFT0dVq1REFAP/zn/+g02k566y5hx4rKiplxowF3HPPX5gz5zT27t3Lu+++y7Rp0455Y8BgMOD1eklISGDPngPdfr6DiVqtJDpaR2NjS7BD6RMyhYyxvxjGFf9YgFqn5J2blrD+7R0nnZwfVLK+ir3Lipl/3yzUkeF7gTkYqSNVzL9vFnuXFVPaRVHAnvK6fKx/ewfv3vwZmkg1V/xjAWPPHTpgaxU0NjqIjtYN6Jt7vUEqEHds4Z6gjxw5FJlMxvLly3v92G1tbdIUd0mXBuY3iyQsHExCpVZrR+qvEfSJEyei1+uRy2UYjYZDjx9sIdKd6qKjRo1m+/bDi8SZTHEUFRUd9tjOnTsZN24UMTE/jn7ffvuDgJxdu3bxxhtvkJ/fvRZXByu5jxw5QkrQj8FsHpjT3DMmJPPLv80nf0YmXzz+PV89tYpWS+/f0Fr7xjZstS2cddepAzYRG2hkChln3X0qtpoW1r7R/XXn3dXS0MaXT67ki8e/J39mFr/823wyJiT3+nmCzWJpwWyODnYYIU0URalA3HF0Jujh20YsIyON+fNP47nnnj1Uub03HCwELE1xl3RFuuKQBM3BVms/n/Is6bx54XQ6e/UL4WjS09N5+OGH+eCDxYe1S3M4OouLGQyG4x7j7LPPZu/eA+zf/2NCfvrpM/niiy8O287tdqPR/PhFXVfXwOrVG7jnnnsYNmxYj+KOjo7G6/WSnZ1zWGVVyeHi4vS0tbno6PAEO5ReYUyJZsEDs5lz42S2Ld7H+3d8Qc3uYxcdPBliQOSbZ1ejUCuYc8PkPjuPpPfMuWEyCpWcb55bjRjou5u/NbsbeP/2L9i2eB9zbpzMggdmY0wZGAltR4eHtjYXcXFSu8Fjcbm8+P1+IiOl4qRH09liLbxH0AGuu+5qCguL+PLLL3vtmB0dHYiiKLVYk3RJStAlQdOf1crDTURE5x35/rh5cfXVVxMREcErr7xz6DG7vXPUtTuVSRcsWEBmZiYPP/z0ocdMppgjZkfU1tYc1qd8+/bdiKLIaaed1uOY5XI5er2exMREmpqsPd5/sFAqFRiNOhobw3sUXR2pYvpvJnDJ02dirXLw1nWL2fN1UZ8mYAf53H4+/+t3JA41MeXX4/r8fJITN/XX40gcauKzR1fgc/e8KFxPiQGRPV8X8dZ1i7FWObjk6TOZ/psJqHXhnZBYLA6MRh1KpVTb41haWzvQ6TRSm6wuHGzzqdGE9zKJg9cxP6+rczKkFmuS45HeGZKgioyMlHqhH4VMJuu3ae56vZ6rrrqK1157j46OznXjdnvnuuXuJOgajYZf//rXbNiw9dBjGRlpuFwuSkpKDj0mk8kOW1deUVGFSqUiMTHxhOI2Go2MHTuW4uIyliz5+oSOMRiYzdFhO81dkAmMOCOPK186F0NSFO/d/gWr/7cFd3v/zghw2l18+tBy8mdkcMrlY/r13JLumXzFGHKnZ/DpQ8v7vXibu93D6v9t4f07vsCQpOeKlxYw4ow8BFl4tpZqbHRI09u7QSoQd2xOpzvsW6zZbHZ++9vbGDlyBBUVFVitvTMg0N7eLk1vlxyTlKBLgkoqFNe16Oho7HZ7v5zrpptuwmazs3DhEqBnI+gATU1NxMebDv3/lCkFyOVyvv3220OP5eXls2bNJtra2tmz5wAffriEMWNGI5efWHsag8FAdHQ0559/PjfddC82m/2EjjPQxcZG0dHhob09vCpOp4xM4NJnz2L0/CEs/dtalvz5O+w1wSt456hr5ZP7lzF0TjYTLx0VtDgkR5p42SiGzMpm0QPLcNS1Bi0OW3ULS/78LcteWMfo+UO49NmzSB4Zf/wdQ0h7e+eSGGl6+/G1tDilAnHHEM43MFpb27jxxnsYM2Y2TU1Wdu3azW233cYnn3zSK8eXEnTJ8UgJuiSopAS9awcLofWH7OxszjnnHF5++TVEUTy0VryxsbHLfURR5PXXX+e2225j0aJFhyXIen0UY8eOPCxBv+OOOygvryQ1dQzTps3HYrHy5z//5YRjNplM2O12rr76auz2Fmy28Bwl7msKhZy4OD11deGxVl+fEMmZd83gzLtmsO/bUt695TMqttQEOywA7LUtLHpgKSPm5TLpstHBDkcCTLpsNMNPy2XRg0ux14ZGx4KKLTW8e8tn7Pu2lLPuOpUz75qBPj48qjXX1dmIi9Of8I3TwcLn89PS0oHBICVZXQnnBH3btl289dZCrrrqau64445Dj2dnZ/fK8aUK7pLjkRJ0SVBJU9y7ZjAYsNvt/Vbl/pZbbmHv3kJWrVrP9OmnoFaref/997vc/u677+b//u//+OSTj6iuriYh4fCRouTkBKqrf2xxNGrUKD799FNee+01vvnmGwoLCzn99NNPOF6tVotOpyM2NhZBEFi27PsTPtZAl5RkpL7ejt/ft0UHT4ZSo2DyFWO47Pn5dDjcvHX9p2xfvI+AL7RitlW38Mn9yxgyO4tZf5gUttOYw50gE5h13SSGzM5i0QPLsFWHRnJ+UMAXYPvifbx1/ae4Wtxc9rf5TL5iDEpN6K7r9vsD1NfbSUqKCXYoIc9ub0erVaHRhHe9gb4iimJYJ+itrZ3Xpffddx/33XcfF1xwPs8//zwzZ87sleNLI+iS4wndbwrJoKDT6XA6nYiiGNbrlPpCdHQ0Ho+Hjo6Ofqn0OXPmTEaNGsnTT7/ELbf8DrfbTVpaWpfbf/PN11x44Tn85z/Psm9fEQkJnVPcfT4fzz//bxYv/ppHH330sH0WLFjQqzGbzWYCgQCXXHIJ//rXm/zud7/q1eMPFHq9Fo1GhcViJzExxC6+BRgyM4vJV4zFXtfCR/d8TVNZ8Eb7ZaLICBqJxUUzGnZjIvCzzyZbtYOFd3/NgvtncdZdp/L1M6vwefq+KJmkk0ItZ97t09GbdSy8+2vam51H3a47v8u+1uFw890/N7Drq0Km/2YCV/zjXNa9tY39K0ohxDqMNjTYiYhQSdO2u8FqbcNolEZAu+J2e/F6w7fCfWtr58zOqKgoNBoNCxd+1GvHFkVRStAlxyUl6JKg0mq1iKLYb0loOFEoFOj1eux2e7+8NoIg8Ne/PsYvfvELVq1az/DhwznvvPO63F6r1R6aBjl0aC6iKLJ06fc88MATHDhQzJ/+9CfuuuuuPo3ZbDazc+dOfD4fohigvd2JTie9j35OEASSk43U1NhISDCGzM2whPw4pv9mAhHRGla+somStZVBjWeaWMN1bMfEj90TGongJXEMq4XDe123Nzv56N5vOPvemfzikbl88cRKnDapZWRf0xojOOuuGfh9AT669xs8Tu9Rt+vJ77I/NJXZ+ORPS8mZksaUX49j5Jl5rPzvZhoKm/o9lqMRRZHaWivJybEh8/kQqkRRxGZrIyfnxAqcDgatrR1ERmqQy8Nzom5sbGf9nZKSEoYPH96rx3Y6O28oSte8kmMJz78cyYBxsNWaNM396AwGQ7+tQ4fOnuaFhYWsXr2abdu2HfMLZPjwEaxYsYYvv1zOt9+u4oILruLii68hISGZzZs388gjj/R5C5HY2FhcLhfXXnstFksz5533fzgcoTXVNVSYzQZcLg8tLUcfbexPulgtp90ylQUPzqFsUw1v37gkJJLzB1hHHIcn2bF08ADrmCYeuQ7e4/Sy+OHl2GtbueTps0gYYjpiG0nvSRxq4pKnz8Je28rih5cfMznv6e+yvxSvreTtG5dQtqmGcx+aw9ybp6CLCf6ItcPhxO32StXbu6Gjw4Pb7ZPWnx9DS0v4Tm8HmDHjFPT6KD788MNeP3Z7e7vUYk1yXNK7QxJ0UqG4rhmNxn6r5H5QZmYmU6dORak8du/SO+64g8zMLH75y2u54IKraW5u4dNPP+Xbb79l3Lj+6RetUCiIiYkhMzOT7777jqKiMn71qxvwePq3DVc4kMtlJCQYqKkJXt94uUrOhItGcvnfzwHg7RuXsPnDXfiDPD1cJopcx3YAfj52KKNzJvIf2I7sKPUg/N4Ay15Yy+aFuzj3wTmMOiu/r8MdlEadlc+CB+aw6cNdLHthLX7v0WsTnMzvsr/4PX42f7iLd25cgiAIXP7iAiZcOAK5KniF2WprrcTHG8N2xLM/2WxtREdrpdfqGMJ5/TmAWq3mjDNms3Dhwl4/dltbmzS9XXJc0qeLJOj6q993ODo4gt5fheJ6Ii8vj7Vr17F8+XJWr17N9u07WLBgQb9PjzSbzTQ2NlJQUMCiRYtYt24zt956f0i+ZsGWlBRDU1MrHs/RRx77UvaUNC7/+zlkFqSw+OHlLH1+TZdrh/vbCBox0XFEQneQDDDTwQi67mqw68tCPn14OeMvGM6826ehjpSKR/UGdaSKebdPY/wFw/n0oWXs/qrwmNv3xu+yv7Q1O1n6/BoWP/ItWZNSufzv55A9peu6H33F7fbS1NRKcnL32moOdlZrGzEx0vrzrnQWiHOFdYIOcNZZc9izZw/V1dW9etz29napgrvkuKQEXRJ0kZGR0gh6F6KiOnvRtrYGr7fvsQiCwOzZs5k6dWrQ1i0eTNADgQCnnnoqr776Ku+88zHPPPNSUOIJZVqtGoNB168t1+IyjZz3l9OYcU0BG9/byYd3fUn9gdBYd3tQLN3rEX+87er3N/LebV+gUCv45d/mkzZWWqN6MtLGJvLLv81HoVLw3m1fdOt901u/y/5Uv7+RD+78kk3v72TGNQWc95fTiMvov2S5rs6GwaAjIkLdb+cMV4FAALvdKRWIOwan0w2I6HTh/X6aPv0UBEFg+fLlQOfv/t1332XXrl0ndVypQJykO6QEXRJ00hT3rslkMqKjo/t9mntv2Lx5M8XFxX1+Hr1ej0KhwGrtnLp9xRVX8Mgjj/Doo8/z7ber+vz84SY5OYbaWhuBQN+2L4uIVjPrD5O44LF51B9o5K3rF7P/u9CrXA3QTPcqDXdnuw6Hi8//uoL17+zgjDumc+rvCkK6tVYoUmoUnPr7iZxxx3TWv7ODzx9bQYejewl1b/4u+5UI+74t5a3rF1N/oJELH5/HzGsnodH3bZLj9weoq7ORnBxi3R1CVEtLBwqFLOyTz750cHp7uBcbjIkxMnRoHuvWrQPgq6++4pe//CWjRo06qdpAUg90SXdICbok6A6OoPd1whCujEZjvxaK6w3vv/8+BQUF5ObmnvTd5uMRBAGz2YzFYjn02H333YdCoaC4uLxPzx2OYmIiUSrlfTaKLlPIGLNgKFf841w0ejXv3vIZ697cjrej/6fVd9duTDQSQVefQAHAQgS76X4RuH3LS3j31s+JSTVw+d/PIWdqeq/EOtDlTkvn8hcXYEzW8+6tn7NveUmP9u+L32V/8nZ4Wffmdt695TO0Bg1XvnQuo88ZgkzRN5drdXU2lEqFNGW7mw62Vwv35LMvhfv685/KyEilsrKzgGlMzI83sT744IMTOl4gEMDpdEoj6JLjkhJ0SdBFRHR+kB9sPSE5nMFgCKsR9HfeeYdf/vKXpKZ2tjLqj1H0nyfoAAkJCSxbtrLPzx1uBEEgPd1MZWVTr98USx+XxGXPz2fonGy+fHIlXz6xkpb60K8vERAEXmIMAhyR2AXoLDb2T8b0uId2q6WdT+5fytq3tjP9NxM49+E5GFOkKtlHE5MazS8emcu0qyaw9o2tLHpgGa2Wns+s6qvfZX9z1LfxxePf8+WTKxk2N4fLnp9P+rikXj1HIBCgqqqJ9HSTlHB2k80mrT8/nnCv4P5TqalJFBV11r045ZRTaGho4NNPP+Xiiy8+YttHH32UoUOH8Pvf/57a2tqjHu/gde7B616JpCtSgi4JOplMhl6vx+FwBDuUkGQ0GnE4HPj9wa103R3Nzc1cfvnlBAIBGhubmDRpImeccUafn9dkMuFwOHC73UDne+rxxx9n6dIVVFYGr6VSqIqLi+rVUXRjip5z7p/FabdMZcdn+3nv1s+p3lnfK8fuL6uFZB5hMs0cfuHURASPMPmkemcXfl/G2zcsprncziVPn8mpv5+ILvbIFoYO0YpFrBlUBQ51sVpO/f1ELn7qTJrKbLx1w2IKV5af1DH78nfZ36p31vPerZ+z8/P9nHbLVOb/aRaGZH2vHLtz9FxOXFxUrxxvoPN4fLS1uaT2ascQCARob3cPmAR9+vRTKC4uobCwM0k3m80sWLAAo/HwGhH79u3jT3/6E3q9jo8+WsicObNpaGg44ngOhwO9Xi+1WJMcl7QwThISDrYTS04Onwun/qLValEoFLS0tBzxpRBqVKrOytU6nY6bbrqJu+66q1/uFKvVaqKjo7FYLKSmpgIwd+5cALZs2UFamvS++qnOUXQTJSX1JCYaT/hiQa1TUXDxSEbMy2XP0mK+eW4N7rbwbXG3WkhmrZjECBqJxUUzGnZj6pXRVo/Ty+r/bWHP0iImXjKKK/6xgD1fF7Hl4z2H1lfvZgMdtJPJULIZftLnDGUR0RrGXzCcEafnUrapmvfv+AJbdUuvHb8vf5f9TQyI7PqykMJV5Uy8ZBSXPnMWu78uYuP7O7vsBX88gUCAysomcnISpNHzbrJa24iM1KBSSZfOXWlrcyGXy9Bojt2mNVzMmjWNyEgd9957L++//z5y+dFbIf73v/8F4PXX/47f72fSpDO47ro/8NFHHx+2nc1mC/nrOElokD5lJCHBYDBQVVUV7DBCkiAIh9ahh/oHe1RUFF6vl0AgcChZ7y9JSUnU1NQcStB1Oh0ymYzW1tCfYh0McXF6yssbqa+3k5TUswJRgkxg2Gk5nPLL0TSWWvngj19irRoYM2ACgsBOzH12fFt1C18/s5q4DCMTLxvFlf88l33LS9j8+Q466tqJJJoy9mEQ44gV4vssjmCJToxi9Nn5DJmdTfWuej68+yuay+19cq6+/l32N3ebh1WvbGbPN0VMu3o8V750Luvf2cHeZcWIgZ7Nuqivt/8wet47o/GDQWOjA5NJer2OpbW1A70+/AvEHaTVRvDyy0/x61/fyO9+9zv++9//HvW52Ww2Jk4cS0JC5+fN7bdfx9NPH9lJxm63H7pGkUiORUrQJSHBaDSya9cuRFEcMB/svSmc1qErFMH5WElOTmb//v14PB5UKhWbNm0iEAgwfvzooMQT6g6OopeWNpCQYOj2KHryiHimXz0BhVrO8r+vo3yztITgRDSV2/jise8xZcUwZsFQfv3CBYzclknJklqW7vqCPWxkkjgXtTAwpoomj4xnzDlDSRuTSPHaSj7501IaS63BDissWascLH74WzIKUph21XhGnpHHqlc2d3v/g6PnWVnx0vdtN3m9Pmy2dnJypNaJxzKQCsQddPbZp/Hii4/xhz/ciV6v59lnnz3i78bhcBx27SOXy1AqD59F0Nmiz86oUaP6JW5JeJMSdElIONhyorW1Fb1eukP9c0ajscuiI5JOOp0Og8FAXV0d6enph4rGpab2bmGlgcRk0lNR0b1R9I4OD6WlDZx9z6ls+nA3Oz7bT8AndV44WY2lVj57bhm1r5dwypnj+cUfz+GM1ll88/3XbF6xjTTLsLBNoqLMOvJPzWLIzEw0UWp2f13Iin9uoN3WEezQBoTyTdVUbqtl9PwhnH3vqezZU0VWVjwREceevVRfb0cul0mjwT3Q1NRCZKTmuK/tYNfa2oHJNPAKYV566Xm0trZz550P8/XXX3HttX/gpptuOvTzuXPnct1117FixRomTBjD4sVfM2LE4cuU2to6Z/NFRUk1HyTHJyXokpAgk8kwGAzYbDYpQT8Ko9FIW1sbbrcbtVrqv9qV5ORkqqurSU9PP3T3OhyK6wXLT0fR4+MNyOVHjqL7/X4qK5uorm7GbI7mresX47R3rye1pHtqqaDEup+St/dT9aGNYQVDGDtzPOdfdB6VRVVUrWqkfHMNbU2h3+kiMk5LxoQU8qZnEJ8bS+X2Ota/vZ2yzTX4PdLfYm8L+AJsW7SXAytKuffLa9i8uZiUlFjS0uKOul7W75dGz0+ExdKC2TzwEs/e5PH4cDo96PUDawT9oN/+9goSE8189NFn3HzzzZxyyilMnDgRgN///vcsXLiQK664Do1GQ3u7k6+++uqw/W02GwaDQfq7k3SLlKBLQsbBadzp6VK/4J87WAStsbGRlJSUYIcTspKSktizZw8ul4vo6M6LKZvNgdFoCG5gIcxk0lNV1ZmAp6f/2BtaFEUsFgelpQ1oNCrGjMkkKipCSs77QBSd71UTScg9aorXVlK8thJb1MckTDcwc+osZlxTgLXKQcWWGsq31NBQ1BwSMxhkChnxubFkjE8mY0IyxpRo6vY3Urymgi+e+B5XizvYIQ4KTruL/PxkkpJiKC6uo77eTlZWPGZz9GEJQXV1EyqVXBo97wG324vD0c6QIVKx0WOx2TqL6CmVAze1mD//dHJyMlm06EtaWn4saimTyXjvvfd46qmnkMlkXHvttWRkZBy2r91uD/k6QpLQMXD/iiRhx2g0UlRUFOwwQtbBXt9Sgt61iIgIYmNjqampITc3F4D9+4vJypJu+nRFEARychLZubOChAQDarWSlhYnxcX1eDxesrMTMJn00l3/PhQnJDJcLGAfW9nGKsaK05ALCoytiZR/XsGdn/+ReF0Ss8fMY9SE4Zx55wzUOhWW4mbqDzRRd6CRxhIrrU3t0Jcd2gSIitNhyo4hMd9EwhAT5uwY3O0eKrfVsenD3VRtr8PdHr6V/MNdVFQEY8Zk0tjYQmlpPTU1VnJyEtDrtbhcXiormxk1Kl36e+6BxsYWoqN1qNUDozJ5X7HZ2jAaB36P+K1bdyIIAgUFBYc9bjKZePLJJ7vcz2azHboukUiOR0rQJSHDYDDQ0tKC3+/vspXFYGY2m9m8ebNUSO84kpOTqaysZPr06QwZMoR33/2Is86aE+ywQlp0tJa4uCiKi+uQy2U0NraQmhpHamrcUae9S3pfopBOhKhjG6vYwTpGi1OQC3IShXRUooay9n28s+ZVvlxjIo/RpCSmkDDEROIQE5MuHYUxJRq/N4CtpgVbtQN7bQttzU6cdhdOWwdOewfuNg9+X+CoFb8FmYBcIUMdqUJriEBrjEBr0BAZq8WQpMeYEo0xWY9cKcNW7aBufyO7vy6kfn8jjnqpU0IoEQQBszma2Ngoqqqa2LGjHJNJj88XIC4uiuhobbBDDCsWi4PEREOwwwhpoihitbYzbNjAH0DYtGk7w4YNPTRLrzv8fn9YtMqVhA4pQZeEDK1Wi1KpxOFwEBPTs7ZPg0FMTAw+n4+WlpYefTEMNklJSezcuROn08mtt97KtddeS1lZBZmZ0ih6Vzrb4imorm7GYNBSUJCDRiMVQ+orvkgtfrUSpaMNme/HddkGIY7R4lS2s5pdrGeUOBmZICNWiCdGNNNMPYXsZAPLqKrLwFhnIuG7NARBQKaQEZ0QRUxKZzJtSNKTONSEzhiB1hBBRLTm0Hn8Xj9+74/T469540Lkih9vinY4XDjtHbTbOnDaXNiqHZSur8Ra3YKjvjUkptZLjk8ul5GRYSYhwcCBAzXY7U5SU2MJBALd7tow2HV0eGhrc0nt6I6jvd1NIBAYsOvPf2rz5h1MmjS5R/s4HA6USiUREQP/9ZH0DilBl4QMQRAOrUOXEvQjyWQyTCYTFotFStCPQaVSYTabqamp4corr+Tuu+/mzTcX8sADtwc7tJAjiiJNTa2UltajUMiJjzfgdLqlqZy9LCCX05EajzMzCWdGMh7Tj6Mo8vYOFC1tKB2d/ygcbeTVGzlQt4RdwkZGihORCTIEQSCORGLEeKopoYid1FKOBi1GTAR8AWzVDmzVDqDqiBhkChlKjQKFUo5cJUcTpebip84E4P07vsTd4sbn9eN1+aQEfIBRq5X4/QESEgzYbO00NhaTlZVAXFyUNBvrOBobHRiNugG9rro3WK1tGAy6QXHjp6amrsdT1W02G0ajUfp7k3Sb9IkjCSlGoxGbzRbsMEKWyWSirq7nXw6DTXJyMsXFxeTl5XH++efzySdfcP/9t0lfjj/R1uaiuLgOp9NNZmY8CQkGAgGRTZuKaWhwkJBgCHaIfc5jiELR5jxsFLvXjh0TTXtmMs7MJDpSExC7uMD36yLw6yJwJ5p+8uhk4opG0bjor2zMtZA48SpUrc5DCXysI5V46xjW2t+miTqMmI567J8K+AK42zwcLNnW8ZPiba2Wdrwd3pN4tpJQ1tBgx+PxM3p0IjKZQH29naKiWmprNWRnJxAZqTn+QQYpi8VBampcsMMIeTZbG3Fxg6N9mE6npbm5uUf72O12DAZD3wQkGZCkBF0SUgwGA9XV1cEOI2SZzWb27NmDz+dDoZD+fLuSkJDA9u3baWlp4dJLL+WVV15h27ZdjBs3KtihBZ3X66OszEJDQ2fv8xEj0lD8ML1ZLhfIyoqnpKSeuLioQ48PRI5RuVjOmAqArMONorUdRasTRdsP/251/uQxJ3L3sQuf+dUqnOmJODOTcWYk4Ys+uWJJ2txJxJ3zR5oWP0mdRkvsmTcdsU3UN3Yqti0mEGMmpyUZeR/caJCEN5/PT2mphdzchEP1JBITjZhMeioqGtm2rZSEBAMZGWZplPhn2ttddHR4iI0dHInnifL7AzgcTvLyEoMdSr+YNm0SX331JU899VS397HZbFKBX0mPSJ/GkpBiNBppb2/H6/Ue6mMt+ZFOp0Oj0dDc3Ex8fHywwwm6pqYmPv74Y1asWMGGDevR6XSkpqZx2WWXkZubS01NDTNnzsRsNrNw4ZJBnaAHAiK1tVYqKixER+sYPz4brVZ9xHYmk57aWivl5RZycgbmBZfHEEXj7ImH/j8QocYTocZj7nppjeDx/iyB7/y3X6vBmZGEK8kEvTy9UzdkGv62ZmzL/0P01EtR6M2H/Vw/92oCKiVVGxbSmD6GlNGXE13Xiq60BpXV0auxSMJTebkFrVZ1xBpqhUJOdnYCiYlGSksb2LixiPR0M0lJMchk0kwj6Bw9j4kZ2Dcqe4Pd3o5arSAi4sjvk4EoOjqKqqrqbhfs9Xg8tLe3SyPokh6REnRJSFGr1URERGCz2TCbzcffYZDprM7b2W5tMCfoDoeDp59+mueff56Ojg7GjBnBvHmn4vX62L+/iCuvvJKzzz6bK664gsLCQubOncs///kaZ545h+nTTwl2+P3Oam2lpKQeEBg6NJWYmK5HdwVBIC8viS1bSjCZogdcxWdREGg4ezqiqmc3AEWVEm9sNN7Y/q3/oBt6KvbvX6fh3fswnXcPKnPWoZ8JMjnGmf+HJn00zZ8/S+myR4k940YiZv0Clb0VbVkNutIaIirr+mQavyS0ORzt1NXZGD8+u8tEQqtVM2JEGlZrGyUl9dTVWcnOTjzmZ8RgIIoiFouDrKyEYIcS8my2tkHzfrFYmnjjjQ+4/fY7ur1kzm63o9VqUasHxw0MSe+QEnRJyDEajdjtdilB74LJZGLfvn3BDiNoRFFkwYIFbNq0kd/+9kpuvPE3xMXFHrbNnj0HeOWVd/B4PDz11FNs3boVAKPREISIg8fpdFNSUk9Li5OMDDOJid0bHdNq1WRkmDlwoIbx47MHVKs16+RRuJLD57PFsfZdRJ8Hn70O2/evE3/Rw0dsE5E5lsSr/k7T58/R+PGfUcSkEDX2LNwjZuMYNxS/tQ5dk4uoSgva0mpU9tYgPBNJf/L7Axw4UEtGhvmoM2V+LiYmEoMhm7o6K/v2VaHXa8nOTujWvgOR1dpGICBK09u7wWptIytrcAwYPPfcyyiVKm677bYut/H5fFx77bWUlJTwxz/+kZycHGn0XNJjUoIuCTkGgwGr1RrsMEKWyWRi8+bNOJ1OtNqBNbrZHV9//TUrV67kk09eY+bMqUfdZvjwfJ599mHKyy089tgjVFYWcsopE0hJGZhTtn/O5/NTUdFIba2VhAQDQ4bk9nh9aUpKLI2NLZSXW8jOHhijSK6EOKyTRwc7jG4TRZG2nUuRR5mIyByLdsj0LreV6wyYL3oId9VuWrd9ge27V7CvfB1VfDbu6r3ohs0k7pw7gEkobS3EVNb23xOR9LuyMgtKpZyUlNjjb/wDmUwgOTkWszma8nILW7aUkJQUQ3q6adBN866ttZKYaJSm+x+Hy+XB5fJgMOiCHUqfW7NmI//61xs89thjR/Qz9/v9rFq1iri4OF577TVee+01/H4/Ho+bZ599jtjY7v8dSiQgJeiSEGQ0GiktLQ12GCFLqVRiNBqxWCxkZGQEO5x+Z7fbAbpcT/7550tparJy2WXnkZhopLKyibPPnkdExMDv6y2KIvX1dsrKGtDpNIwdm3XCFZoFQWDIkGS2bCkhLk4f9lPdA0oF9fOnQxjNBhAEAe2QaXjqS45aJO5o22vSRqJJG4mvzUrbjq/xWsqQ682071+FLCIKddIQdMNOxR4XBXROe68791QU+6vQldagbGnr42cl6WsOh5O6Ousxp7Yfi1KpIDc3icTEGEpK6tm4sehQp4fB0Amjo8ODzdZOXl5SsEMJeVZrG3q9dsDfwLHbHVx77R+ZMWMGd9xxxxE/f/LJJ7n33nuPePzyy6/AbreTnZ3dH2FKBhApQZeEnOjoaFwuFx0dHURERAQ7nJBkNptpbGwclAl6RUUFEREaIiMPv2Pv9/t57rl/8eijzwGd09yfeOJ+4uKiqK21DphR4K7Y7e2UlNTj8/nJy0siNvbkexwPpKnujbMK8Mb07/rx3qBOzKd997eIPg+Covs3mRSRMRimXgZAwN2O7bv/0VGymdYtS2jfu4IIjRomdl5oOjOTcael0Agom+3oSqs7165XNSAEpJ7o4aRzantNt6e2H0tkpIZRo9Jpbu6sYXHwc3Sgj5bW1lqJi4tCrZYK1R6PzdaO0Tjw15+/9tp7WK121q59E7n8yJsRX3zxxWH/HxUVxR//+EeuuuoqvvnmG2mKu6THpARdEnKUSiVRUVHY7XYpQe+C2WympKSEQCCArJcrR4e67777luHD85HJZAQCAb74Yhn//OfrFBeXYbE08qc//YnExESuv/56srLSuPTSi9izp4qMDHNYJ5hdcbk8lJY2YLW2kZYWR0pKbK++JwbCVPe27BRaxuQHO4we6yjdgn3NOyhNGSA/8WRBptYRe8YNADjWL6SjeCOi4ujvEW+sAXusAXvBCASPF21FHbrSarSl1ShbnSccg6R/lJdbUCh6NrX9WARBIC5OT0xMJNXVzezeXUlMTCRZWfFoNANvVpLfH6C+3sbw4WnBDiXkiaKIzdY2KPrEFxWVMnToEFJTU4/680cffZS1a9dyww03EBn54w2Luro6oqKipLa4kh6T3jGSkGQ0GrHZbCQmDo41wz118G6s3W4nJqbr1lAD0Vlnnc3NN9/MK6+8zcKFn7F+/WZmzJjBNdf8lvnz5zN58mQAioqKeOCBJ5k4cTxqdQQWi4PERONxjh4+/P4AlZVNVFc3YTJFU1CQ0ycjPoIgkJ+fzNatJUe0agoHvgg1lnlHr1UQ6mzfvYI8Ipq4BXf22tTi6FMuJPqUC1HLRQ5Ocfc2VYIx/YhtRZWS9tw02nM7kxVVow1daTXRW/ahbJOS9VDjcDiprT3xqe3HIpPJSEszER9voKzMwqZNxaSkxJGWFjegbnxaLA7UamXYL+npDy0tHQiCQFTUiS2jChe1tfV8/vkyrrnmt11uM2PGDGbMmHHE4zab7Yj16hJJd0gJuiQkGQwGamulIkZd+Wm7tcGWoJ9xxhmoVCruuOMhcnJyWL58ObNnzz5iuyeeeILVq1dzzTW3snDhG4cKpoX7GsqD7X9KSxtQq5WMHp2JXt+3M010OjWZmWb27atGE6XC1erp0/P1JssZU/FHhudMHH+blahx56CK69vRvIZ370U1/jz0BechyLpeS+oxGfGYjLgSTSS/9xXh/Zc0sGiiVOzbV01m5slPbT8WtVrJkCHJJCUZKS6up6HBRmZmPGZz9ID4bK2ttZKUFBP2z6U/2GxtGI26Af1a+Xw+brrpXnS6SO67774e72+z2UhKkmoZSHpu4Nz2lAwocXFxWK1W/H6pd29XTCYTDQ0NwQ6j3+Xl5dHW1kZ5eTm7d+8+anIOoFKpeO+992hqsnL//X+ho8NDa2tHP0fbu1pbO9i+vYzS0gaysuIZO7bvk/ODkpNjiYzUMPfmqYRLZuYYlXto9DccadLH0FG6qc/PE5EzEfuK12h4+y5clbuOu31HWgKOMFwyMGAJMPfmqURFaUhO7p9q0Xq9lrFjM8nMjKe0tIHt28vC/vO1paWDjg4P8fHhV6siGKzWgd3/3Ov18tvf3sb336/j1Vdf7fFIuN/vx2q1Ehc38JcASHqflKBLQlJkZCRqtZrm5uZghxKyEhIScDgctLe3BzuUfqdUKklPT0etPvZIUXZ2Nh9++CHLln3Pjh3bqa4Oz/eTx+PlwIEatm8vw2CIZOLEXOLj+3c2wMGq7sZkPePPG95v5z1RHkMUjbMnBjuMLokBP2Lg2DcgtflT8NQXY1/zLh2lW/Baawi4er/KeuyZNxF/2WOIfi8N795D/bv30r53BaIodrlP08wJePUD9+I8nIw/fzjGZD35+cn9/pkQH29g4sQcDAYd27eXceBADR6Pt99i6E0HZ1kdrQiY5HAdHR7a2lwDuk/8H/5wJ59/voyFCxcyb968Hu/f3NyMWq0+bE26RNJdUoIuCUk/ncItOTq1Wo3JZKKmpibYoYS0efPm8dFHH/Hyy/+mrs6KyxU+07MDgQCVlY1s3FiM3x+goCCHzMzgFbtTKOR89dQqJlw0kuTh8UGJoTtEQaDh7OmIqtCqwhzwuHAeWEvTZ89Q/cIvsXz40DGTYG3eZFSJ+ThWv43lwwep/c/vqXrxStx1hb0emyZtJAm/fh7TefciejtoWvI0rrKtXW4vqpQ0nDGl1+OQ9EzyiHgmXDiSL59cGbRWV3K5nMzMeAoKcvD5AmzcWExlZROBMOoA4PH4aGxsISlpcC0ZO1GNjQ6MRh1K5cBcKbt1604++ugz/vOf/3Duueee0DEsFgtms3lALwGQ9J2B+ZclGRBMJhMHDhwIdhghLSUlheLiYvLy8oIdStA1NTXxxz/+EYPBQEFBAaeffjpqtZovv/ySr776iurqanbv3k1EBEyZMjrY4R6TKIo/tDZqQKGQMWJEWsi0NmostbL6f1s4/fZpvH/b5zjtrmCHdATr5FG4ks3BDuMQURRxrH2Plg0LEb1ulHHpRORNpn3XMupeuxlNyjCUcWloMsagNP64XlGQKzFf/DD+FguCQo2/tZnGxU/Qvm8l6sTe/5sXBAFt3hS0eVOofeU6mr/8GxFZE9ANm4kmfdQR23dkJOEYlUv0zqJej0VyfFpjBKffNo3Vr26mqcwW7HDQaFQMH56K3d5OcXE9dXU2srPje6XlY1+rq7NhMGj7dP3+QGKxOAZs9Xa/38/DDz9Nfn4+V1xxxQkfx2KxMGTIkF6MTDKYSAm6JGSZTCa2bNki9UM/hoSEBLZv305raytRUQN3qll33HPPPbz22mtkZqbz/PPPA6BQKPD5fAwbls+sWVMxGDQIggZRFEP2grG93UVxcT3t7S4yM80kJBhDLtY93xSRNMzM6bdN49OHliMGuh4F7m+uhDisk0PrBozt2//SuvlT9BPPJ3LMGYeScN3QGbTtXIqrYget279EZc4i8dfPHbavXBOJXNM5RVIZk4w6MQ+fre8LaMaedSst6z/EWbSetp3fEHPGTUSNPv2I7ZpmFaAtrZGquvczQSYw77ZpVO2oY8/S4mCHcxiDQcf48VnU1dkoLKxFp9OQk5OAThea1b5FUaSuzkpOjtQ1pjva2110dHgG7PT2v/zlOVav3sA333xzwssdOjo6aGtrk9afS06YlKBLQpZKpcJgMGCxWEhPP7IFkKRzLXZ8fDzV1dUMHTo02OH0q0AgwMcff0xRURGZmZksW7YMmUzGypWf0t7u5JNPPsfvDzB//mmkp3f2LhVFkY0bi2locJCQYAjuE/gZr9dHeXkj9fU2kpJiGD48NWhTVrtjxcsbuOjJM5h02SjWv70j2OEAEJDLqZ8/HUKo7ZMoirTv+Q5lXDrGWVcf9rOIzHFEZI4DwL7qLdp2LQPA01SJu2o3kWPOPOLmjDImhfZ93/f5TSZ1Yi6m8+7F73TQ/PlzWL96gZaNHxM5fBb6yRchCJ2vcUCtwjJvMskfLe+zWCRHmnTZaDR6NUv+8m2wQzkqQRBISorBbI6moqKRrVtLSUgwkpFhCrlp0Q0NDgRBNmATzt5msTiIiYkK6e+nE7Vo0Zc8//y/eOqpp5gzZ84JH8disWAwGFCpVL0YnWQwCa1PSYnkZ8xmM42NjVKCfgwpKSns3buXIUOGhNxIa1+6//77+etf/4pKpcLj8ZCUlMBTTz1IZKSOyEgd1177f0fsIwgC6elxVFY2Eh8fGm2BDrb2KS9vRK+PYPz47LCYZul1+fjyyVVc+Pg8miscFK0uD3ZIOMYNwRsT/ArMXlst7toDiJ4OBLkCmSoCv9NxzH0UhkT8rU00f/0ibdu/AkCTPhplTPJh26lThtGy6RP8bc0oovp+dEaujcZ0wf20bPgIT1MF9lVv4XM0EHPGDYeSdGd2Ki3Ds9HvKenzeCSQNz2DkWfmsfDur/C5Q7vTiUIhJzs7gcREIyUl9WzcWExGhilkWpmJokhlZSPp6XEhEU+oE0WRxsYWMjNDtwbJidq7t5AbbribSy+9lNtvv/2kjnVw/blEcqKkBF0S0sxmM6WlpSE9JTnY4uPj2bZtGw6HA4PBEOxw+s3Spd9w0UULePrphygtrWDUqGHIZMcfOTWbDVRUNGKxOIiPN/R9oMdgtbZRUlKPKIoMGZIcdiM4tmoHXz+zijPvPJW25nbq9jUGLRa/Sol10signf+gjvLtWD58CAI+EGQgBhCUavQTzz/mfhFZ4xDUOtr3fo8mYyyu8m0EPEe2rVInDwEEOko2EzXmjL55Ej8jyORET74YgNbkYViX/hOFIQFBqSFq/DkIgkDj7Iloy2tRtId3q61QlzTMzKzrTuHLJ77HVt0S7HC6TatVM3Jk+g+1NeqprbWRk5OA0RjcCtcWiwNRFDGbDUGNI1y0tbnweHwDrr2a3e7giiuuIzs7m//+978ndb3ZeROjkezs7F6MUDLYSAm6JKQZDAZEUcRut/e4B+VgIZfLSUhIoKamZtAk6D6fj127dnP++fPQ66MYM2ZEt/eVyQTS0kxUVDRiNgdnFL2jw01JSQN2ezsZGWaSkmKQycLzBlTltjpWv7qZs++ZycK7v8ZeG5ykwT5xOAFt8Na4+lqbadv+FS2bF6FJH4Xp3LuQqXWIYuDQSHNXRJ8Xuc5Iyh9eRVBq8DSUUl++DdF7ZAE+uc7Y2bf8+9fRpI08YoS9r0WOPRPHhoXYV74BQEfJJuQ6A4giziwTI3ZKN1P7iiFJz1l3n8qqVzdTub0u2OGckNjYKIzGSGprrezZU4XBoCM7O56IiP6fNSSKIhUVjaSlmcL287e/WSwO4uKigtZJpC/4/X6uueY2HI5Wli//Dp3u5Aqy2u12gEFzPSbpGwPnL0wyIMlkMkwmk9Ru7ThSUlKorq4+ZsumgWT//v24XC5Gjhx2xM/cbjerVq3n1VffobHx6H3P4+OjCQRELJZjTzvubT6fn9LSejZvLkGlUjBxYi4pKbFhf3G4Z2kxe5YWcc79s9Do+/9C26fVYJsQnN7snoZSGj99gpqXr6Zl8yIiR8zG9It7kKk7L/KOl5w3f/MSlc+cj23F/xBUWgSZHJUpHYUxEduK/+FzNBzxdx179q3ItNFYFj503KnzvU0QZMRf+lcMM68iZt71iF43PkcDPkcDDTs/pNAUvFkUA1lEtJpz7p/Fnm+K2BtiReF6SiYTSEmJZeLEXFQqBZs3l1BaWo/P17/T9Q+Ongd7JlW46BwZdmAyBX8ZUW969NHn+e671bz33ntkZmae9PEsFgsmk6lbM/okkq5II+iSkGc2m6mqqiI/Pz/YoYQsk8mE3+/HarUSGxsb7HD63O7duwEYNiwPr9fLtm27WbNmI2vWbGTduk04nZ3TbBct+pLFi988Yn+ZTEZaWhyVlU39MoouiiL19XbKyhrQatWMHZtJZOTA6kyw7q3t6M2RzL93Jp88sAy/p/8utm2njOr3nueiGMD+3f9o2bQIhTER4+xriBwxB5la2+1jODYspG3bF6iTh9Gy4SNU8Tnohk5HUKiIPes2Gj96mJqXf4OgikBhSESQyYkadzaRI+divugh6t+8ncaPHyX+0r8gKPqvGJHSmEj0pAsAiBpzJgDu2gPUv3k7NS1bydb+AoUz9NrvhSu5Ss7Z98ykoaiZdW9vD3Y4vUalUpCXl0RSkpHi4s716Z2dKwz98plcWdlIWlpc2N8g7S8OhxO/Xwz6soTetGrVep577mWefPJJTjvttF45psViIS0trVeOJRm8pNs7kpBnNpux2Wx4vd5ghxKyZDIZSUlJVFdXBzuUfmEymQCYN+8SMjLGM2/exTz77MsoFBoefPAhtm3bxiuvvMLq1Ruora0/6jESEgz4/QEaG/t2SrbD0c7WraVUVjaSm5vE6NEZAy45B0CEZS+sRQyInHbzFOina16vXodjTP/evBMDfpqWPE3L5k8xzLyKpN+8hH78OT1KzgEEWec9ctN596IwJOKu2XfoZ5qUoSRf+yqmX9xL9JRLUSfm4akvovmL5/FYSlEaEjCffz/u+iLsa97t1ed3IjpKN8MPfdsb504KdjgDhwCn3TyFQEBk+d/XwgCcJBUZGcHo0Rnk5iYcqvjucPRt277Gxhb8fmn0vCc6R8/1A+aGhiiK/PnPz1JQMIE77rijV47p9Xqx2WxSgTjJSZMSdEnI02q16HQ6mpqagh1KSEtJSaG2tpZAIBDsUPrcjBkzeOKJJzjrrHN46KGH2bBhAzabja+++po777yTMWPGcMEFF6BUKvn00y+PeoyDo+gVFY19sjTA5fKwd28VO3dWEhenZ8KEHEwm/YBen+v3Bvj8se+JyzAy9Vfj+uWczVPHIvZzux9X5S6c+1YSN/92oiedjyA/sclouhGzQZDRvncFyphkvE0Vh/1cptaizZ9C9KQLiD3jBtLu+ASFIRHr8v8iigHUyUOIPuVCWjZ+jKtqd288tRMm+rwoomIRA35sCRG05kmdN3rD1F+NIy7DyBePfY/fO3A/2wVBwGSKpqAgh7g4PTt3VrB3bxUuV+/fmP9x7XmcNA25mwKBzurtZvPAmd6+bNlKNm3axp///Jde+15ubGxEp9MRETEAb8JL+pX0ySQJC2azWVqHfhyxsbHIZLJBcSNDqVRy55138vzzz/PHP/6RiRMnolAcniRFR0dz5pln8vHHX3R5nM5RdD9NTb03iu73Bygvt7BpUzGCIDBxYg7p6aYBVVTnWFytbpb85TvyTs2k4OK+rarujjXQOjyrT89xNIEf1n1HZBec1HHkEXq0Q6Zh+/a/dJRuRq4/9qiLIFcSM+963JW7sC3/L6IoEj35EtTJQ2n69Al8bdaTiudkCEo1Pns9DW/fSd2r11N3Si5+Tei3CwxlBRePJO/UTJb8+Vtcre5gh9Mv5HIZ6ekmJk7MQRAENm0qorzcgt/fezcnOkfPAyQkGHrtmAOd3d6OIAhER/dsllCoEkWRv/71eaZOncLpp5/ea8dtbGyURs8lvWJwXDFKwt7BBH2wFEE7EYIgDKpp7t1x6aWXsnnzdg4cOHpRJZlMRmqqqVdG0UWxs+jcpk3FWK1tjB6dwdChKajV/bs2OhQ46lr59MFljDwrn/EXdr/Cfk81Tx8LQRgBC3icIMgQVCc/ShJ3zh3of2hhpog6fv2IiIwxxJz+B1q3LKZl40cIcgWmc+8CQaBp0eOI/uAsBdIX/AKFIRHoXALgKFpB45yJQYllIJhw4QhGnpXPpw8uw1HfFuxw+p1arWTo0BRGj87Aam1j06biQ0XdToY0en5iLJbO4nADZQbYm29+yPbtu/nLXx7ttefUeQ0g9T+X9A7p00kSFmJjY3G5XLS3twc7lJCWkpJCXV0dfn//VsMNVQsWLCA7O5sbbrinyxoGiYkGvF4/TU2tJ3ye1tYOtm8vp6SknowMM2PHZqLXD4yRhhNlrXLw6QPLGHPOEMadd2S1/ZPlSoyjPUjTqAPudmSqiF65sBMEGcYZvyL11oVET7m0W/tEjT2L6MmXYF/xGu37ViLXGTH94h7cdYXYvnv1pGM6ETJVBEnXvETKze+hSRuNq2IHLcOyaMtOCUo84Wzc+cMZfc4QPn1gGdaq/q3SH2r0ei1jx2aSkWGmpKSe7dvLaW3tOOHjNTW14PP5pdHzHggEAjQ1DZzp7YsWfcmtt97Pb37zG2bOnNlrx21vb8flcg2KQr2Svicl6JKwoFAoiImJkaa5H4fBYEClUg2q16mpqYkPP/yQwsJCnE4nK1asoK2tc8RJq9Xy9ttvs23bLv7+91eOuv+Pa9F7PkPD4/Fx4EAN27eXER2tpaAgp18qEIeL5ko7ix5cxrjzhjNmwdBePXbTjPG9eryeEN0dCKrevQEjU2l6tJY9evoVaIedStPnz9H46RM0fPAABHy0bllC+97vezW27hLkSuSaSKLGnY27Zh+NnzxKzaRM/Or+qzAf7saeO5RxvxjGogeX0VxpD3Y4IUEQBBISDBQU5BAdrWX79jIOHKjB4/H16DjS6PmJsVrbUCoVREVpgh3KSdm6dScPPfQUv/3tbVxyySX861//6tXjWywWYmNjj1huJ5GcCOkTShI2zGYzjY1Sj91jEQSB5OTkQTXN/bHHHuPiiy8mPz8fnU7HrFmzSEtLY+vWrQBMmjSJ888/n2+/XdXlMRITjfh8/m73RQ8EAlRVNbFxYxE+n58JE3LIyopH0c/FysJBc7mdTx9azoQLRzBqfu9UW29PT6QjPbFXjnUiRIAg34QRBIHYeTegNCbiLFyHypyFPDIGAMe694MaW0R2AcbZ1+BpKKHm4/upGnfk76pJrMMpttIo1rJTXE+puO8oRxpcRs8fwvgLRvDpQ8tpLrcHO5yQo1DIycqKZ8KEHHw+Pxs3FlFV1dTtwqgWiwOfz09iorGPIx1YGhocmM3hXeC0sLCE0067iDfe+JDrr7+e119/Hbm8d7+vpentkt4k3eaRhA2z2cyBAwcIBALS3e9jSEtL47vvvsPlcqHRhPcd7+6YPXs2zz77LBERGsaPH83pp8/k448/57zzzmPr1q3ExsYyZMgQVq3qelRRJpORmRlPaWkDcXFRXX5xi6JIc3MbpaX1yGQCw4enYTTq+uqpDRiNpVYWP7yccx+ei+gX2fVl4QkfSwSagzh6Dp3JMWLwK2rLVBEk/vpvIHSOXnvt9dT+6xq8TZVBjUsQBPQFv0A3Yg6WDx+gdOu/0SUtwFTbWejMJTrZzppD2ytRYaGaBDEFrRAVrLCDauSZeUy8dBSfPriMxtLgFfsLBxERKoYPT8Nma6ekpI66OhvZ2QnExER2mUT6/X5KSxvIzk6Qrh96wO320tzcSlZWTrBDOSmffbaUiIgI6urqUKt7v3hl5zKAJoYO7d2ZYpLBS/qUkoQNvV6PQqHAapUuXo4lMjKSuLg4Kioqjr/xAHDaaafx6quvkpqaxurVG1i69HvOOGM2lZWVLF++HIDc3Fzq6y20tnZdbMlsjkajUVJZefQq+O3tLnbtquDAgRpSUmIZPz5bSs57wFLSmaSfcvmYk5ru3paXjjsxrhcjOwEhkqADCAolgryzEKHSkEDyH/5Hwq+eC3JUneQRUcRf/GfkUbHstn9Ju7IzQbdQA0AqOYxjBmoiUBOBnMFXUBE6p7WfcvkYFj+8HEuJ9P3WXUajjvHjs0lJiWX//hp27aqkvf3o1e4rK5vQaFSYTPp+jjK81dXZMBp1RESE5zKViooqbr31fl5++XVEUeyT5BzAarWiUCjQ66X3l6R3SAm6JGwIgiC1W+umzMxMysrKBkVPdJVKxVVXXcXevXv58MMPaW/38PjjL5CRkXGoAMyUKVMAWLq061F0QRDIyUmkuroZl8tz6HGv109xcR1bt5ai1aqZODGXpKSYsJ7uFywNRc0semAZ484bxrSrxkMPX0JREGie3j/91bvSUbaVth3fINcdfZqsfeWbNLx3X9A6Tij0JtSJuUE599HINJGYL34EQalii2IdJeIeithJGrnkMopS9uCmg7FMRy0M/Bk/hxFg2lXjGfuLYSx6YBkNRc3BjijsdHYviWHixBy0WhVbt5ZQXFyH1/tjodSODg/V1c3k5CRIn9s9EAiI1NXZSEqKCXYoJ6SuroFzzrmSr7/+niuuuJIVK1b02bkOTm+X3l+S3iIl6JKwYjabaWhoCHYYIS8+Ph65XE5dXV2wQ+k3crmcCy+8kM2bN7N792727t17aD1YdnY2p5wyiTfe+OCYiVNUVARmczSlpQ2IokhNjZWNG4twOt2MG5dFTk4iSqW0zvxkNJZaWXjP12RMSOb0W6chU3T/a6hlRA7e2OBVEraveRfLBw+gjE3GdMEDR/zca6vFse59XBU7pAu1n1BExmC+5C/4BT9l7COZLHIYSQm7cWBlNFOJFAbXyJNMIeP0W6eRMSGZhXd/LU1rP0lKpYKcnETGjcvC6XSzcWMRtbVWRFGktLQBszmaqKiTb4s4mDQ1tSCTCcTERAY7lB5zOFq48MLfIIoC69ev59lnn6WgoKDPztfQ0CCtP5f0KilBl4SV+Ph42traaG098ZZYg4EgCGRkZFBWVhbsUPqdIAgMHz6ciIjDL8buvPMuvv9+LTfffB//+c9bLFu2EpfryOmQmZlmmptb2bixiJqaZoYMSWbkyHR0ukE2uteHWurb+Ojer4lOiGTBA7NRaY8/tTkgl2OdOrofojs6V9VuHKvfJnra5ZgvefSoPctlvVzZfSBRGhJIvOafJJ37EHmqAmxYqKCQHEZiEAZXWyKVVsmCB2YTnRDJwnu+pqVh8PU57ys6nYaRI9MZMiSZ6upmNm4swmptJTNTSp56qrbWGpazxURR5Le/vZ26Ogtff/01aWlpfXq+lpYW2traiI+P79PzSAYXKUGXhBWlUkl8fDw1NTXBDiXkpaenY7PZaGlpCXYoIeG8887jiSeeYNmy1dx331+56KLfkJMzkZtuuhe7vbN6e0eHh6KiOkSxc3rf+PFZxMZGhd0FSjjocLhZ9MAyfB4/5//ldHTGY49uOcbm49MHbyTH5+hcWhM96YIu3w9yneHQf4s+b3+EFVbkmkiUQybQdOp46qhETQRphM50/P6gM0Zw/l9Ox+f288n9S3G1HH3NtOTECYJAbGwU48dnEQiIiCIUFdXR0eE5/s4SANraXLS2doRlv/jPPvuGpUtX8NprrzFs2LA+P19NTQ0JCQkolYOzhoakb0gJuiTspKSkUF1dHbQ1nuFCpVKRnJw8KEfRu3LnnXdSW1uL2+1m9+7d3H33PSxe/A3nnXcV+/ZVsnlzMQqFnIkTc5DJZDQ0dK/tmuTEeF0+vnhsBY2lVi54fB6G5KNPcw6oFNhOGdXP0R1OHtFZXdzvtHdre9EnJV5dcYwbSnRKAW46OMC2QfNZbkzRc8Hj87CUNvPF4yvwuf3H30lywhoaHMhkMiZOzEGhkLN5czGlpQ34fNLrfjy1tVbM5miUyvBq9uR0dnDffX/l7LPPYsGCBX1+vs6lcDUkJyf3+bkkg4uUoEvCTnx8PG63G4dDSp6OJzMzk6qqKrxeaTTvpw5Og7/vvvv46quvuOWW29m6dS/DhyeTn5+MRqMiOzue8nKLdDHXxwJ+keUvruPA92Vc+Ng8UkcnHLGNrWAEfu3JLTE42SRQlZALMgXt+1Yfczu53tT5H7LwurDtb54LLicvYirVlLJ/ECTpqaMTueCv8zjwfRnfvriegH9gP99g83r9lJVZyM6OR6NRkZ+fzJgxmTgcTjZtKqa+3j7g33Mnyufz09DgCMvicF9//R1VVbU8/fQz/XI+h8OB2+2WprdLep2UoEvCjlwuJyEhQZrm3g1GoxG9Xk9VVVWwQ+lXH330Eb/97W85//zzee211/B4jpzaaLVaWblyJS0tLSQnJ3Pbbbdz992PHKp8HxsbhU6noby8sb/DH5Q2vLOD1f/bwll3z2T8+cMPPe6LUGMrGH6MPY/PXVdI9YtXUvvfP2Bf9RYeS1mPL87lOgORo07DseYdvNauP3viL3qEmNOuRaaSahYcS0Cjgot/y1BhAjWUUkt5sEPqGwKMv2A4Z941g9X/28KGd3YEO6JBoaLCQlSUhtjYqEOPRUVFMGZMBtnZCZSXW9i2rYyWFmcQowxN9fV2dDp1WBbVMxo7i4j213Tz6upqEhMTkcul4rGS3iUl6JKwlJKSQk1NjXQHvBsOtlwbLK/VRx99xIUXXsjatSupq6viqquuIi0tjXfeeQdRFOno6GDLli2sXbuWhIQE5syZw9y5c3nzzTf58MPF/PnPzwIH264lUFdnxemUpiv3h/3flfLxfd8wfF4uZ941A2WEEtvk0Yiqk7vYatu1DAJ+VIl5tG5ZQt3/bqT2P7/H9v3ruOuLu/23YZx1NfKoOBo/fQLRd/T1rMq4VKLGzT+peAcLd0IcyjmXEEsC+9hCo1gb7JB6lTJCyZl3zmD4abl8fN837P+uNNghDQpOp5u6OhvZ2Ue2Vets1xpNQUEOMTGR7NhRwb591bjd0iwz6JxpVFtrJTk5/EbPAdLTUwAoKirq83NJ09slfUlK0CVhyWQy4ff7sVql1jTHk5SUhMfjobFxcIwEHzhwgKioSFav/owvvniH66+/moaGBq666iq+/PJLli9fDsCcOXPIz88/dOf74osv5plnnuH55//FK6+8DXRWBE5IMFJcXD9obnAEW2OplQ/u+AKlWsFFT5+FZkreSR9TnTSEgKsVfcEvSLnxLcwXPYw6ZTht27+i/vVbqP33b7Gt+B/u2gOIYqDL48hUEZgW3Im3uQrbiv8d97xeW530vjkOx/ihZOddRhyJ7GYjVtES7JB6hTElmoufOhOFSsEHf/yCpjJbsEMaFERRpLi4noQE4zE7b8jlMjIyzBQU5ACwcWMxFRWN+P1d//0PBjZbOz6fH5MpPNsepqenkpaWzMcff9zn57JarQQCAUwmU5+fSzL4SAm6JCzJZDKSkpKorq4OdighTy6Xk56ePmiKxRUUFNDa2sb//vcut956P//4x6tMnjyZf/zjH8jlcqZMmcL48eOPaMMGcOutt3LjjTdy552PsHTp9wBkZJhoa+vAYpFqHvQXV6uHJX/5jp0Nfm4dDaNjTu6iWZs3GaUpg8aP/wIyBRFZ44k762ZSbngT88V/RpM+mradS6l/83aqX/wVTZ8/R/u+VQRcR7a/UsVnYZx1Na1bluCq3tPlOZ1FG6j9929pWvQYfqf03jmWxjOnMyR6NtHEsI3V7BI34BZdwQ7rhGVPSeOiJ+ZRvLaCzx79DlerVD28v1gsDtraXGRkdC9p0miUDB2awqhR6TQ3t7BpUzGNjY5Be2OtttZKQoIRmSw80wOZTMaFFy7gww8/xOXq28+Q6upqkpKSwva1koQ26V0lCVvJycnU1tYeWjMs6VpGRgYNDQ04nQN/vd3cuXO58MILuP32B1m5ciMffvgh99xzD4mJicyePZuYmM6pez6fj+XLl9Pa2npoX0EQeO655zjjjHlcf/3dNDY2o1QqyMtLori4Ho9HmgbZX9wGPZ84Y3izWMZl2QEWpPmRCSd20SxTRaBOGU7Affj7X5AriMgcS+wZN5Jyw5vE//JxIkfOwVNfTNPiJ6h64ZfUv3M3jg0f4WmsOHTRHpE1HmRy2nd/2+U5vU0VAHSUb6f2letwFq47odgHg4BGheUXpzFKPp0M8mmgim2swiuGV2IrkwtM+fU4Zl93Ckv/tpYN7+xADAzORC8Y3G4vxcX15OUl9rj6eHS0lrFjs8jIMFFUVM+OHeW0tXX0UaShyeXyYLW2kZRkDHYoJ+WSS87Fbrfz+eef99k5AoEAtbW10vR2SZ+RysxKwlZsbCwymYympibMZnOwwwlpWq2W+Ph4ysvL+6Uv6M+dJruoX8+n0Wu49w8PMHbmSNZ9uol/Lvw7Ha4OVKiJJ5VY4qmmlCbqiCaGccxALvz4cegW5dhpYWre+YxiMoIgcPpt0yhcU84Xj3/fr88l1HxofaxfznPbxzVUFLax2wbP7BK4Ot9PTrSft4rkWFw960svBvy07fwGbd7kLnuYCzI5mtQRaFJHYJx5FT6HhY7SzXSUbMKx+h3sK/6HXG9GZUrHXb0XRbSZ6GmXd3nOiJyJ2Fe+gb7gXDwNpTR+8ii6EbOJmfM7ZJrg9XMPVe6EOKyzTyF7mUCCmMpmVrCNVYwVp6MUVMEO77gMyXpOu3kqCpWMD+/8Entt6/F3kvQaURQpKqojJiaSuLgTm54tCAIJCUbi4vRUVjaxbVsZ8fEGMjLMqFQD/3K5ttZGTEwkGk3o/70dS15eNmPHjuSNN97gggsu6JNzNDU1IZPJiI2N7ZPjSyTSCLokbAmCIE1z74HMzEwqKirw+wdu2zCZQsboc4Zw5UvnEmcw8Z+b3+G5t54i2mWigFnEk0oD1WxnDS3YSCePNlrYwToCP1l7rBY0DGU8jdQeqi698j+bSMiPI296RnCe3CCyq7aDbwt/nF7e6BJ4Zqec4haBO0b5mZEQQKD7I5OCTI5uyDRc5dsJeLo3KqaINhM19izMFz5Iyk3vYL7wIbS5pwCgHTqDhCufRRHZdSEllSmDyDFn0LLhYwzTLyf2rFtxFq6n9tUb8TRWdDv2wcQxbiiteenoBD1jmU47raziM6rEkmCH1jUBRs3P55Knz6JmTwMf/FFKzoPBYnHQ0uIkJ+fINo09pVDIycqKZ8KEbDweHxs3FlFd3TSgZ+sFAgHq621hWxzu537960tYsmQJGzZs6JPjV1dXk5yc3OUNX4nkZEkJuiSspaSkUFdXN6CTzt5iMplQKpXU1g6sSskHpY9L4rLn5zNsbg5fPrmSLx7/ng31K4kgkmFMIFqIJV8Yw3TOZhJzmcaZ5AqjGM0UbDSyh42HrTs0C8kkkUEh23GKbbha3az410Zm/LYArUFqodWXXvy+6YjHfKLA4go5/9onZ2ZigD8MDWBQdT9JN0y/koDbSduOb3ocj0ypJiJ7AjFzf4f5wgeJnXc98oio4+5nnH0NytgULAv/jCZzLEm/eRGZRkfD+/d1WQV+sLOcORWPIQq9YGQypxNLAuXsD3ZYRxUZp+Xch+YwZv5Qlvz5W9a+vhW/d+AmcaHK4zk4tT2px1PbjyUiQs2IEWkMG5ZKXZ2dzZtLaG4emDdfGhtbUCjkGAy6YIfSK6644kJGjhzG3LlzueCCC3jttddoaWnplWP7/X7q6uqk6e2SPiUl6JKwZjAYUKlUWCwDo/JvXxIEgaysLEpKSgZUARxDsp75f5rFabdMZefn+3nv1s+p3ln/w09FFCiQCT9+1AmCQJRgQCZ0Vm+PEcyMZBINVFPEzsOOncdoVGjYwyZEUaR0fRWV2+s49fcT++vpDTrry9vZUNF1rYSSVoEndsqxuuGu0X4mxAWgG6PpimgzqoRsPJb+a3UlU2owXXA/iH7q3/oj7tpCNOmjCbTbCbja+y2OcBJQq6hfcCoBuQyNoCUKA358wQ7rCPmnZnLZ8/NpaWjj3Vs+o3av9B0UDKIoUlhYh9GoO+Gp7ccTExPJhAnZJCfHsH9/Dbt2VQyo1puiKFJd3UxycsyAGRGWy+W8//6/ueWW31FVVcbVV1/NzJkze6UOT0NDA2q1GoPBcPKBSiRdkBJ0SVgTBIHk5GRqamqCHUpYSEtLw+Vy0dDQEOxQTppKq2TaVeO59JmzaGlo463rP2XXl4WHFWXKYAgt2LCJx24xZxaSSSefWsoPu3mhEJQMpwAHzZRzAOic6p441EzutPS+eWKD3N+PMnr+c26/wHulct4qlvGL9ABX5wXQKY6dpIuiiOh2IshPrqd6Tymi4oi//EkU0WaaPn2c1s2fos2fijwyvAsx9SV3QhxNswoAUKDEjx+fGBoFGjV6NWfeOYMpvx7H0ufX8N1LG/C6Qu8GwmDR2NhCS4uT3NzEPj1P57VGLBMn5qDRqNiypYTi4np8vvCfvdfc3Ibb7SMhYWB9JiUkmLn99j/wzTcfsGLFJxQWHuCqq6466QGKg73PB8rNDElokhJ0SdhLSUmhvr4en0+6SDoehUJBTk4OBw4cCNtRdEEmMPy0HK586Vxi0gx8cOeXrPzPpqO2MoojkUgMlLL3uMc1YsKHlw4OH9k0CHFkkE8pe2gRbbha3Xz/8gZm/LaAiGhpqntvWra/lT113W+Ns8cm47EdnTMh7hvjZ7I5gH3lG9S/fReODR8h+n9M6tq2fYG3uerQOvL+pDQkEH/pX0n6zT9JueFN4s69u99jCDcH16ObSUYkgIXg3oQ9+LlzxYsLEEWRd2/5jPLN0o3hYPJ4vBQV1ZGb27tT249FqVSQm5vIuHFZtLe72LixiNpaa9h+n4qiSGWlhdTUWOTygZsSjBo1nH/+80k++OAD/vKXv5zwcXw+Hw0NDdL0dkmfG7h/jZJBQ6/Xo9Vqqa+vP/7GEjIyMnA6nWG5LCBpuJmLnz6TsecNZ/k/1rP44eVYK7vuMS0IAlkMxUYjLaK1y+0qxSKq6SxE5eXIqYtZDEdL5KFR9JL1VVTtqGfmtdJU997iD4j8Y9XxR89/rt0n8GqhnLdLZMxJcHPfeRPISjZj//516v53E63bvsCxfiHW5f8mavw5RGRP6IPoj08QBJRxqch1RmnkpZssZ05FZozHiIl6KoMWhzk3lgsfP4Nx5w9n2Qtr+eqpVbhaBs4U53D006ntJlPfTG0/Fp1Ow6hR6eTlJVFV1cTWraXY7eG3bMVqbcPl8pKUNDCKwx3LOefM45Zbfs9DDz1Ee/uJ/a7q6urQarXo9f3/npMMLlKCLhkQpGnu3ReOo+hRJh1n/HE68++dSdGqct65aQnlm7pXvd9EEhq0VHF4JWin2IZDtFIu7qeQHTRRRwJp6DnyQkUmyIgnFSsN+MXOKY0r/9s51T1nqjTVvTcs2dVCWfOJF05b8+nbXH/V5WzZvpOH77yJ2597A0N8KtalL2Nf+QaRo07HOOs3vRixpK8dXI8eL0vHioVCcQd+sf9mSmmi1My6bhLnPXIa5ZureedmadQ8VPTX1PZjEQSBuDg9BQU5mEx6du+uZO/eKlyu8CgAKYoiFRWNpKbGDejR85+aNWvqDxXrT2xAp6amhpSUlF6OSiI50sBv7CgZFJKTkyksLMTj8aBShXcPz/6QmZlJcXExjY2NId1DXqlRMO784YxZMJSiVeW8df1inPbuT4GGH9YOipmUsZ98cSwKQYFLdLKWrw5tk0wmOYxEgbLL0c0EUiljHxUcIIthuFrcfP+vjcy8diI1uxvocPQsLsmPPL4AL6/p+ej5Qb6WJhzr3kdhSOS7wFCKdig4LyOK5x++kyUVsLbWh6CUliOEI3dCHFEzzyPlWxuVFCEgI5eRfXpOQSYw7LQcJl8+hrp9jbx7y2e0NLQdf0dJv/B4fBQV1fV61fYTJZPJSEszkZBgoKzMwqZNxaSkxJKWZgrpxNdma8Pl8gyK0fODzOY4AOrr68nOzu7Rvh6PB4vFwsiRffv5I5GAlKBLBojIyEj0ej11dXWkp0sjmsejUCjIzs5m//79mEym0JtyK0DejEymXDGG1sZ2PrnvGywlXU9RP54E0ihhDxaqSSIDK53T+8cynWhiUAidhcMCYoB2sQUtUYdVfgfQClGkibmUc4AkMQONoKVkXSXZk9OYe9Nklvzlu+4UE5ccxftb7dS3nPjIqKehGID4S/+CIjqeZjf894CcYYYAF2QGmJKg4JNykdLWEHufS7qltWA02sJRUN33/dATh5qYfvUE1JEqlv5tLRVbpBHzUCKKIvv31wRtavuxqFRK8vOTSUyMoaSkjvp6O1lZ8ZjN0SH3HSuKIuXljaSkDOy15z/30wS9p2pra4mOjkanGxit6CShbfD8VUoGvOTkZKqruzftWdI5it7W1kZj47ErnPc3c24sFz42j8lXjGHN69v46N6TS84BIgQdcSRSwh58oo9m6pGjIAbzoeS8WWxgE9+xnqUcYNtRj5PJUBQoKWTHocdWvLyB6EQ94y8YcVIxDlbt7gCvrju5368qIRcEGc6i9Yc9vtcu47HtcnZZZfx+iJ/fD/GTqpPuooSjhvgAAgKp9GzUq7vMObGcc/9szvnTLEo3VPHOTUuk5DwEVVY24XJ5yMtLCnYoXdLrIxgzJpOsrHjKyhrYtq2MlpaTb+/Vm2y2djo6BtfoOYDT2TnTTa1W93hfaXq7pD9JCbpkwEhOTqa5uZmOjo5ghxIWlEol2dnZIbMWXWuMYM6NkznvkdOo3FbH2zcspmh1ea8dP58xePGwl820YsePj2Y6281ZRQvbWIUA6NBjxXLU10QhKMljFBZqqBI7R209Ti9fPbmS8ecPJ3lEfK/FO1i8ucmKrePkWhUpomLRDZ9Jy4aPCXgO//v3iQLf1Mh4eJucWifcONzPb/L9JGqD/56XdJ929GnINJFsYSUB8fD3y8//vydi0w2cdfepnPfn02gqt/LGtYvYvHA3fm/gZEOW9DKbrY3KyiaGDUtBoZAHO5xjEgSB+HgDBQW5xMREsmNHOfv31+B2B79dYOfacwspKbEh/zr2tr17Owu9jhjRsxvqHR0dNDc3k5QUujeGJAOLlKBLBoyIiAhMJhOVlcGr9htusrKyaG1tpanpxNf/niy5Usb484dzxT8WoFDJefvGxWx8fyc+d+/2l40QdGQxFAvVuHGRSDqRRANQRTGRRFPAbIYxgQ7aqaX8qMdJENJII5cDbMcido6wNZXbWP2/LZx+2zS0xohejXsgszl9vLnR1ivHip5yGQF3O9ZvXjrqzRWnT2BJpZw/b5NjdcNtI/38KtePSemlo3RLr8Qg6TsqUwamCx+kgzZasOMU29gvbuN7cTHf8glWsaFHxzMk6zn9tmlc9MQZtFjaePMPi1j35vajtmuUBJ/b7WXfvmpychKIjAyfz1i5XEZGhpmCghwCgQCbNhVTWdlIIBC8G0B2eztOp4fk5ME1eg6wb18hUVFRPV4KWVFRgclkIiIifN57kvAmrUGXDCiZmZns2LGD3NxcZDLp/tPx/HQU3WQy9fv5syalMvX/xuFu97Lkz99St69vp9tnCENIF/OBzhGOgBhgl7iBRmpJJANBEIgmhgQxlRJ2kyCmIReOHGHIZRRuOtjNBsaJMzAIcexdWkzSUDPzbp/GogeWIQakEdrjeWWdlXZP71yoKo2JxMy7nubPnkGTNpLIUacfdbtWr8An5XK+qxU5PTnAnaO8rG5pZlnVBtpTJ/VKLJK+oYrPApmCrawhEPCgREUSmVioppYKYjj+DJbohEgmXDSS3GkZ7P+uhLeuX0xbc2hNP5YcThRF9u2rJiYmkoQEQ7DDOSEajYphw1Kx29spKamnrs5GdnYCsbFR/bo+/adrzwfb6DnA3r2FjBgxvEeveSAQoLy8nDFjxvRdYBLJz0gZjGRAiY+PRyaTUVdXF+xQwkZWVhYtLS39Oooem2bg3IfnMPPaiWxeuJsP7/yyz5PzgwRBOPTl3Ew9DVSRQja5/DjlLY08PLhp5eiju4IgMIwCojCwn22HRmxX/GsDmig1ky4b3fdPJMzVt3j5YKu9V48ZOXwWkaNOx7r0X3gaK465rd0j8EGZnDuffwOAh88bxW+yneToA0jV/kKToFChn3geirhUcrSTmcbZZDIEH140HHtkK3lkPGffM5NfvnAOAO/ctIQVL2+UkvMwUFZmwev1k5ubFHLF1nrKYNAxblwWaWkmCgtr2bmzgra2/usAYrc7cTpdIT163tLSis/XN+0Uy8oqycvL79E+dXV1yOVy4uOlJWyS/iMl6JIBRRAEMjIyKCsrC3YoYUOpVJKVlcWBAwf6/FyaKDWn/q6Ai548g6ZSG29dv5h9y0uCNtrspgMBgXzGoBJ+bMPlxQ2Agq5b9skFOZkMow0HLXQWOfO5/Xz11EpGnZ1P+vjkvg0+zL28uhmPv/d/78a5v0MeGYNj/Qfd2t43/jJeeOEFfv/731PV0MzVeQHuHOVnkimAQpAS9VBjPPXXJF71N2QX/R5BoaScA/jxkXKU4nFypYyhs7O49NmzOeOO6TRX2njj2kUs//s6qW1amGhubqW21srw4akDptq4IAgkJhqZODGXyEgN27aVUlRUi9fbN0npT1VUWEhODt3R83POuYL09HFMmHA6GzcevVjryairayA1NbVH+5SVlZGZmRn2N4ck4WVgfNpJJD+Rnp6OzWajpaUl2KGEjezsbOx2e5+NosvkAqPm53PFSwuIjNPx3m2fs+b1rXicwS2Y48OLiEgVxbSLP75frFhQokJH1DH3jyWeCHQUs/tQoSpbdQsr/rmB026eQpRJasdyNGXNbpbscvTJsWVKDZFj5tFRuI6A6/hJmFwbjb7gPKxWK2+++l8e3CpnVb2MWUkBHhrv58wUP1FKKVEPNe6EOGpPyaGSQtLJQyNoD/1Ma9Aw8dJR/Po/5zPm3GHs/PIAr//2E9a/vYN2q1RENFy4XB72768hLy8JrbbnVbdDnUIhJzs7gfHjs3G5vGzcWER1dTOBPrphbbe309bmIiUltk+Of7I8Hg9r127i2muvJTExibPOuozly1f12vG9Xi/19RaSk7t/87ylpQWbzUZaWlqvxSGRdIeUoEsGHJVKRXJysjSK3gM/XYve2ywWC5c+dzYjTs/lm2dW8/lfV2Cvbe3185wIMykYiKOQHaxnGW6x8+JdgRI//uPeMW/Fjplk7DSzm02HproXriqnaE0F8+6Yjkwhfcz+3D9WNtEHg+eHaPOnIfo8uKr2dGv76KmXAeAq20JLyTbWWWQ8vkPOm0UyUiPhwXF+rsjxkxcdQJCmv4eMKuta5HIN6eQjyARSRiUw9+Yp/Opf52HOjmXpc6t59+bP2Lu0GJ+nd4tOSvpWIBBg795qzGY9ZnN0sMPpU1qtmpEj0xk6NIW6OitbtpRgtfb+DI+KitBee15YWEogEODiiy9m1arVaDQadu/e12vH37+/GJ/P16MK7mVlZaSkpKBSdT2bTiLpC1KROMmAlJmZyZo1axg2bBhKpTLY4YSFrKwsSkpKaG5uJjb25O+wt7W1sXv3bqxWK7u/KWL3l4UE+jIrOwFaIZLx4qlY6WyzVkkxOeIInLQRgbbL/URRZAdraaKz1oEMGRZq2MMmhohjUQhKVr+6mQsem8fUX49j1Sub++sphbw9dS6WHejb6cWK6Hhkmii8jeWQe/zCbzK1lsjR82jb8TUqU+YPjwoccAgccIBZIzIlPsCVOQECImxpEtjUJKPOKU15DBaPpYz2vSsYdfEfmWowM3RSMoJMoGhVOe/d+jn2WmkGVTgrKWlAFEWysxOCHUq/iYmJwmCIpLbWyr59Vej1WrKzE3pl9oDd3k5rawfDhvVsend/+vrr74iMjGTKlCkoFAo6OjqIjOy9WWg7duxGEIRuF3vzer1UVVUxbdq0XotBIukuKUGXDEhGoxG9Xk9VVRVZWVnBDicsqFQqsrKy2L9/P1OmTDnh9VZer5fCwkJKS0tJS0tjzpw5PDf/f70cbe8QRZFdrKeRWtREUMEBdERhp5k4ur4wtGGhiTqGMBYFKnazgXzGUMwubDSSL47B7E3mq6dWcfHTZ1K3z0LxWqn9H8AL3/d9MUBBEJDr4/A0df81jzn9Ooyzr0GmOrLYmMUlsKhCzuIKkTyDSEGcyG0j/FhcsKlRxtYmgRavlKz3F71SZGhUE5Of/xvJqensqfWw/J9rqN5WK3VPGAAsFgcWi51x47IHXTcWmUwgJSWW+PhoysstbNlSQlJSDOnpphMe+e6s3N659lypDM3Rc4A1azYwc+ZM1OrOGxIajQaPp/faHq5evZEhQ/KJjIzs1vaVlZXo9XoMBkOvxSCRdJeUoEsGrMzMTAoLC6XiHj2Qk5PDsmXLqKurIykpqUf7iqJIZWUl+/btIyoqilNPPRW9Xt9HkfaODtqxUIMCJW46p7e7cKJAQYCu23/pfuifriYCJ20ICCSRgYkk9rONnazDJCYxpH4cy/62ltNvm0aLpR1LcXO/PK9QtbG8nQ3l/VM1W5s7Gcf6Dwh4b0KmPP4IlCCTIxwlOT8o4G6nrWgD26PN7DVnERERwehYkQKTyIK0AIUtAtubBfbapGS9L+iVIsOMImNiRfL0Igdq01j80VvssMkRUkaTHJOKOVAT7DAlJ6mlxcmBA7UMHZpCRMTgnVasVCrIzU0iMTGGkpJ6Nm4sIjMznoQEQ4+vZ5qaWnE63YwYEdrrqEtKKrj00qlA5/WEXC7vlcJ5fr+fxx9/gfffX8RTTz3VrX06b2qUk5eXd9Lnl0hOhJSgSwaspKQkdu/eTVNTU1B6fIcjpVLJsGHD2LNnD/Hx8cjl3bvb3tzczK5du/B6vYwePZqEhISwuClSSxkCApM5nWJ2IyKSQjbVlKCk66URakGDTJTTTgs1lBFLAnJBgRwFo8UpWKjhANvYwgrcmzqIfjeK+ffN5MO7vqLV0t6PzzC0vPB9/7Xy8zZXIY/QI8h6Z8TIuuw/tO9eduj/lbGpOE7/AxvTRmFQiYyLE5lkCnBxFtS2wx67wF6bjMo2EAn9v4VQIyCSFgnDjAGGG0SSdFDRCrtsMt4tkWFrjaJhbyWehhLYvgzF5U8QkZ9B1IHyYIcuOUEdHR52764kM9NMXNyxC3QOFpGRGkaNSqe5uZWSknpqa61kZydgMHRv6ncgEKC0tJ7MzPiQXXt+kMvlPjS6bbFYaG1tJSsr/aSOabXa+PWvb2TNmo089thj3HHHHd3ar7GxEY/H0+OBComkt0gJumTAksvlpKenU1paKiXoPZCWlkZZWRklJSXHvXvsdDrZs2cPDQ0N5OXlkZ2d3e2kPthsYiPlHCCb4aiFCIZTQEAMsJfNeHATe4wp7gBKVBSzGxlyhjHh0OOCIBBPClGigR2sZSPLKVu8n8j46zjnT7P46J5vcLf33rS9cPHtgVZ21/Vfv19X5U4IBGjbtYzIUaeddKLuKt9KVMEviBwxB09DCW27ltHw/v2YfnEv5E7i21qBb2tl6BQiQw2do73XDvXjD8Bee+fI+n6HgMsvJetd0chFhkR3vnbDjCJyAfbZBb6rk7HPLuD0/fjaydRaEq58Blf5diwLH8LfasVyxhTUDc2o7KFRhFLSfV6vn927KzCbo0O6R3cwCIJAXJyemJhIqqub2b27kpiYSLKy4tFojj3LoLq6GYVCTkKCoX+CPQl6fRSNjZ1LoPbu3QtAXt6R7RN/rq2tnerqWqxWO3a7A6vVRkNDE+vXb2Hduk1ERGj57rvvOPXUU7sdS1lZGenp6WFzPSMZeKQEXTKgZWRksGzZMpxOJ1pt10W/JD8SBIGRI0eybt06UlNTiYg4ctqvz+ejuLiY4uJikpKSmDNnzlG3C2VWLChQksGQQ4/VU0k9lYxgIkbh2Dd10sillnKGMh6DcGRRPa0QySRxLvVUUsQu/vbKczxw94OcedcMFj/yLQFf11PoBxp/QOTFVf03eg6gn3gBzgOrsX79D9p2fkPcWbeijDu5AkkyZQQqcyYqcya6YTNpWvwkTYufJP7SR1End76P2n0Cm5sENjeBDJGMKBhuDHBGaoBf5XWOrpe1Cof+sXmAQTnCLhKjhoxIkcyozn+SdNDQAXttAq8ekFPeCoFjvDaCXEFH6WYEhZqInIkElCrqz51JylufI/MPnr+vcBcIBNizp5KICDXZ2eEx+yoYZDIZaWkm4uMNlJU1sGlTMampcaSmxh21R7zb7aWysokRI9LC4jWdMGE0a9euAWDfvn0olUoyM7uell9cXMZLL/2P999fhNN5ePtEg8FAQcEE7r//AX75y1/2qPe50+nEYrEwcuTIE3siEkkvkBJ0yYCm1WqJj4+nvLycYcOGBTucsBEbG0itb7YAAMC2SURBVEt8fDz79u1j3Lhxhx4XRZGamhr27NlDREQEU6dOxWg0BjHSE+fDiwLlYRcuwg/JQBUluEUX6ULXMwjShTzSOfYMA5kgI4kMtGIUmwPf8dozb3PDo79l9nWTWPbCut55ImHgs90tlDb176yB6EnnEz3pfNw1+2n64nnq37qD+F8+hsp8YkUjA54OZOofb0IJcgWx82/H8sH9WD56hIQrn0FpTDx8HwRKW6G0Vc6SSjCoOhPRjCiRmUkBrtBCm+/whL26Hfxi6F9M95RcEEnRcSgZz4wSiVRAtbPz+S+vlVHaKuDw9Oy5K81ZiD43tf+5lqRrXsIdH0vT7ImYl67vo2ci6U2iKFJYWIvfH2DkyPSwSCSDTa1WMmRICklJToqL66mvt5GVlYDJpD/s9SsrayAmJrLb0+GDranJisHQeT1RWVlJbKwRheLoaYrNZuf00y9GrdZw5513MXfuXGJjY4mNjcVgMJxU957y8nLMZrM0qCMJKilBlwx4mZmZbNmyhfz8fGm6Ug8MHz6cb7/9lszMTIxGI3a7nV27duF0Ohk2bBgpKSlhfTHlpJUIDr9wiSeVNhxUUIiDZlLFHGTCyVcRNgixxIhmKt3FfPbXFVz4+DwKLh7Jpg92nfSxQ53HF+Dl1f07ev5T6uQhJP7qGRrevZeG9+8n4ZePo4w9gZH0gB+Ewz8/ZEo1pvPvp/6N22ha8hQJlz+JIO/6a9XuEdjWLLDth1qBSplI2g9Ja45e5LTkABo5NLmgoUOgvqPz353/gDcQ+n9vKpmIOQLiI0TiI0QSfvjvOA24/D/ejFhZJ6Oy/eSfU+TIOTjWvou/pZGAqw2ZKgLH2CHoiirRldf20rOS9JWKikbsdifjxmUedRRY0jW9XsvYsZlYLA5KSuqpqbGSk5NAVFQELS1OGhtbKCjICXaY3eJyuVmzZgMPP/wIADNnzuSJJ57g++/XMnPm1CO2f+SRZ/D5/Ozbt534+Phei8Pv91NRUcH48eN77ZgSyYmQEnTJgGcymVAqldTW1vZomtNgp9VqycnJYceOHej1empra8nOziY3N7fLu9rhJIZ4itmNU2xFK3QWJJIJMtRi5yhpLqN6JTk/KJF09rCJBmsdnz36HRf8dR6tje3s/660184Rij7c5qCu5eQr8Z4MmVqH+eJHaHj3HiwfPULiVX9HptT06BiCKgLR5z7icXlEFHHn3EH923diX/MOxhm/6vYxvQGBklYoaT2YpHZO+06IEImPgAStSF50gPgI0Cqg+YfE3eICh0eg1QMtXmjxCrR4wOnr24J0AiJaBehVnVXV9UqIUkG0SsSs6UzEYzWdcTT8cHOhrFVgvUWgvkPA6u48Sq/GJJMj18WgTsxDof9xWYo3JhqkBD2k1dfbqa5uZuzYTFSqEx/xHMwEQSA+3kBcXBSVlU1s316GyaSnvd1Namrccdeoh4qtW3fS0eHitNNOA+C0005j1qxZXHXVzXz11Xvk5+cgiiINDY384x+v8tpr7/HSSy/1anIOUFtbi0qlkuoWSYIu/K+yJZLjEASBzMxMysrKpAS9B/x+P4Ig4HA4EASBWbNmodOFx1S57kghi2pK2MZqRomTiRIMuEQnJezBTPIxp7efCDMpVFDILjYQUaHjyydXcvY9M2ltaqdmV0OvnitUOD0B/rsuNFrLybXRmM67j7r/3Yh91VvEzL6mR/srouLwWo+e8KmT8jFMuxz7yjeJyBiLJu1E1y52JrFWt8Be+08fF4lScmhE2qQRSdWJRBnEH5JliFCAP9CZsLd6odUr4AmALwDen/zbK4IvICDyY7/wWYkBBAGUAihloJD9+G+VDKIOJuNKkMugw/fDjQFP53laPLDHJrC8tnO0v9Xb+Vz6gxjw42koQTd0xuGPK6TR2FBms7VRVFTLiBFp6HQ9u1kmOZJcLv+hDZuRvXuraGtzERenJxAIhEUveZvNDkBycjLQ+Xw+/vhjpk2bxvz5VxAba6SyspqODhc6nY5HH32Ua6+9ttfjKCsrk1rzSkKClKBLBoW0tDT27duH3W7HYDAEO5yQJooi9fX17NmzB7lcTl5eHpWVlajVx+8lHU7kgoJx4gy2sYqtrCRZzKSGMpSoyGdsH5xPzkjxFDaynH1sQb5Dwcr/bOTMO2fw0T3fYKt29Po5g+3NjVZsTn+wwzhEGZNM9ORLsK9+G8PUy5Cpu3/DSZ0yDOeBNYh+L4L8yNE+/aQL6CjbStNnz5B09YvINJG9GLlwKOkubjn6FipZZxJ/cHQ7UtmZZHcm2iJKoTPhjvjh/zXyHxN0cwS4/T8k8AFw+juT+IP/3+YVDo3St3hDbKq9IEMRFYu7Zi/ihAWHLqzFXmqvJ+l97e0u9uypIjc3EaOxN/9OJCqVHI/HR1paHI2NDurr7WRnxxMbGxXSSWdbmxPgsHXfBoOBL7/8koceeojIyEgyMjLIyMhgypQpvT5yDmC322lpaZEGciQhQUrQJYOCUqkkNTWVsrIyxo7t/eRroGhpaWH37t04HA6GDh1KenpnD9KmpiaKiooYOnRokCPsXRGCjlHiFLaykhrKMJFENiNQC70zotMutlLEDmw0kc0I0oQchorj2c0G0shl37cC+vgozrl/Fgvv+gqnvf/akPU1e4efNzfZgh3GEbRDp2Nf9Sauqj1ocyZ2e7/I0fNo3bKEjrKtaHMmHfFzQSYnbv7t1L5yHbbvXyd23vW9GfZxeQICzW5o7uY0crVc5MmJnTdP3i+V4Q7T9m+CIBA9/QqaP3uGjtLNaLMLAGkEPVR5PF527aokOTmWhITwLDAayiorm9BoVGRkmMnIMFNXZ6OwsJbISA3Z2QkhO1uhpKSMhISEI2bppaam8sorr/RLDAdnWZ5MgTmJpLdI32CSQSMzM5Pq6mo8nsHXg/p4PB4PO3fu5Pvvv0ev1zN37lwyMjIQBAFBEBgxYgQlJSU4nc5gh9rrIgU90zmbGZzDMGFCryXnbrGDjSynBTsaIqikEFEUMZOMAiWl7MMjutnw7g5q91o454HZaKLCY71gd7yytpk2d+i1ulIYEpFHmTr7pPeAypSBMjaVjqINXR9bb8Iw9Ze07fgan2NgLlsIRbphM1GnDKNl48eHHpNG0EOP1+tj584KoqO1ZGRIa3x7m8vlobq6mZychEPf3UlJMUycmItWq2Hr1lKKiurweoNbE+RoamrqSE1NCdr5PR4P1dXVZGZmBi0GieSnpARdMmjo9XqMRiOVlZXBDiVkBAIBSktLWbZsGe3t7cycOZMRI0YccQfZaDSSnJzMnj17ghRp3zp4MdObRET8+DCTRD5jcOGkmXpkgoyhjKcFKxtZTrvYyrcvrqOloY0FD85FrQv/JL2hxcsH2+zBDuOoBEFAkz4SV0XPEnQATcZYOsq2Iopil9tEjjkTQammbc93JxOmpAcEQUCuNSD8pMq+NIIeWrxePzt3VhARoSI/Pzmkp1uHq5KSBszmaKKiIg57XKGQk5OTwPjx2bhcHjZuLKampvmYn2P9LT7eTEVF8K7NKioqMBqN6PX6oMUgkfyU9A0mGVQOFosLBEJvZK+/WSwWVqxYQVlZGePHj2fy5MlERUV1uf3QoUOxWCw0NQWvZVY40QhaUsmhniqMmNGhp47OC5B4IYVJzEWOnM18R52vkq+eXkVbczsLHpyDShveU+xeXt2M2/fjxV9HxQ7q3ryd1q2fh8RFoTplOF5LGQFvz5YUaHNPwd/ahLtmf5fbyFQaFIYE/K3S30l/8rU0oog2H/p/MQwKYw0WPp+fXbvKUauVDB2agkwmJee9zW5vx2ZrIzPT3OU2Wq2akSPTGTIkmZoaK5s3l2CztfVjlEcSRZFPPvmCN974gBkzZhx/hz4QCAQoLy+XRs8lIUX6BpMMKomJiQiCQFVVVbBDCZq2tjY2bNjApk2bSE9PZ9asWd0quKLRaMjLy2PXrl0hkWSFAwEBH14sVNNOCxH8WABHI2iZwCyiiWUXG1jvW8qiJ7+iw9HBggdmo4wIzyS9vNnD4l0/FrwTRRHb8v/gqT2Adek/sX3XP+sJj0URFQeI+Lqoyt4VddoI5JGxtO9d0eU2fqcDb1MlKnPWyQUpOS5nySYqn72Qps+fw9NQgirhx57PokKa4h4KfL7OkXOlUsGwYSlhUVE83IiiSHFxHWlppm61q4uNjWLChGwSEw3s2VPF7t2VdHQEZ+nf++8v4uqrb2bixIm8+OKLQYmhqqoKQRBITEwMyvklkqORisRJBhWZTEZeXh6FhYWkpqYOqosFr9dLYWHhoUIoc+fO7XFl9qysLCoqKqioqCAjI6NvAh1AksiggSp20bluuY4KGsU6JjIbuaBAKagYw1TsYhN72MQm3wpUT2g4557ZLLh/Fosf+RavK/TWCx7Liysb8f/k/o23sRxvYzlx5/wRj6WMlk2LMM76Tb9McfVYSmnbtRzR03HosYCrjY6yrch1RmQRPasgLQgytPlTcBZv7HIb5/5VIIpo86eecNyS7vHUFyN6XbjKtyGPikU37NRDP5NG0IOvc+S8AqVSzvDhg+v7tj/V1dnw+0VSUmK6vY9MJiMlJQ6z2UB5uYXNm4tJTo4lLS0ORT/d3Gpra+fxx//O/Plns2TJZ/1yzp8LBAIUFhaSn58vvT8lIUV6N0oGnZSUzkIk1dXVQY6kf4iiSEVFBcuXL8dmszF9+nRGjx59Qm3T5HI5w4cPZ+/evbhcA6fieF+JFKKZyllM52zMJOPGRTstNFF/2HYGIY4xTMOFk0pvMV88sRKv28c5989GqQmf+6h7610sP/DjlEnrsn/T8O49CEo1mrRRyNRaZGrtEcm56Pfia2ki4HZ29rVuqqTx0yeo+dc1uKr3nVAsrVs/p+71W3HuX42nsfzQP/6OFvSTLiDpmn+i0Hc9HbQrmvQx+B0NeJuOnIUjBvy0bvuCiJyJyLXRJxS3pHtEMYBu6AwEpRp1ynBS/vC/w9rmSSPoweX3+9m1qxK5XCYl533I4/FSVmYhOzvhhF5jlUpBXl4SY8dm0tLiZNOmYurrbf0yS+6RR57BYmniueee7/NzdaW6uhpBEA5dF0okoSJ8rvwkkl4ik8nIzc2lsLCQlJSBPeXOarX+P3t3Hd/WfS5+/HMkS5YsMzNTjDGEndiBwgprR+063u6o3V07usN21G3tqHdbh91ut939ht3uunIbZjDEzMy2zCg+vz+UuM1CTiJbsvR9v15+xRGc80gWnOd8n+/zpba2FpPJRF5e3lKJ/42IiopiYGCAmpoaNm7cKJr9XIVCUuCNlhQ5BwtmZOQLSt3P00l+hMiRjDJAvCmNlx47zO1fKeOOr+zk+W8dwGJ0nfXEL+cnh/ScP6yTbVZmK5/DOyaLkFs/idI3CNviLArthX0ODP1NjL/wg4u6nis0vii8deif/TaxH/8tktfyS/5l2cbk4d/jFRhJ1Ad+jELluKWFtEkFKHSBzFQ8S8itn1y63DIzxthz38M81kfIrQ86bH/CxWRZZuRPXwRJQVDZB5nY+0vmM7ahyyx5/TZu/Lnu6qxWG3V1vSgUEtnZ8W79HetMsizT2jpEUJCO0NDL949ZDl9fLfn5iYyNzdDRMcLg4AQpKVEEBFz8XeUIY2Pj/PrXf+D73/8+qampV7/DCjg/ep6eni5eo4LLEa9IwSPFxcUhyzIDAwPODmVFLC4uUlFRwYkTJ4iKimL37t1ER0c7LJnOzc1lYmLCbZ+/laCT/CiUdlAkleIvXboUMYhQZrCPXlhMVl78ziEAbv9yGV5q1x4RLO9Z4FT3G5bhkyRAwjsmE1VoHAA28yKWqREGfv1xxl/+CbLNysSrP0Wh8SXsrY8Q+uYvEHzrJwm/91vE3P87wt72CLb5qWteEk2SFATffD+WiQEGf3M/5skhhz1OyUuNf/HdzNXvx6TvBsAyO8boP76JZWaUiPu+jXdMpsP2J1xsvm4vxv5GjH31TJ/5J17BMUzs/SXWxZml28hK136/uCur1UZ9vb0ZZk5OPEqlOMxcKaOj08zMLJCW5pi505IkERYWwIYNqYSE+FFb20NTUz9Go9kh23+jyUl7n5KCggKHb3u5BgYGkGVZjJ4LLkl8cgoe6Y1z0d2p4ZnFYqGlpYX9+/cjSRK7d+8mIyMDpYMPVr29vcnPz6e2tlaUujuQBh9sWLFgPyCyGK288O2DKL2U3PalUpQqBUZ5kS65iRl5wsnRXugnh/VLvxt6ahn41UcAGd7w/vLf9HYCS96FJi6budrXWGw/g+SlRhkQjndsFrp12/HLvwVt4noUag2q0AQUWv8rdk2/HN/snUR96KdIShVDv3uQyYNPY5lzzHPmV3QHquBYRv70RSYP/Y7B//kEtoUpwt/+VTTxeQ7Zh3BpptFOJvb+Et+8m4n5+NMo1FosEwPYFqaYPv7npdvJIjFcdeeTc1mWyc0VyflKMpnMtLcPk5YWjUrl2GJYpVJBQkI4GzfaR7bPnGmnu3sUq9Uxq98YjUYef/wn6HQ6pyXosizT0tIiRs8FlyVelYLHiouLw2azucUo8PlqgAMHDjA8PMzWrVspKipCq9Ve/c7XKTo6mvDwcGpra93qJIcz+RKIhIJmXl9r22yw8PyjB1BpvNj1hY1Uqg/RQQOVHHGZJP1A6yx1g/YTNbLVwsT+p1Bq/NCmbMQ7NnvpsagCIwnYcg8ht34Sr6AoFrur0WXvZLH1JP0/uc8+qv6G15IkSXhHZ2AcvPYEHUAdlkjke76PX+EdzFa/wsAv/4Pxl3/CYnc1svX6m+8pVBoi3vU4moT1zJz+O16+wUT9x89F5/YVZh7vY+QvD6MKiSNoz8fwCggn8j3fR3XueZ9vOLT0+hEj6KvLarXR0NCHzWY7N3Iunv+V8sbS9rCwlVu3+/yyeHl5CUxMzFJe3s7o6PQNfd+fPVvHjh138cILe3nqqacIDl5+YztH6u/vR5Zl4uLinLJ/QbgakaALHuv8XPSWlpY1nWBOTU1x7Ngx6urqyMzMZMeOHav2pZebm8v4+LhbnORwBTrJj1w2McoAp9hLr9yGQV5gcLGXR77xMDYfM9/4+jfZrbsbHX40c9bZIWOTZX525PU1v2dO/wPzWC8+2WUsdpxB/89v0fu9NzP6928gy6+PwGjicjEONKHQvN7Ya672NRY7yi/YvndsFsaBJmym66vUUPoEEFT6fmIf+C2B2+5jsbua0b8+zNBvP3lDSbpS40vY3V8k5uP/Q8S7v4tSc20d4YVrN3nwaRQaHeH3PopCZW9yqVBrCb3jM4C92eB5YgR99ZjNFmpre7BabeTmJqxaF3BPpdfPOLS0/WoCAnwoKEgmMTGcjo5hamq6mZ1dvPodsc/z/sc/XmDfviNMTk5x330fw9c3gIqKCt71rnetcOSXZj/BIeaeC65NvDIFjxYfH4/Val2TCabRaKS6uppjx44REhLC7t27iY+PX9WmbedL3evq6kSpu4OESzEUUYoOP9qo5RgvUcMJLIs2nvvaAZSzat712N3khhYxwySL8rxT432hfoaOsdfX0F1oP41PZgnapEJQeuEVFA3IGIfbwPp6ozuvoGjMo51MHvgftGmb8Qq0H2xaZ0YxDrUyeeh32IwL+GSUIJsNLLafvqE4Fd46ArbcQ8zH/4fwd3wD83jfRScDrodXQARK7cqNYnka8+QQhr76Cy6zLs4wdeyPLHaUE7DtXRc93+qwRCLf9wQR73p86fNPjKCvDoPBRHV1NyqVkrw8kZyvNJPJQlvb0IqUtl+JJElERgayYUMq/v4+VFd30dIygMl05ZOcH/7wp/nwhz/Nww8/xssv72d0dIznnnuO3NzcVYr8YgMDA1itVjF6Lrg00cVd8Ghv7OgeExOzJjqS22w2Ojs7aWlpISwsjJ07d6LT6a5+xxUSHR3NwMAAtbW1bNiwYU08h64uUAolkFCMsoFpxtGiw5cAJLPEy987QulHN/Dxxz/I4KOd1PScIF3OJ1i6tiXDRuQ+rFiJlhKvO06zVeYXR8cuuMwrIALrzBjq0HhCbv4E4y//GMC+9vm5TuyyzYrS117lIam16LJ3Iqk0mIfb8cnYxvTJvzFb+TxmfTdhb/8q3jHrmGs4cME619dLkiS0yUWoo9KZq3kVn/QtN7xNwTFGn/k6i50VAASWfgB1WCJzdftYaD8FskzAlnsv+xrwjkq/8AIxgr7i5uYM1NX1EBLiR1raja8QIlyZLMu0tQ2ueGn7lXh5KUlOjiAqKoiOjmHOnGkjISGMmJjgi0ajp6am+de/XqG4uJiqqiqOHTtNdnYWMTExTokdxNxzYe0Qr07B48XHx2M2mxkcHHR2KFckyzLDw8McOHCAvr4+Nm7cyMaNG52anJ+Xl5fH+Pi4yz+Ha423pCFcisFPCnx9ZNAmc+iXZ2h4rZ3HvvMYWdnrqOIINfIJFuTZZW1XlmXqOE0jFYzK11898szZKYZmLhxB8Y7OxDjchs1sBGSCbvo4fsV3ocvcvnSbqSP/y/iLT6AKS0SbXMzYs48x9q/H0aYUo9QF4Zt3EwCLnRVMH/szvnk3YeisZOylH2McaHbIlBRdVimLPdXXXTovOJ5xuB1VSBz+W+5h6vDvGP371zGP9xG04/3EPvB7Ane8F0la3mGLKHFfWVNT81RXdxEdHSyS81Wi188wPb1AaurqlLZfiVarJicnnuzsOEZGpqio6GB8fPaCz+Zjx05js9n4/Oc/j81mo7KyhtDQMCdGDYODg1itVuLj450ahyBcjRhBFzyeUqkkPT2dlpYWhy5F5kizs7PU19czNTVFZmYmCQkJLnX219vbm7y8PGprawkJCUGjcdy608KlVTxTx/zEAv/1yOf4+0+e59kTf+MkrxEnp5JIBmrp9b+BUTawwCw2bKhQI/H6a3yALsK59hGNBZON35wYxzzez0zl8/ikb0GbuB51RBJYzeif/Q6Gzko0SUVE3PONC+6r0NjX7DXru19f/1xSoH/u+0Tc9x1UYUko/cOwzuiZPvFnIj/4JEG7P8LM6f9jvm4vXsEx+Be9Gd+C2677/apJLADrrzH2N6BNLrqubQiO5R2ZymJnBcqhULxj1hFQ8m40CfnX9TcWJe4rR6+fprl5kNTUSKKigpwdjkc4X9qenh6FWu06h+5BQb4UFaUwNDRJc/MAfn5aUlIi0em8OXjwOGlpqUsj5jabjLe3t9NiPT96npaW5lLHT4JwKa7zLhcEJ4qPj6e1tZWhoSGio6OdHc4Sk8lES0sL3d3dJCYmUlRUhFqtdnZYlxQTE8Pg4KAodV9FTfs7WJgy8LbP3kFUUDTPvfgc3TTTRzshcgQgMcskRi49SpxEJv10Xte+/1/5BBMLVhbaTjF39kXmzr5I2FsfwTt2HQCGzkq8AiIwdFWx2FePJjoDY38Tc7WvIdsseAVGYpkaBllG4RNI+Du+jv4fjzL8h88S/eFfEvHObzP2wg9RqLQovXX4F9+FX+EdGHpqmavby8TeX2AzLRCw+R3XFb8qJA6UXpgnB9EiEnRX4L/lXmSbFclLhaGvjolXf0rYW76COjwJgIW20yj9QvCOTL3qtsQI+sro7x+nu3uUrKxYQkL8nB2OR7iwtD3A2eFcRJIkoqODCQsLoKdnlKqqDqKigjhz5ix79tzEyMjI0u3Cw69tKpYjDQ0NYTabxei5sCaIBF0QsI+in+/oHhXl/HI9m81GT08Pzc3NBAQEUFpair+/6zeiysvL48CBAwwODjp1npkn6akc4F9f28cdD+/EL0TH4T+cZkTuY4R+lCiJIhE/AvHFHwVK5plhhAF88EWFGjMmZFm+ptf81KKV/z0zCYBsNqD0DUYVmsDkgd8Q/eGfowyIwDY3gWV6BIXWn9E/fZHQu76IebyP+cZD9o0olGiSi/HyC2Wu5hVUIbGEveXLDP/hs5hGOtHEriPqvT+8YL+SQok2qQBtUgGjZqO9adh1JuiyaQGsFhTezp8iIthpYtehufdRAMzjA+j/9RjD/+9zhN31JZT+Yej/+W0AvOOy8c3etTQV4lLECLpjybJMV9cIw8NT5OUl4O/v4+yQPMb50vbi4qufmHImlUpJamoUUVFBNDT08PnPfwlfX1+Gh4dRKpUYDEanHRe8cfRcLAEorAXiFLMgnJOQkIDJZGJoaMipcej1eg4fPkxHRwcFBQVs2bJlTSTncGGpu9FodHY4HmOkbZx/fOlV0rYlcttDO0lQpVMslVEgbSdVyiFCikUn+aOVdIRKUWRLxSRJmaixlxuaMV15B//m6ZPjzBntS6Yp/UKwzk8RtOs/sEyPMFv5PIHb7kO2mtHl3oQuezcAlokB/IvvQh2VZt+IzYp5tBNN4noA+v77Hob/8Fn7Vca5q8ZgmRpCFRx7TXG/0WKXfYk69TJGY4XVZdJ3M/qPr2OeGMArKIaJfb9k+tgf8QoIJ3D7ezD21i01k7scMYLuODabjebmAfT6GdavTxLJ+Sp6vWu7a5W2X4lOp6GlpZYnn3wSHx8fgoKCKCwsYGhoxGmj10NDQ5hMJhISEpyyf0G4VuIbTBDOUSqVpKam0tra6pR10efn5zlz5gxnzpwhNjaWXbt2ERkZ6fTR/GsVExNDaGgotbW1zg7Fo0wNzvL3L75CcFwgd3y5DJVWddX7aLGPHg/Ti022XuXWdiOzZv5aNbX0f4XGD2QbSt8QtCkbmDzyBzQJ+WgS8pmv28ti+yk0yUVokjeg8PYh8r1PEHLbp0GpQhWehCY2G78Nd+ObdzOBpR8k7G2PoE0uvmocSl0wlunRZcX872zGBSYP/AZNUpG91F1wCaaRTsZe+jHD//sZLJNDeAVEYDMtYpkaZqH1BD7rduC/6W0ofAKWluW7HJGgO4bFYqW+vpeFBSMFBUn4+DhvDrGncfXS9is5dOg4kgR79uxhcHCQT3/6M3z2s5/l5ptvXvVYxOi5sBaJbzBBeIPExEQMBgPDw8Ortk+z2UxjYyMHDx5ErVaze/fuNd/EJC8vj7GxsTW5vvxatjBl4J8Pv4Ysy9zzvVsJir1y5YUvAYQRTSs1HOVFWuUaTLK98kGWZQzyApOynlF5kGG5jyl5nJ/uH8Boef0ElkKtBcDYV29fq9xqZq7+AOH3fouI+x7DOzoDQ08tw3/4DNOnnkGSJHxzdxP/2f8j4h3fYOLAb5gtf5a5mlewzurxSd20rJNSvnk3YeipZq72tWt+niYP/RabYY6QWz6x5k6AubPJw79nvm4vssVe0WFbnME6NbSUjKtC4jCNdGJbmEabcpWTOAoFsvjb3pD5eQNVVZ2ARH5+Imr11U/6CY7jSl3br1VTUxsbNmxEqVTS0NDA/fffT3BwEE1NTTQ2NmI2m1ctluHhYYxGoxg9F9aUtVEvIwir5I1z0Vd69FqWZfr6+mhsbESn01FSUkJgYOCK7W81nS91r6mpIShIdPldTWaDhRe+fYhN9+Xxju/eyv4nT9Jxqu+St5UkiXy2MidPM0QP/XQyQBe+cgDzzGDh4oOos5+sIWj3R/HJ2AZWC4vd9lJx0/jr+5irfZWALfegic9FE59L0J6PMXPyb0wd/j1e/uHoskqX3ltKn9dHhhbaThN808eX9Th1WaUYeusYf+0XqMKS8D5fOn8Vi93VzFW/TPDND+AV4LyGRcLFLFODSGotssmAb/4t9teWaQFtcjGzVc/jFRAB5143kvLqyaKsVCBZllcZIlxIr5+mpWWQmJhgEhPDxYmsVWYwmFyya/tyyLJMT08fKSkpgP17Znp6mpKS7WRlZVFXV0dvby9ZWVnExcWt+HGWGD0X1qK19a4XhFWQkJBAW1sbIyMjREZGrsg+JiYmqKurw2g0kpub67LLu92ImJgY9Ho9FRUVKLwU2Cw2Z4fkMWSbzKk/1jDSNs6eB7cSkR7Kyf9XjWy79NQNXymANPJIkDPooQUji4QShS/++OCHFyqUKOm+KYeRngOM/etxvONysEwMYJ2fJLDsA9gM80vbs06PYhxoRBObDYBS60fgzg9hmR1jYv9TaFPs5e4AwXs+iv/Gt7LQfARVePI1Pc7gPR/DNNrJ6N++im/Bbfjl33LVpHvm9D9QR2Xgu/5N17QvYeWpgmOxTA7hHZ9LyK3/aZ9qZLOCQolf0R14BUUjW4wotP4M/+mLBGy5h8Bt9112e7JSCSJBvyayLNPZOcLQ0CSZmTGEhq6N/ifuxGaz0djYT1iY/5orbQfQ68dZWFgkKcm++sJ3v/tdHn74YRITEwEoKSlhcHCQhoYGurq6yM3NJTg4eEViGR4exmAwLO1bENaKtVtDKwgrxMvLi9TUVJqbmx0+F31xcZHKykpOnDhBZGQku3btIiYmxu2S8/Nyc3Ox2WxsfV+Bs0PxSF1n+nnm86+QUBTDm7+2C43/leePqiVv0qQ8cqRNJEmZhEnR6CQ/vCUNrRHjDLe9ROjtnyHsrY8gW4xo0zYR/eFfELDp7fjm3wIK+wiF0jeEmTP/RJZt2EyLTJ/6OxN7f4FSF4htYZq5mlcv2K+Xfyj+G9+K9lzDuOWSvFSEv/1r+KRvYe7siwz9/lMsdldjmR5hYt+vGPnbV5nY+0tMY70AWGbGMPTU4Jt/i9u+59Yyv+K7APCOSgfsI2+S0gtJklAF2z8nFSoNIbd+EnV4ItPH/ohJ33PZ7Yl56NfGZLJQW9vDxMQchYXJIjl3ks7OEWRZJjV1ZQYIVlpjYwsAaWn2qqaQkJALEmRJkoiJiWHXrl1ERERw4sQJKisrWVxcdGgc50fPU1NTxei5sOZIsjO6YQlONzMzQ0BAANPT02umQ/hqslqt7N+/n8zMTId0HbVarbS3t9PW1kZkZCTZ2dlotVoHROr65ufnefFfL3HgZ6foONnr7HAcTiHL5KAnBAPjaKgnDJuLJX8qjRe7/nMLkemhvPy9I4y2j1/T/U2+Wo7M/xlsFgK2v4fAre+89O1GOzFPDoHNythz38c7LhvL5CA2w5x93fNZ+34DNr6VgK333vDjeiPr4gz6Zx/D2FsH2JvXeceuwzTShXVhkpiP/IrZmleZrXye2Ad+vzSC76m8lTLf22gfXf78GSVGq/Nfs7IsY+iuxjs6A2Qbc/UH8Cu8HUlx8cG1zbjA4G8/ic0wR8Q7voF3TOZFt0n++V8pmO1x6femIz0z8dh133dmZoHGxj78/X3IyIgWCY2T6PXTtLYOUliYglardnY41+VTn3qYI0dO09HRuawToYuLizQ0NDA8PEx6ejopKSkOef319vbS3NzM7t27xev5MkQu4LpEibsgXIJSqSQ7O5u6ujqioqJQqa6vOY4sywwNDdHQ0IBKpWLLli2EhIQ4OFrXptPp2P/kSXZ/cgtj3ZNMD806OySHKZEHeIBqwnj9zL8eLT+X13NMcp114M0GC6/+4Cjr37yOtzx6E0f/p4LGfe3Lvv/Qzjx47g8ovHXMnX2JgE1vu+QcYHV4MurzZeqyzEzFs2hTNhKw5R32+cMrSKn1J+Leb2HoqcFmmLOX0au1WOYmGPjZ+zAONDN39mV88272+OTcVUmShDbJXm0zefBpZs78H0pdILp1Oy66rcLbh+gP/JiRvz3C+Cs/IeoDP0FSvn5Ic0vLCR6d+wfhLCxd5orvTVcwNDRBe/swiYnhxMaGiOoSJ1lYMNLSMkhmZsyaTc7NZjPPPfcqH/vYx5f9OtJqtRQXFzM+Pk5dXR09PT1kZ2cTFRV13a/F8813c3NzRXIurEmi/ksQLiM6OhqdTkdbW9t13X96epoTJ05QW1tLeno6paWlHpecn9d5uo+m/R286b92oFS7x5dliTzAVzlJKBeW5YWwyFc5SYnseh3sq59r4oVvH2Tze9az84FNKFVX/wqYyUnFmJmJ0jcYSa3FOjeBoefqS+jpskqJet9/E3Lrf654cn6epFCiTSpEt27HUnd5pS4QFF6MPf99bMZ5/IruXJVYhOtnMxuYbz4GwOSh32EzLlzydgqNLyG3fBLzWC8LLceXLr+l5QS/ePY7hMoX3s+V35vOYLPZaGkZoKtrlJycBOLiQkVy7iRWq43Gxj6iooLW9NSCrq5eJienuOmmm675viEhIZSWlpKenk5tbS0nTpxgenr6uuJoa2vD19eX6Ojo67q/IDibSNAF4TIkSSI3N5fOzk7m5+evfodzjEYjNTU1HDlyhMDAQHbv3k1CQoLHH/ic+N8qzEYLOz589TWuXZ1ClnmAagD+/a+qAGTgfqpRuOAMooH6Ef722ZcISQjird++Gd+Qy48mW3Ra9Ds3IEkS/hvfinV2DJBQ+q6dzvySpECXvRN1VBrh93wTVeDanNfp7mxmA9b5KWRZZrbiOazzE4S/4xvYDLNM7PvlZe+njkhGHZHCQtspABQ2K1/b/5T993+7rau/N1eTwWCiurqL+XkjRUUpBAXpnB2SR2tvH0KpVJCUtDonM1dKUFAgAJOTk9d1f0mSSEhIYPfu3QQGBnL06FFqamowGo3L3sb8/DydnZ3k5OR4/HGXsHaJBF0QriAwMJDY2FgaGhquelubzUZHRwf79u3DYDCwc+dOsrOzr7s83t3YrDKv/uAoyZviyChLcnY4NyQHPWEsXpScn6cAwlkkB/1qhrVsc+ML/N9XXkPfOcm9T9xG8ua4S95u9OYt2LT2xnJ+RXcS8e7vEf2xX79exr5GhN72EFHv++9rbkInrI6FtlP0P/ke+n/6Hvp+dA9TR/4XbcoGtMlFBN/8APP1B5hvPHTZ+2vTNrPYWYnNbGRjfwPRs2OXPbhx9ffmatDrZ6is7MTXV8v69Yl4e4vvKGcaHp5ifHyWrKw4FIq1nVCGhYUQHh5GTU3NDW1HpVKRnZ1NWVkZBoOBffv20dHRgc129dVgGhoaiI2NdZtlawXPJOagC8JVZGZmsn//fvR6PWFhYZe8zcjICPX19UiSxIYNGwgPF+srX8rc+AJ7//s4t35+B/rOCSZ6r698zdlCMDj0ds5gs9g49MvTDNQPs+uBzSRvjOPIb8oxLdjXPp9dl8R82usNEiWFEk1slrPCFdyUdWGasReeQJOQhy6rDMvUMOqIFDTxuQDoMksYf+GHGAea0WWVXXIbuqxSpk/8lZlTfyc8JHZZ+3Xl9+ZKsVistLcPMT4+R1paFOHha28JL3czN2egrW2I7Ow4tzlRkp2dfsMJ+nm+vr5s2rSJ0dFR6uvr6e7uJicnh4iIS1ca6PV69Ho9e/bsccj+BcFZxAi6IFyFRqMhIyOD+vr6i87ezs7OcurUKSorK0lKSqKsrEwk51fRWz1E9fNNvOm/dqDSrM1zhONoHHo7Z2o71sOfP/UC2gAN9/3oDmJzI7H4aBjdvcnZoQluTpZtTLz2cwBC3vQQunU7CNhyD9rkIiQve5Ms8+QQYB8lvxxVUDQBm97G9KlnaDEvL/FeC+9NR5qcnKOiogOTyUpxcYpIzl2AxWKlsbGPuLgQgoN9nR2Ow6Snp9DW1urQbYaHh1NWVkZSUhKVlZWcOnWK2dkLG87abDbq6urIyMjA2/vKS4oKgqtbm0fHgrDKkpOT6e7upqenh6SkJMxmMy0tLXR1dZGQkEBhYSFq9drsuuoM5X+tIyozjJ0PbOa1J445O5xrVk8YerSEsHjJs5w2YAwt9Vy64sLVzE8s8vyjB8i5JY3bvlRKeaeB/jlvllFNKAjXzTI5xELLcXQ5e7CZFlFofDGP9WDorcM03I42dROyyd6EUR2WeMVtBWx9JwvtpzlY8RydviEkzo27xXvzRlmtNrq6RhgeniI5OYKoqCAxL9cFyLJMa+sg3t4qEhLc67VoMplXZLsKhYLk5GRiY2Npbm7m0KFDJCUlkZGRgUqloqenB5vNRnLy2pqCJQiXIhJ0QVgGhUJBTk4OZ8+exWq10tbWhr+/P6WlpWLtyOsg22Ree+I473ziNnJuSaP+1evrlO8sNkni5/J6vspJbFxYimTD3jjuF6xfc2su17/aRvOMglvu38DnlFb+2K6kd35tPQZh7fAKikaTXMR8/T7m6/e9foVShSooivmGg2gS8pG81Ey89nPC3vLly25L8lIReufnGPr9pykLieO7c+OUAVFvuM1afm9ej5mZRZqb+1GplBQVJaPVilFFVzE4OMn09AJFRSludcJElmUOHjzOm950+4rtQ61Wk5eXR2JiInV1dezbt4+0tDRaW1spLCxEoRDFwcsle3izTFcmEnRBWCalUonVaqWlpYXCwkIiIyPd6ot1tS1OG3j1h8e485FdjLaPM9ox4eyQrskxKYZvylsuWgd9DC2/YG2utWzVeNNZsJ6WeiW7omU+mW1l/6CC1wYkbLJ4rQuOJUkS4W//OtbZccxjPdhMiyi1/njHZCJ5qRl76ccstp/Gt+A2ZiueQ5ZtSNLlD77VYYmE3PIJ+l7+Ce8CtMBLQNm569fye/Na2Gwyvb16+vrGSEgIE8unuZjZ2UU6O4fJzU1ArXavw/D29i66u3u57bbbVnxf/v7+bN26leHhYaqqqpBlWax5fo3GxsacHYJwGe71ySBcM3H27OoWFhZoaGhgZGSExMREurq60Ol04oDHAQYbRyn/Wy23/tcO/vrZlzDOm5wd0jU5JsVwQo4mBz0hGBhHQz1ha3Z0Tr97I1Zf+/rh+wYlmqYk3ptmJTsI/tCmZNSwNh+X4LokScLLPxQv/9CLrgssuY+F5iPMlj+Ld0zWFZPz83xz9+CTvgXZbEL/1H/ykNmHe4lb8+/N5ZqfN9Lc3I8syxQUJOF77v0suAaz2T7vPCEhnMBA91va7l//egWdTseuXbtWZX+SJKHT6bDZbCQlJXH69GkiIiLIzs7Gx+fyS4gK9uP/tra1Vb3oSUSC7uHGx8cJCBDNYi7FYrHQ1tZGR0cH0dHR7NmzB41GgyzL1NfXs2XLFpGkO0DVs41ErQvnpk9t5cXHDiPb1tZJI5skUcvabww4lxLLbHbKBZcNLEj8oFbJbfE2Ppdn5cVeBUeGJeTLLjAnCI7j5R9O1Id+Zp+PnlSw7PspvHXgrQNJwQRaDkrxV7/TWidBf/84XV0jREcHk5QULkp9XYwsyzQ396PTaYiLC3F2OCvin/98kbvuumvVkuPzx2OJiYnk5OSQmppKY2MjBw4cICUlhbS0NLy8RKpzKWNjY8zNzTk7DOEyxKe3hxNnzy4myzJ9fX1LS6tt27aNwsJCNBp719+MjAymp6cZGRlxcqRuQoZ9Pz6Bf6QfJR8scnY0HsnqrWb05i2XvM4iSzzXo+RXTUp2RNn4dK6VeN3aOokirF2qwEh0mSX2pPsayLINk2kaHe5/Ajo8NYR3fPdWBgbGyc1NICUlUiTnLkaWZdrbhzEYzGRkxLjlyf3GxlYaG1t55zvfuWr7HBkZYXp6moyMDMC+6k5hYSHbtm1Dr9ezf/9++vr6RLXoJbS0tJCUlOTsMITLEJ/gHm5mZkbMQXmDyclJjh49SmNjI9nZ2Wzfvp2goKALbqNWq8nMzLzksmvC9THOm3j+0QOklSSQd0eGs8PxOGM7N2D1u3IC1DEr8XiNksZJiU9mW7kn2YqPlzjoEVyVhJdKxzwzzg5kxWj8vNl5/ybe8q2b6K4YoLg41S3Lpt3BwMAEev00ubnxqFTuOU/61VcP4uvryy233LIq+7NardTX15OZmXnRKjpBQUFs376d7OxsGhsbOXr0KJOTk6sS11owNjbG9PQ0iYmJzg5FuAyRoHu4pKQkWlpanB2G0xkMBqqqqjh+/DhhYWHs3r2b2NjYy57lTkhIQKFQ0NnZucqRuq/Z0Xle+M4hNr9rPUkbY50djseYT4xmJi9tWbc12yRe6VfyeI2SABU8vN7K1nAbEiJRF1yLJEkEh61niG5M8vLWRl8rJIVE9s1pvOdnb8YnUMufH3qB8r/VoVSKQzpXNDY2Q1fXKDk5CWg07rsc66lTFWzZsnnVlpzt6upCqVSSkJBwyeslSSI2Npbdu3cTFhbG8ePHqaqqwmBwr8+D69HS0kJKSgoqlcrZoQiXIT7NPVxiYiJTU1OMj487OxSnsFqttLa2sm/fPqxWK7t27WLdunVXnbOkUCjIzc2lpaVFfNg70GjbOPt+fIKbPrWN8DT3nKPnSmxqL0Zv3XrN9xs3Svy6Rckf2xXsjrHxmVwr8b4iSRdcS3jsNqxYGcN9piNFpNnL2QvfksXeH5/gxccOMTMi5pG6qpmZBZqaBli3LgZ/f/dt2CfLMmfOnGXbtpJV2Z/BYKClpYWcnJyrTufw8vJi3bp17Nq1C6vVyr59+2htbcVqta5KrK5mfHycqakpsV68ixMJuodTq9UkJyd73Ci6LMsMDQ1x4MABBgcH2bx5Mxs2bLimxiZhYWGEhYXR3Ny8gpF6ns7TfZz+Uw13fLkMv3BRrrmS9GUbsPj7Xvf9G6YUPFatpH5SwX9mWbk32YpOlL0LLkJSa879tvZfkxo/b3Y+sIm7v3kTXeX9/OnB5+mpHHB2WMIVLC6aqK/vJSkpnNBQf2eHs6KmpqaZmpomOzt7VfbX1NS0dAy2XD4+PmzYsIHNmzczODjIgQMHGBoa8rj56c3NzSQnJ69apYNwfUSCLpCSksLk5CQTE2trHerrNTMzw4kTJ6iuriYtLY3S0lJCQy9e4mc5srOz6e/vZ2pqyrFBeriaF5ppO9bDnQ/vxFsnvkRWwkJ8JDP56Te8HYss8Wq/gsdrlPiq4CsFVrZFiLJ3wQV4eeODL+NreARdUkjk3GIvZ9f6a/jTQ89T/rc6rGbR/8SVmc1W6ut7CA8PIDbW/avBBgft77GIiIgV39fU1BQDAwPXfTIgNDSU0tJS0tLSqK6u5sSJE8zMuG+vijc6P3qekpJy9RsLTiUSdAG1Wk1SUpLbjwSbTCZqamo4fPgwAQEB7Nmzh8TExBvqpqrT6UhOTqaurs7jzsKutGO/rWR6aI43fWEHCi/xUeVINpUXI7duAwd2Ep4wSvxPi5L/16ZgZ7SNz+ZaSRRl74IzeSmJJYVR+jHKi86O5ppFZoTyju/dyvq7snjtR8d56fHDzI7OOzss4SpsNhsNDb1otd6kpEQ6O5wV19HRzaOP/pDg4GDy8/NXdF+yLFNXV0dycjI63fVX2EmSRGJiInv27CEgIIDDhw9TU1ODyWRyYLSup6WlRYyerxHiqFcAIDU1lYmJCbccRbfZbHR2drJv3z4WFxfZuXMnOTk5DmuOkZaWxsLCAr29vQ7ZnmAn22RefeIoaq2KXQ9sdnY4bmVsRyGWQL8V2XbjlILHq5XUTih4IMvKhzOsRPuIRF1YfbJSSRQJSCio4DAz8tro4hySGMhtXyrlzV/bTeepPv780PP0Vg06OyxhGWRZpqVlEJvNxrp1l2806w4GB4e5776PUVx8E6dOVfGzn/0Mf/+VLeXv7e1lYWGBtLTlNTa9GpVKRU5ODmVlZSwuLrJv3z46OzvdcoWe88f4YvR8bRAJugC471z00dFRDh06RFdXF0VFRWzevBlf3+ufc3spKpWK/Px86uvrWVxce6M0rsxitPLCtw8SnR3OxnvznB2OW1iMCWe6cN2K7sMiS7w2oODRs0rGDfDpHCvvT7MSrhGJurB6ZKUClaQmlRzMGGmkwtkhXVFQrD+3fLaEtz9+KzPDc/zh/n9R8fd6Uc6+hvT06JmeXiAnJ97tu+p/9avfpaqqnqeffprh4eEVX/98cXGR+vp68vPzHd593M/Pj82bN1NUVERXVxeHDh1idHTUoftwNjF6vrZcuVW14FFSUlLYu3cvk5OTF639vdbMzc3R0NDA+Pg4GRkZJCUlXbXT542IjIwkKiqK6upqNm/e7NZnzVfbwpSBF751kLc9dgszo3M0HxRL210vm5eSkTc5trT9SmbNEv/sUXJgSObmGBufz7dydkzilX4F40bxHhFWlqy0rzcdL6UxL88yjWuuVuIf6cvGe3JJ3ZpA04EO/t8D/2J+QpzsXWuGhyfp7x+noCAJtdq9l69aXDTw7LMv8/3vf58PfvCDK74/WZaprq4mKiqKyMiVmzYQERFBWFgYXV1dlJeXExoaSnZ2tsMHdlbbxMQE4+PjFBYWOjsUYZnc+/SecE28vb3X/LroZrOZhoYGDh48iEajYffu3aSkpKxocn5eTk4O09PT9PX1rfi+PM1E3zQvf/cIpR/dSEzuyjehcVfjJQWYgwNWfb/TJolnupR8p1qJDHxpvZV7kq0EqsWIurCC3jCCaWQRDa61zJVvqA8779/Eu350BzabzB8ffJ7DT5WL5HwNmpyco61tiOzsOHQ6zdXvsMa1tnZgtVrZsmXLquyvt7eXmZkZcnJyVnxfCoWClJQU9uzZg0aj4eDBgzQ0NGA2m1d83yultbWVpKQkvL29nR2KsEwiQRcukJqaytjYGJOTa2Ou3nmyLNPT08P+/fuZmppix44d5Ofnr+qHkVqtZv369dTV1YlS9xXQXzfM4afO8KbP7yAodvWTzLXOEBXKVHGWU2OYMEr8qUPJ92qUaJT2ju9vTbTipxKJuuB48hsSdCVeWLA4MZrX+QRq2P4fxbznp29GpfHiL595iQM/PSUawK1R8/MGGhr6SEuLJihobY+0LpdOZ1+StqenZ8X39cbS9tUsz/b29iY/P58dO3YwNTXF/v376enpWXMNgScnJxkbGyM1NdXZoQjXQCTowgXOj6K3trY6O5RlGx8f5/Dhw7S2tpKXl8fWrVsJCHBOAhcZGUlkZCQ1NTVr7kN8LWg+2Entiy3c+chOfALdf5TCkSY25cIqVJIsx6hB4n/blPx3nZIgb3ikwMqd8VZ8xBrqggN5D79e0q5BixHnnjjV+Hmz9X0FvPcXd+Mb6sMzn3+F1/77OFODnrHEkzsymczU1fUSGxtCZGSgs8NZNampSZSUbOKnP31yRfezWqXtVxIQEMDWrVvJy8ujtbWVw4cPMz7umtNlLqWlpUWMnq9BrnG0JriUlJQU9Hq9y6/tvbCwQEVFBSdPniQ6Oppdu3YRHR3t9Pnfubm5TE1NiVL3FXLmL7UMNozy5q/uRuMnmp0sV9CZenCxk0aDC/al2Z5sUBLtA18vtPK2RCthopmc4AB+TV2v/04Qi8zTKTdilVd3JD0gyo8dHy7mfb+6m+D4QP758Gu8/N0jjPdOrWocgmOZzRZqa3sIDPQhISHM2eGsuvvv/yDHjh1n//79K7aPvr4+pqenV6W0/UokSbrgOPPkyZNUVFSwsLDg1LiuZmpqirGxMdG5fQ0SCbpwEY1GQ2JiosvORbdYLDQ3N3PgwAEUCgW7d+8mPT0d5bmGQM52vtRddHVfOQd+dpLp4Vne/LU9eOtEkr4c2kE9fvUdzg7jkvrmJX7VbE/Ufbzgi/lWPpJhJd3fBohkXbh23iPjqCdfH5mOIJZI4umiiVPsZUGeW/EYYnMjuf3LZbzrx3eg1ql59pG9vPCtg4x2uN9ypp7mfHKu1XqTnh7j9IEBZ7j11p3odD4cO3ZsRba/uLhIXV0d69evd5nO40qlkvT0dHbv3o1CoeDAgQM0NzdjsbjG9Jl/19LSQmJiIhqNqDhca0SCLlxSamoqer2e6elpZ4eyRJZl+vv7OXDgAKOjo2zdupXCwkK0Wtdq/AP2UveIiAhR6r5CbFaZV584xtzYPG/+2m7UPu7dMddRQg9XoDCYnB3GZfXNS/yhXck3qpQMLMD70218Id/K5nAbKoV4HwnL5/uG0XOwj4BZMCMjY8FCLSdX5LNZqVaybncK9/3odm75bAljXZP878eeZd+PT4jE3E1YLFZqa3vw9laxbl0sCoXnJecAlZU1zM8vUFpa6vBty7JMTU3N0rRBV6PVaiksLGTr1q2MjIxw4MAB+vv7Xep4b2pqCr1eL+aer1EiQRcuSaPRkJCQ4DKj6FNTUxw7doyGhgbWrVvH9u3bCQ4OdnZYVyRK3VeWzWLjlR8cZXF6USTpy+S1YCD4eLWzw7iqGbPES31Kvl6l5PCQgrIoG18vtHJbnBV/0VBOWAa/5u6LLjOcm4OeQBpzTDPJ6+scW2ULM/L1N0fVBWnZdF8+H3jqLay/M5Pq55v53Uf/yek/1zA/KSqp3MX55Fyt9iIry3OTc4PByI9+9BRxcXFs377d4dvv6+tjamqK3Nxch2/bkYKDg9mxYwfr1q2jvr6eY8eOucz00JaWFhISEsTo+Rol1kEXLis1NZX9+/czPT3ttKZrBoOBpqYmBgYGSElJIS0tDS+vtfGyVavV5Ofnc/bsWcLCwlxypH+ts1lsvPy9I9z2xVLufGQXz31jP2aDa5aauYrAqiZm8tIwhQU5O5SrMtskTo3af9IDZMqiZL5WaOXsuMShIQX98555cCxcmWZQj2rm4hJ2f4KQsRFLCkP00sxZIuRYZplmijEsmMmUC4iVlj9fMzwlmPw715G6NZ6+miFefeIY/bXDjnw4gos4n5yrVEqys+NWZfnW1WY0GpmammFiYorJySnCw0NJTU1aul6WZV5++QBf//r36Onp57e//a3Dpxee79peWFjoMqXtVyJJEnFxcURFRdHW1saxY8eIiYlh3bp1TkuOp6en0ev17Nmzxyn7F26cJLtSPYawamZmZggICGB6ehp/f//L3q62thaDwcDGjRtXMTqwWq10dnbS2tpKWFgY2dnZ6HS6VY3BUSorKzGbzWzatMkj56kB3KR4x4puX6lWcvuXSvFSe/H8owdEkn4VC3GRDNx3q7PDuC7hGpntUTY2hcn0z8OJEQW1ExImm2e+t66Xt1LmexutAHz+jBKj1X2ev9D9ZwiqbLzibWblKdqpZ4YJ/AjEioVpJkgkk1Tpyg2pVBovkjbFkXNLGqGJQedWl2hmanDWkQ/jmj0z8ZhT9+/OrFYrtbW9KJUSOTnxbpWcj4zo+dSnHub06SomJ6cuuj4rK4O3vOVNbNu2ie9//6ccPHic3bt386Mf/cjhzdtkWeb06dOoVCqKioocuu3VMj8/T0NDA3q9nvT0dJKTk1e9R9KZM2fQarVXrUBYbi4grD6RoHuo5b4pFxcX2bdvH6Wlpavy5pVlmeHhYRoaGlAqleTk5BAWtra7o5pMJg4cOEB2djZxcXHODscpVjpBB/BSK7n9K2UolAqef/QAFqN1xfe5lg3dWcrcuqSr39BFaZUym8NlNoXbCPaGmgmJCr1E67SEjPskmyvFbRN0m42kXz6D19zVy8ptspVZppCROcsxAgkln60opIuTL0khEZsbQUZpMsmb45jVz9O0v4Om/R0Y512jr4NI0FeG1Wqjrq4HSbIn50ql+yTnAB/96Gc5cOA4Dz74IAkJCYSEhBAcHExQUBAtLS0888wzPPfcc8zNzREXF8cvfvELbrvtthUZcOjt7aWxsZFdu3atidHzK9Hr9dTX12O1WsnOziYyMnJVBmlmZmY4cuQIu3fvvmrlpkjQXdfaqBUWnEar1ZKQkEBzc/OKj6LPzMxQX1/P9PQ069atIyEhwS1GnP+91F3MB1oZFpOVF79ziDsf3sXtXy7jxW8fwmISSfrlhB0sZz4lFlm9NufuL1olDg7Zf2J8YGOYjfem2rAClXqJ8jEFQwtr//NDuDbagdFlJecL8iz1nGEG+7xzXwLIZdNFyXlIfCAZO5NJ356IpJBoO9rN/33lNca6rn++urB2WK026ut7AdwuOZdlmX/84wWeeeY5fv3rX/PhD3/4otusW7eOu+++m8XFRU6dOkVhYeGKTXk8X9peUFCw5pNzgLCwMEpLS+np6aG6upqAgABycnJWPBFuamoiPj5eTKtc48QIuoe6lrNmBoOB/fv3s3HjxhUZzTaZTDQ3N9PT00NiYiIZGRlu8eH87yorK7FYLGzcuNEtTjxci9UYQT9PpfHizkd2YTFZePE7h7Cabau277VmYmMO42XFzg7DYRTIZATKbAiTyQ2WGV2ECr2CyjGJGbNnveeuxl1H0MNeO0lg9dWbm3bKjXTSSBp5+BJAACF4SfYxC58gLenbE8koSyIw2p+u0300H+6ir3oI2ea6h0xiBN2xzifnsiyTmxvvMku5OsKLL+7l8cefpL6+idtvv41//es5pz4+dyhtvxKTyURLSwvd3d0kJCSQmZm5Ise5er2eM2fOsGfPHry9va96ezGC7rrc51SgsGI0Gg0ZGRnU19djszku2bHZbHR2drJv3z7m5+cpKysjNzfXLZNzsHd1n5ycpL+/39mhuDWzwcLzjx5ApVFx2xdLUXiJj7nLCapoRDXuOksp3igbEk1TCv63TcnDFUqODCnICpL5eqGVj6+zUhRqQy2Wa3NfNhu+rT3LuqmMjAo18aQRIkWg0XiTviOROx/ZxfufegsJRdHUPN/M0x/8B6/993F6qwZdOjkXHMtms9HQ0IfNZjs3cu4+yfmBA0d5z3seICIimkOHDvHCCy86/fH19/evia7t10utVpObm0tZWRnz8/Ps27ePzs5Ohx9T19fXk5GRsazkXHBtosRdWJbk5GS6u7vp6ekhKenG562Ojo4uJfxFRUVEREQ4IErXJkrdV4/ZYOG5bx7grq/t4rYv7OCl7x7BZhEj6f9OstkI23+awXtudnYoDme0SpzWS5zWQ6BapjhU5qYYG/cmQ/OURMOkROOUxKwYWXcb2t5hvBYMy7ptIKFMBg6RUhRDxoZU4vKjmNXP03K4i4M/P8Xc+MIKRyu4qvPJucViJS8vAS8v90nOAX7wg1+wdetW9u7d6xLVfAaDgbq6Orcpbb8SPz8/Nm/ezMjICPX19XR3d5Obm+uQ6tSenh6sVivJyckOiFRwNpGgC8uiUCjIycnh7NmzxMTEXPeH6Pz8PPX19YyNjZGRkUFycrJbdUO9mqioKAYGBqipqfHIUvfVZF4025P0r+/h1s9t55UfHBVJ+iXougfRtfYwn57g7FBWzJRJYt+g/SfGB7KDZLZG2HhnCvTPY0/WJxX0zSMazK1hfk1dV76BBOEpISQWx5BQFE1oUhD9bYMMVY5T/tc6xrrFvHJPZ7PZaGzsx2x2z+T8e997kpMny/nzn//sEscfsixTU1NDREQEUVFRzg5nVUiSRGRkJOHh4XR2dnLmzBlCQ0PJycm57tWKzk8VLSgo8KhjancmEnRh2SIiIggMDKSlpeWay5DMZjOtra10dXURGxu77Pkx7igvL48DBw7Q39/vsV3dV4tpwcxz39jPXd/Ywy2fLeHVHxzFZhVlqv8u7EA5C0kxyCp3/0qQGFiAgQWJ1wYU6LxksgJlsoJkSqOsWGzQdG50vXlacpt52R7Bar1kebtKqyJ+fRSJRTHEF0bjpVbSe3aQ2hdbeK7yGQwzJvKlrU4IWHA1NptMU1M/RqOZvLxEt0vOZVnm5z//Hffffz/33nuvs8MB7KXtk5OT7Nq1y9mhrDqFQkFqaipxcXE0NTVx8OBBkpOTSUtLQ6W6tuatLS0tBAYGekQ1qqdw96MxwYEkSSI7O5vDhw+TmJiIn5/fVe8jyzJ9fX00Njbi6+tLSUkJgYGBKx+sCztf6l5VVUVQUBC+vr7ODsmtGedNPPeNfdz19T3c9qUyXvn+EbEE279RzcwRdLqOiZICZ4eyquYtEuVjEuVjoJBkkvwgO9DGbXE23pcGnbPnSuEnJUYNgBhdd1k+3YMojfblzgKj/ZdGyaOzIpganKGncoBXf3iU4Wb90kk6lezDEAPIsuwSo4mC81itVhob+zGZLOTlJaBSuVdyDjA+PsH09IzLVO/Nzc1RW1tLUVGR25e2X4m3tzfr168nMTGR+vp69u/fT1ZWFnFxccv6O83MzNDd3U1ZWZlL/F0FxxBd3D3UjXRurKurY25ujs2bN1/xw2BiYoK6ujqMRiM5OTlERUWJD483qK+vR6/Xs2PHDqc3aFlpq9nF/XLUPvamcSqNF89/6yCGGaOzQ3IpNqWSnv+4G0vg1U+8eYJgb5nsIPsIe1qAzIIFumclus799M+DRV67n2fu0sXdS5KJ1UFefweJQQoiM8Lw1qkZqB+mu2KA7soBZkfnscgWBukiiDD8pEAAeuU22qlnJ3e7xXeT6OJ+fUwmC/X1PSiVSrKz49xu5Pw8WZa5/fZ3Mz09T3V19TWP0jqSxWLh6NGjhIeHk52d7bQ4XI0sywwODtLQ0IC3tze5ubkEBwdf8fYnT57Ez8/vuhrsiS7urkuMoAvXLCMjg/379zMyMkJkZORF1y8uLtLY2MjQ0BBpaWmkpqa6fQJ6PbKysjh+/Di1tbUUFHjWyKUzmBbsc9Jvemgrb3/sFp579AAzw3PODstlKKxWwg6cYeitu50dikuYMEocHZY4OgwqhUycDhL9ZJL9ZXbH2NAqoW8eumalpcRdLOW28vxVMkl+9p9EP/vfZdECo4teDDeNUv1cE6MdE1hNF1bJ6BmklRqUeLFDvgOl5MUMk/jg5xbJuXB9FhdN1NX14OurITMzxq3n70qSxOOPf4Wysrfwi1/8ggcffNBpsdTV1eHl5cW6deucFoMrkiSJmJgYIiMjaW9v58SJE0RFRZGVlXXJdc1HRkaYnp6muNh9lksV7ESCLlwztVpNZmYm9fX1hIeHL32hWa1W2tvbaWtrIyoqit27d1/yA0WwUygUFBcXc+jQIXp7e4mPj3d2SG7PZrHx6hPHKPlAEW9/7Baef/Qg+s4JZ4flMnzb+/Dp6GchJdbZobgUs02ic9Ze8m4nE+LNUqJ4S6yNKB+YNJ5L2OfsCfvgAtjW8Ci7sykkmWgf+/Oc6Gt/roO8YXDBXs1wbFhB16yEoa6X6GcPXXFbNuwJuxULC8yhkX3QM0g8aavwSARXNDu7SF1dD+HhgaSkRHjEiZq8vGze9757+OpXv8p9993nkO7h16qnp4fh4WHKysrc+oTIjVAqlWRkZBAfH09jYyP79++/aMDr/LJqK7WmuuBcIkEXrktCQgJdXV10dnaSkpJyQUnO1q1br1iSI7xOq9VSVFTEmTNnCAwMFCVGq0GGY7+tZG58gbc8uodXvn+U3uohZ0flMsIOnKY3IQrZTcs8HUNi3AjjRomKMfsl3kqZBN9z89iDZG6Ps6FWgN4AI4sSI4v2f4cXJUYXwWRz/2RgudQKmXAtRGplIrQyEVqI0MqEacBkY+mEx2m9RM/cxc37Iq/WvR37uucAEhJqNAzRiw0rsaSsyGMSXNvExByNjX0kJIQRFxfq7HBW1cMPf5p//etlvvSlL/Gb3/xmVfc9PT1NXV0dGzduFAM4y3D+GPH8lNGenh6ys7OJjo6ms7MTpVJJQoL7rsDiyUSCLlwXhUJBbm4up0+fZnBwkIWFhWtqaiG8Ljw8nNTUVMrLy9mxY4dT54V5kurnmliYWuRNXyjl0C9P03L46gf5nkA9OUtgeQOTW/KcHcqaYrRKtE5LtE7b/y9hH+2NfEPCmepvI8IHdF4wYTyXuC/A8KK0lMTPW9z381Pn9fpzEamVifCx/x7sDfNmGFm0PxedsxKnRu0nMyaNV176TjKZ0XX0XXG/NtmKCvsIkwo1lRwmlmRkZLzEYZDHGR6eoq1tkPT0aCIiAp0dzqoLDQ3hy1/+NF/4wjf5yEc+wqZNm1Zlv2azmfLyclJTUwkPD1+VfbqL4OBgduzYQV9fH3V1dXR0dDAzM8OmTZtEFYKbEt9MwnUxGo0MDAxgtVqxWq3s3r1bJJY3ICMjg4mJCWpqaigqKhInOVZJ65FuFqYMvOnzO9AFa6n6Z6OzQ3IJwSdrmM1OxuIvVhi4XjISE0b7XPbGqQuv8VNxwUhxQYhMhNZGoDfMW2DGBDMmiRnzud/N0rl/Yfbc74tWcI2u8jJaJfirwU8lE6AGP5V9rri/GvxV4K+2/67zsk8DOH8yom5CYu+igpEFmLPA9TweXUcfCsvFqzLMylO0UoMJI/PM4IUaBUokJBaZo5c2ABaYw4/AG3sKhDXBvqrMGL29Y+TkxBMU5Lmfbx/60H384Q/P8IlPfILTp0+veJ8gWZaprq7Gx8eHjIyMFd2Xu5Ikifj4eKKiojh27BhWq5WBgQH8/f09dtlidyYSdOGa2Gw2Ojs7aWlpISwsjK1bt3L69Gnm5+c9fvm0GyFJEkVFRRw6dIiuri6Sk5OdHZLH6K8d5p+P7OXOR3ahC/bh2G8rkW2evbiFwmIl9GAFw3eVOTsUNyQxey7Rbp+58Bpvpb2s+3xy63cuuU3SyBckvGqlvfR79lzSPmOSMFjBbAOLDcwyWGwSZhtLP69fbv//G88BpvnLgIyXAlQS9n/f8OOlkC+4XOtlT8b9VeCnBrUCTFYuPKFgtifi7TPnTzZI6BfB6ODSfr+m7ktePkQPk+gJI5pYUjBjQoFEJAlMMUY9pwHwQpxY9gSyLNPePszY2Azr1yfi6+vZ5dVKpZLvf/9r3HrrvTz99NN85CMfWdH9dXV1MTExIZYCc4D5+Xnm5+fZunUrnZ2d7Nu3j4yMDJKTk8VouhsRCbqwLLIsMzIyQn19PQqFgo0bNy41F0lOTqa+vp5t27aJD94b4O3tTXFxMSdPniQoKIigoCBnh+Qxxrom+fsXX+HNX93NLcFa9v7oOFazzdlhOZVfSzfTPYMsJkQ7OxSPYbTal2+78kiyjLfy/Mj0uWReBRovUEn2JFurBC+VbE+upfNJtr0b/fn/q98wYPbmBBsmK1hke0O880m8/f+vJ/WLFpiRJQzz55Pw10f2jU4Y0VcYTPh09V/yOn/sfVDCiCZaSrzgukjiUMvemDCilXQrHabgZDabjaamAebnDaxfn4RWKxpqAWzaVMiuXSX83//9Y0UT9MnJSRobG9myZYsY6b1BsixTV1dHcnIyYWFhhIWFodfrqauro7u7m9zcXCIiIpwdpuAAIkEXrmp2dpb6+nomJydZt24dCQkJF5ylS0tLY//+/QwODhITE+PESNe+kJAQMjIyKC8vp6ysTHTmXEWzo/P840uvcsdXynjz13bz4ncOYVowOzsspwrbd5reD9wFSnFW3nVIGK2gt9ob0F1vUvzGddB/WLc210HXtfeisF76RFoEsUwwQhOV6GR/AqQLG5cGS2IOrCcwm600NPRis8kUFCShUonD3jfasKGA3/zmT8iyvCIDLCaTifLycjIyMggJCXH49j3N4OAg8/PzbN68eemysLAwysrK6OnpobKykqCgIHJycvDz83NipMKNEkddwmWZTCbq6uo4dOgQOp2OPXv2kJSUdFEJjUqlIisri4aGBqzWi+cCCtcmNTWVgIAAqqqqkGXPLrVebYZZI89+bR+mBTNv+87N6EJ8nB2SU3mPTxNY1eTsMAThkvyu0L1dkiQyKcSPQOo5jUX27JNtnshoNFNd3YVSqSA/P1Ek55eQlpbM+Pg4MzMzV7/xNZJlmaqqKgICAkhNTXX49j2NxWKhoaGBrKysi3o+KRQKkpKS2LNnDzqdjkOHDlFXV4fJZHJStMKNEgm6cBFZlunq6mL//v3Mzs5SWlpKXl7eFUdz4+Li8Pb2pr29fRUjdU+SJFFQUMDs7Kx4Pp3AYrTy0uOHGW4d5+2P30JwXICzQ3Kq4OPVKOcWnB2GIFxAsWDAp2fwyreRFOSwCSMGOmhYpcgEVzA/b+Ds2U78/bXk5MSjFFVAl9TXN4BarV6Rar329nZmZ2cpKCgQ0x8doKOjA29vb+Li4i57G7VaTV5eHqWlpczOzrJ//366u7vFYM8aJD6xhAvo9XoOHTpER0cHBQUFbNmyZVlrc0uSRG5uLm1tbSwuLq5CpO5NrVZTXFxMS0sLY2Njzg7H48g2mYM/P0XT/g7e9tgtJG2MdXZITqM0mQk9VOHsMAThAr5tPUjLaOboI/mSQjZ9tDMtT6xCZIKzjY3NcPZsF5GRQaSnR4vk8Ar+8Y8Xefvb3+7wNcnHxsZoaWlhw4YNYqqeAywuLtLW1kZubu6yXs/+/v5s2bKFgoIC2tvbOXToEHq9fhUiFRxFJOgCYO8KeebMGc6cOUNsbCw7d+4kMjLymr7YgoODiYqKorFRLFXlCEFBQWRnZ1NRUYHBYHB2OB7pzF9qOfDzU9z0qW1sui8fSeGZB3r+jZ1o+kacHYYgLLlc9/ZLiSMVH/xoolKMJLkxe/XfCM3NA2RkRJOYGC6S8yuYmpqmoaGZm266yaHbNRgMVFRUkJ2dLVb3cZCGhgaioqIIDg6++o3PkSSJyMhIdu7cSWxs7NIx/vz8/ApGKjiKSNA9nMViobGxkYMHD6JSqdi9ezdpaWnXvSZmVlYWQ0NDTEyIkQpHSExMJDQ0lMpKcWDpLB0nevn7F14hdVsCd3xlJ96+njkaEL7vFNg8u7O94BqUc4to+4aXfXuFpECLDiOLyIjXsDsymy3U1fWi189QUJBEWJhnT01ajm9+84dotVpuvvlmh21TlmUqKysJDQ0lMTHRYdv1ZOPj4wwPD5OVlXVd91cqlaSlpbF7925UKhUHDx6kqakJi8Xi4EgFRxIJuoc7ePAg4+PjlJSUUFBQgEajuaHtabVa0tLSqKurEwmlA0iSRH5+PgaDgebmZmeH47Em+qZ55vMvYzVbufcHtxGa5HlL4HnrJwmobnF2GIKAb2s30jV+vyhQoMMfhXR9J58F1zU7u0hVVScKhURhYTI63Y0dx3iCP//5//jtb//MD37wA6KjHbeUZnNzMwaDgfz8fFG94ADnl1VLS0u74WkIGo2GgoICSkpKGBsbY//+/fT3X3qZSsH5RILu4bKysigpKXFoGVJqaipGo5G+vj6HbdOTqVQqNmzYQEdHB6Ojo84Ox2OZFsy89N3DNOxt463fvpmMsiRnh7TqQo6eJVjnmRUEguu4Uvf2N7LKFkbkfs7IB5CRmWKMCVl8hrqT4eEpqqu7iYoKIjs7Di8vcQLmSmw2G1/84qM88MAX+MAHPsDHP/5xh217ZGSEjo4ONmzYcFGXceH69Pb2YjabHdoFPzAwkJKSErKzs2lpESfdXZVI0D1cTEyMw89yKpVKsrOzaWxsxGwWS9s4gr+/P3l5eVRWVrKwIDpqO40Mlf9o4OXvHmH7h4rZ8dENKLw852NUaTTxX7dkODsMwYN5zcyjGVhekl3PGeo4xQwTTDKKFl96aF3hCIXVYLPZaGsbpKNjmOzsOOLjw8SI7VVYLBY+8Ykv8tRTf+BnP/sZTz/9tMOes4WFBaqqqsjLy1tWY2Hh6sxmM01NTWRnZ1/3tNPLkSSJ2NhYSktLHbpdwXE858hSWFXR0dH4+/vT0CCWtnGU+Ph4oqOjOXXqlDjx4WR9NUP89bMvEZkexlsevQldsGM74Lqye4vjyI8V8zsF5/Bt6WI5KcWCPIeeQTJYz1ZuxYoVHX6MM8y8PLvicQorx2g0U1PTzczMIkVFyQQH+zo7JJdnNpv56Ec/yzPPPMcf//hHHnjgAYcl52azmVOnThEdHU18fLxDtilAfX09/v7+REVFrdg+vLy8Vmzbwo0RCbqwIiRJYv369QwMDIiybAfKzc1Fq9VSXl6OTTTscqpZ/Tz/+PKrTA3McM8PbiM6K9zZIa0KhULiG3flIAarBGdYbvf2WaYACCAEH8kXH/xQoUaFN320r1yAwoqampqnsrIDrdab9euT0GjElJvl+O1v/8xzz73KM888w3333eew7dpsNsrLy9FqteTm5jpsu55udHSUwcFB1q9fLypDPJRI0IUV4+PjQ3Z2NtXV1WLE10EUCgXFxcUYjUZqa2tFIz4ns5qs7P/pSc78tZY7H9lF3h2eUf69Pi6QdxR57trwgnN4Tc2iGR5b1m1DiUSLL9UcwygbCCGCSfTEkMgwveKzc42RZZn+/nHq6npITAwnIyMapVIcwi6HzWbjqaf+wNvf/nbe8pa3OGy7sixTU1OD0WikuLgYhUL8PRzBbDZz9uxZsrOz8fHxcXY4gpOId5OwohISEvD19RWl7g6kUqnYvHkzIyMjtLW1OTscAWh4tY1nv7aPwruzuelT2/Dydv9GRV+4NZMArWgEJKwe3/ZrazyqQYsJI/PMEEEsBhYwY8KCGSOLKxSl4GhWq43m5gH6+sbIz08kOjpYjCpeg717D9PR0c2DDz7o0O22tbUxOjrK5s2bRVM4B2poaMDPz4+EhARnhyI4kUjQhRUlSt1XhlarZfPmzbS1tYllMlzESOsYf/3sS/iG+PD2x28lINK950WG+HrzmZvSnR2G4EF0V0nQF+Q5zspHOSa/xCH+xSR60sgjWAonUAolgBAGsHeAX2R+NUIWbtDiopGzZzsxGs0UFaXg7y9GFK9FbW0DDzzwBXbs2M6WLVsctt3+/n7a2trYvHnzDS//JbxudHSUgYEBUdouiARdWHmi1H1lBAQEUFxcTHV1NePj484ORwAWpw386+v76KsZ4p4f3EZ6qXsvxfaezQmsixIde4WVYxxqY/rEX2FuDm3/8BVv204ds0wTQdy55nC3kCC9fhIpmXUABBGGP0ErGrdwY2RZZmRkisrKToKCfMnPT0StFg2trkVVVS133fU+UlJSePbZfzks4RsbG6O6upoNGzYQECAahjqK2WymurpalLYLgEjQhVWSkJCATqcTpe4OFhERQU5ODqdPn2Z2VnQmdgU2q8zx31Wx98cnKPlAIbf+13Y0ft7ODmtFKBUS37wr29lhCG5s7LnvMXX0D+j/8jBYL90Yc0Ge44T8KqMMkEoOaVIusVIKPpLfBbcLkSLZxVspZAdKSSR7rspsttDY2E9HxzCZmTGkpESK0cTr8JGPfJb09Az27t1HUJBjTkjNzs5y5swZcnJyCA/3jMaoq6WhoQFfX19R2i4AIL6hhFUhSRIFBQUcPHiQ6Oho8cHuQImJiczPz3Pq1Cl27NiBt7frJYN7bc84OwSnMBqN1NTUkL0znfXr1xMZGenskG7YTYp3XHSZ3+3bmc1OcUI0gjuzGeawTA2j8AlkYbwdGzkoL3HY0kUzBhbIpJAornxwq5DEuIQrGx+fpaVlkIAALcXFqWLU/DoZDEY6O7v5ylcecdgot9Fo5NSpUyQmJpKYmOiQbQp250vbd+7cKU5GCYAYQRdWkY+PD1lZWaLUfQVkZWURGBjI6dOnsVqtzg5HOMfb25sNGzaQlZVFZWWl2772Qw9VoDCanB2G4GYktRalfxi2hSl0UsBlR70jiEHGRgtnKecgzfJZJmX9Kkcr3AiLxUpLywBNTf2kpESQlRUnkvMrkGX5iisRvPLKAQAyMhyzsojVauX06dMEBQWxbt06h2xTsBOl7cKliARdWFWJiYnodDoaGxudHYpbkSSJwsJCJEmiqqpKLCHkQiRJIj4+np07dzI/P8+hQ4fcrmeA1/wiwSdqnB2G4GYkhZLAkncBYJAv39QtVIpiG28ikwK0+DDGEGc5yow8uVqhCjfg/NrmBoOZ4uIUIiICxSjiFVgsFt761g9SUnInVVW1F1w3NzfPb37zRx566Cu87W1vY+vWrTe8P1mWqaysXKqEFH8bx2poaECn04nSduEC4vSksKrOd3U/ePAgUVFRotTdgZRKJRs3buTo0aM0NjaSnS3mBrsSHx8ftm7dSmdnJydPniQpKYnMzEyUSvdYki2wspGZ3DRMoYHODkVwIz6Z25nb/3tCjIEA2GQbViyoJPXSbayylQXmmGaScUbQ4IMCJTWcYKO8G29J46TohSux2Wx0dY0yODhBUlIEMTFi+bTlaG3t5NCh4wDcdNM7uPPOm7FYrIyPT9DY2Mr8/AJvf/vb+dWvfuWQ57OxsZGZmRm2b9/uNt9XrmJ0dJT+/n527dolXvvCBcQIurDqdDqd6Oq+Qry9vdm8eTO9vb10dXU5Oxzh30iSREpKCqWlpYyNjXH48GGmp6edHZZDSDaZsH2nnR2G4GYUKm82au5kHYXIskwNJzjGS4zJw9hkKxXyIQ7yT6o4wiSjRJOIgQVsWDGySB2nREWRC5qdXaSyspPp6XmKilKIjQ0RCcoyjY7ap2+0tLTwxBNP0Ns7jMWiID09m4ce+hRdXV385S9/ccjc866uLnp7e9m8ebNL9rdZy0Rpu3AlYgRdcIrExEQGBwdpbGwkPz/f2eG4FV9fXzZu3MjJkyfx8fEhIiLC2SEJ/8bPz4/t27fT2trK0aNHSU9PJzU1FYVibZ8z9ekdwre5m7nMRGeHIrgJtX4S75kFkCT65Q7GGcafIKo5hgo1ZkxksB5/gvEnCEmSiJDjqME+wjjFGAvMocPvKnsSVoMsy/T2jtHbqycuLpT4+DAUCpGYX4u+vkEAYmNjeeihh3jooYdWZD/Dw8M0NDSwdetWfH19V2QfnqyxsRGdTica7gmXJBJ0wSneWOoeHR1NWFiYs0NyKyEhIRQUFFBRUcG2bdsIDAx0dkjCv1EoFGRmZhIREUFVVRXDw8MUFhau+QOhiFeOoevoYy4jgYXEGGQvURIpXD9dRx8ABnmBVmqJIZlMChikGwML6PAjUoq/4D4BUjAl8u1MM84sU2gQo1OuYGHBSHPzAFarlfXrk/Dz0zo7pDXpl7/8PaWlpSs66jo1NUVFRQUFBQUEBwev2H481ejoKH19faJru3BZIkEXnEan05GVlcXZs2fZuXMnKpXK2SG5lZiYGBYWFjh16hSlpaVoteJgyBUFBQVRVlZGY2Mjhw4dIjs7m8TExDX7pa0wWfBv6MC/oQOb2ov55Djm0hOYT45BVov3uHBtdO32BH2KcWxYSSEbSZKIIemK91NICoIIIwhx8tfZZFlmcHCSzs4RoqICSUqKQKlc29VCztTXN8D73/+hFdv+4uIip06dIiMjg5iYmBXbj6d6Y2m7TqdzdjiCixIJuuBUSUlJDA0NiVL3FZKamrq0RnpJSYk4CeKilEolubm5REZGcvbsWYaGhsjLy1vzo+kKkwW/5i78mruweSlZSIqxJ+upcdi81VffgODRlHOLaAbt821NGFCgRIV43awli4tG2tqGWFgwkZMTR1DQ2v5McwUxMVH09/evyLbNZjMnT54kKiqK1NTUFdmHpxOl7cJyiFOYglOdL3Xv6+tDrxfr1jqaJEnk5eWh0WgoLy/HZrM5OyThCsLCwti5cyc6nY5Dhw7R1NSExWJxdlgOobBY8W3rJfLFoyQ/+Rei/74X/9pWFAsGZ4cmuChdZx/n60gWmUeDds1Wlngaq9VGV9cIFRUdaLVqiotTRHLuIDExUfT19Tl8uzabjfLycrRaLbm5ueK9tgL0ej19fX2sX79ePL/CFYkEXXC686Xu1dXVbpOMuBKFQkFxcTEmk0kk6WuASqUiPz+fkpIS9Ho9Bw4cYGhoyK06UUs2G7rOASJeOUHyz/5KzF9eIaCqCeXcgrNDE1zI+fJ2gEn0BBDixGiE5ZBlmbGxGcrL25mcnGf9+iTS0qLxEr0obsjY2DhPPfW/3HLLvRw+fILJyUmHbv98cm4ymSguLl7zDUtdkdls5uzZs2RlZYnSduGqRIm74BKSkpIYHBykoaFBlLqvAJVKxdatWzlx4gQVFRXiC3gNCAwMZPv27fT29lJdXU1gYCC5ublrvuz930myjE/vMD69w4TtO40hJpy59ATm0hOwBLjXYxWWTzJb8OkeXPq/Gg3jDNMpNxFDIt6S6KnhahYWjLS3DzM3t0hycgQREYFilPA6tLd3UVVVu/Qd/fzzr/Lii/uQJIk3velNPPnkR7j99tsdtj+bzUZFRQWLi4ts3bpVTIVbIedL25OSrtw/QxBAJOiCi5AkiYKCAtHVfQWp1Wq2bt3K8ePHqaqqorCwUCTpLk6SJBISEoiKiqKpqYlDhw6RnJxMeno6Xl7u9/EtAdqBUbQDo4QdLMcQGbKUrJuDb3xNX2Ht8OkZQmGxLv0/kwK6aaabZrpoJEAOIYQIoknCW9I4MVLBarXR26unv3+cyMgg1q2LRaUSI+bXw2q1ct99H6O9vWvpstTUVH784x9z7733Ehoa6tD92Ww2KisrmZ+fZ9u2bajVosfDSjhf2i66tgvL5X5HeMKa9cZS9507d7plAuJsb0zSz549S2FhofiyWAPUajX5+fkkJCRQW1tLf38/OTk5REVFufXfTzM8jmZ4nNAjVRhDA5nLSGQuPQFTWJCzQxNWmK69d+n3frmTVqqJJolCtjPHDOMM000LA3RRIJegk/ydGK1nspezz9LRMYy3t5dYOs0BmpraaG/v4qWXXmL79u1YrVb8/PxW5GS6LMtUVVUxOzsrkvMVZLFYqK6uFqXtwjURGZDgUs6Xujc2NpKXl+fscNySt7f3RSPp7pzkuZPzZe99fX3U1NTQ3d3tFt3el8N7bArvsWpCjldjCvJfGlk3Rjl2RElwAbKMruP1LtVdNKHEi2F66acDCQUgo8IbAwuc5DU2yzfjK5L0VWMvZx9ibs4gytkd6NSpSsC+TOpKfq6fT85nZmbYtm0b3t7eK7YvT9fQ0IBWqxWl7cI1EQm64FLeWOoeHh5OZGSks0NySxqNhm3btnH8+HGqq6tFR9E1RJIk4uPjiYyMpLm52e3L3i9FPTlD8Ok6gk/XYfbXLSXrhphwEK/jNc97eAyv+cWl/5sxEUkcEcQioWCOaSQkRujHhH0VgDGG8EUk6CvNarXR06NnYGCcqKggsrLiRAM4BzCbzTzxxC95/PGf8IEPfICcnJwV25csy5w9e5apqSmRnK+w4eFhUdouXBfPOJoT1hSdTsf69eupqqqirKwMHx8fZ4fkljQazdJIek1NDfn5+eILZA1Rq9Xk5eUtlb0fOHDAI8re/51qZp6gikaCKhqx6LTMpcUzl5HAYlwkiB4La5Jv+4VLSHmjYZBuBulmJ28hWAoHIFZOYZYpFCjQieR8RZ3vzm4vZ1dTUJCEr68oZ78eRqORvr5BNBoNMzOzvPbaQX7zmz8yMDDEo48+yle+8pUV+wyXZZmamhomJibYtm0bGo3o37BSFhYWqKqqYv369aK0XbhmIkEXXFJsbCzj4+OUl5ezfft20cxshWi1WrZt28axY8eora0lLy/Po5I7dxAQEEBJSQl9fX3U1tbS3d1NTk4O/v6el7B4zS8SWN1CYHULVq03c6nxzKUnsJgQhSxG+dYM3b8l6BkU0EsbE4xgwoAW+8GuJEn4I/oRrLT5eQPt7cPMzxtITo4kIiJAfE9cp5aWdm6//d2Mj08sXebt7c273vUuPvWpT63o1D5ZlqmtrWVsbIxt27ah1YoTLCvFarVSXl5OTEwMsbGxzg5HWINEgi64rJycHI4ePUp9fb2Yj76Czifpx48fp66ujtzcXHHwtcacL3uPioqiubmZw4cPEx0dTUZGhkfMT78U5aKRgLo2AurasKpVzKfGMZeewEJSDLJKfPW5Kq+pWbz1F67xHCpF4i1rOM0IJoxLCbqwshYWjPT06BkbmyEqKojsbFHOfiPq6hr5wAceRJZh7969WK1WfH19ycrKIihoZU80ybJMXV0do6OjlJSUiOR8hTU0NCDL8opOVRDcmzhKEVyWUqlkw4YNHDp0iJCQEGJiYpwdktvy8fFZGkmXJImcnByRpK9BKpWK3NxcUlJSaG1t5eDBg8TGxpKRkeHRU0WUJjP+jZ34N3ZiU3kxnxTDXEYCC8mx2LxF52JXouvou+TlauyluOfnnAsrx2Aw0dOjZ2RkmoiIADZsSEWjEe+T6yXLMr/85e/4+td/QFZWFi+++AqZmZmruv/6+nqGh4dFcr4KBgYG6O/vp7S0FKVSnNASro9I0AWXptPpKCwspKqqioCAAI8dDVwN/56kZ2dniyR9jfLx8WH9+vWkpqbS0tLC/v37iY+PJz093eMPzhRmC36tPfi19mBTKlhIjGYuPZH51DhsWtEsydn+ff75eUrsB7pWLKsZjkcxGs309uoZGpoiLMyfDRtS0Ir3xA3p7x/i059+hH37DvPQQw/x3e9+d1WbssmyTENDA0NDQ2zbts2jT9Suhrm5OaqrqyksLBTzzoUbIhJ0weVFRUWRkJBAeXk5O3bsEGckV5BOp1sqd5ckiaysLJGkr2G+vr4UFRWRlpa2lKgnJiaSlpYmOvcCCqsN345+fDv6kRUSC/FRzKUnMJ8Wj1Xn2ScynEFhNKHtG77kdfPMAOCD32qG5BFMJgu9vWMMDU0QHOxHUVEyOp1oHnY9Ojt7KC+vpqenlwMHjnP6dCXh4eG89NJLvOlNb1rVWGRZprGxkYGBAbZt2yYSxhVmsVgoLy8nMTGRqKgoZ4cjrHEiQRfWhKysLI4fP05tbS0FBQXODset+fr6Lo2kKxQKMjMzRZK+xvn7+7NhwwampqZobm5m7969JCcnk5qailotSlcBJJuMrnsQXfcg8msnMcRGLC3fZvEXB7arwadrAMkmX3DZmDxENy3MMwsgurU7kNlsoa9vnIGBCQIDfVi/Pgk/P3Fi6npYrVZ+8pPf8NhjP8ZsNhMSEsLWrVv5/e8f5K677iIgIGBV45FlmaamJvr6+igpKRHVh6ugrq4OLy8v1q1b5+xQBDcgEnRhTVAoFBQXF3Po0CF6e3uJj493dkhu7XySfn4kfTXnywkrJzAwkM2bNzMxMbGUqKemppKcnIxKpXJ2eC5DArT9I2j7Rwg9cAZjVOhSsm4OEgniSvn37u0AnTRhxkgQoQQRjlISFVQ3ymKx0t8/Tn//OH5+WvLzE/D3d6/SZ1mW+elP/4cjR05x6607+Y//ePeK7auzs4f77/88FRXVfO5zn+Phhx/Gz8+5lR4tLS309vaybds2kZyvgp6eHoaHhykrKxOrDgkOIRJ0Yc3QarUUFRVx5swZAgMDPXIZqdXk5+e3tE66JElkZGQ4OyTBQYKDg9m6dStjY2M0NTXR2dlJamoqSUlJeHmJr4U3kgDN0BiaoTFCD1diDA9eStZNoYHODs99WG3oOvovvEi2MsMEaeSRIKU7KTD3YbXaGBiYoK9vDB8fb3Jy4gkMdM/qEL1+nK9+9busW7eOz33u62RnZ7J5c5FD9yHLMr/97Z955JHHiYyM4siRI2zbts2h+7geLS0tdHV1sW3bNqefKPAE09PT1NXVsXHjRo/v8SI4jjgSE9aU8PBwUlNTl+aji1G/leXv73/BSHp6ujhIdiehoaGUlJSg1+tpamqio6ODtLQ0EhMTRa+Hy/AencB7dIKQY2cxBQfYk/WMBIwRIc4ObU3TDoygNJouuEwpKQmSw9AzSAKu+9ljk22YMeItuebBuc1mY3Bwkt7eMTQaL9atiyUoSOfWU5dmZuxTIp588kluueUWmppaHZag//nP/8fevYepqKihr2+Aj370o/zwhz90iZHq1tZWOjs72bZtmxjEWAVms5ny8nJSU1MJDw93djiCGxEJurDmZGRkMDExQU1NDUVFRW59kOEK/P392bp1KydOnMBkMonu7m5GkiTCw8MJCwtjeHiY5uZm2traSExMJDExEY1GNIu6HPXENMGnagk+VYs5wHdpZN0QHQbiPXJNLlXeDhBHKrWcZEweIoAQJhghjBgUkuuUkbZwlgG6yJDXE0Y0C8wRRJjTPydNJguDgxMMDk6gVnuRnh5FSIif0+NaDpvNhiRJ1x3rL3/5e3Q6HTk5OcTERNPbO+CQuPbvP8oDD3yBLVs2c8897+TOO++ktLTUIdu+Eee7tff19bF161aRnK8CWZaprq7Gx8dHVBgKDicSdGHNkSSJoqIiDh48SFdXF8nJyc4Oye0FBASwfft2Tp48idFopKCgQMyzcjOSJBEVFUVkZCR6vZ6Ojg7a2tqIiYkhJSVl1ZscrTWq6TmCyhsIKm/A7OvDfHo8c+mJLMaGg3ivXJVvW+8lLw8jmmDCaaGacGLooRUtOuLldKJJQCk5/zDGjBmAFqppoRqAECLJkTeikla/CePc3CL9/ROMjk4TGKgjM3PtjJgbjUZ+8pNf8+tf/5GZmVliY6P51Kc+wnve845lb+P48dP8z//8kSeffJKIiAg2b97CK68c4Ktf/ew1PQdWqxUApVKJLMv89a/P8sUvfovS0lIOHjzoMs+n1Wrl7NmzTE1NsX37dpcYyfcEXV1dTExMUFZW5jKvBcF9SLIsy1e/meBuZmZmCAgIYHp6es2eaR0fH+fkyZNs27aNoKAgZ4fjEQwGA6dOnUKlUrFx40YxxcDNzc7O0tnZSV9fH0FBQSQnJ/P+uIeQbeJrY7ksPhrm0+KZS09gIT4SXGTqgLdS5nsb7QnI588oMVqdd4CpHpsk4el/Xfb6OXmaU+wFQIkXIUQySj/eaEkhmygSnHqAPCtPcYb9BBBCFAmoUNNIBaFEkSNtXJUYJIXEz5u/SH//OLOzi0REBBITE4JOtzaWU+zrG+SVVw7wxz/+naamNj784Q+TkZHB73//eyTJyr59f1/2tu6++/0YDFZOnDiBQqHgtdde45ZbbuGVV/7Kpk2FV7yvLMv84Q/P8Nxzr3D6dBVms4Xk5AQUCgUNDc28973v5cc//rHLHHOYzWbOnDmDxWJh8+bNYvnMVTI5Ocnx48fZsmULISFrd3qTO+QC7sr5p54F4TqFhISQkZFBeXk5ZWVlYrmoVaDRaCgpKaG8vJzjx4+zefNmUQLtxvz8/MjPz2fdunX09PRQW1vLe372ZmpebKZpfyfmRbOzQ3R5XgsGAmpaCahpxeqtZj41zp6sJ0Yjq8RXMICuvf+K1/tKAYTLMYwygAo1edJmFuQ52qmnkQp6aSddziNYcs4cUD8pkDg5lX46yWYDWkmHRTbTSAWRchyh0sqtiazSqsjanULe7Rm0tw8RHR1MdnYcqjXw2uro6OYvf/knr7xykPr6Jry8vCgtLeXo0afZuNF+YiM4OJj3vve9nDhRztatG666TXvZcT2f//wXlqq89uzZQ2hoKAcPHrtqgv7kk7/ha1/7HjfdtIevfOVhtFot7e3tzMzM8K1vPcbdd999w4/bUQwGAydPnkSj0bBt2zbR4HOVmEwmysvLycjIWNPJueDaxAi6h3KXs2ayLHPmzBkANm7cKMqMVonNZqO6uprx8XE2b94sOsV6CJvNxidKP8/6OzMJjgugcV8HtS+1MDMy5+zQ1hybyov5lFjm0hOYT45FVq9uNYorjaDH/r8X0Q7qr3ibWXmKcg6QQAYpUvbS5VPyGG3UMs0EIUQQRSKhROIlre7zaZHNnOQ1/AhkvbTNnihynDmm2MzNDi9194/wJe+2DLL2pDDRN0318818+18fQ6FYG9+BJ09WcO+9H8HLS8Vtt93GnXfeya233nrRVBqLxcLOnWXU1tbywgt/JDf3ymtMP/roEzzxxC84duzYBR3Vt28vISoqhKee+uFl79vXN8iGDTfzn//5n/zgBz+4kYe34mZnZzl58iShoaGsX79eTDlbJbIsc/r0aSRJcotjTnfJBdyRON0mrGmSJFFQUMDhw4dpb28nLS3N2SF5BIVCQUFBAU1NTRw7doxNmzYRHBzs7LCEFaZQKGg/3kP78R4i0kPJvyOTdz95J92VA9S80Mxgw6izQ1wzFGYLfs3d+DV3Y/NSYgoJRPZSInspsXkpkb287L+rvJYul728zl137nfVG273hvtceD/7v65KOb+I5irJOdhHqcvkuy9qDhcohVIs72SUAbppoZ7TAHjJKjIoIEqKX5G4/52XpCJdzqeOU4zJw4RKkayTCznJa7RRSxbFDtlPdHY4+XdkklgUQ8epPv71jQOMtI4BrInkXJZl/va35/jMZx5h06bNPPfcc1ecM+3l5cVLL71MWVkZO3e+hYyMVNavzyY/P4eCghzy8rLw9vZmZETPj3/8FL/4xe/44Q9/eNFyZ6mpadTXV19wWXd3LwkJcUtJ1o9+9CsCAgL42te+5vDH7UgTExOcPn2ahIQE1q1bt+aTxLWkvb2d2dlZSktLxfMurCiRoAtrnlqtpri4mOPHjxMUFERoaKizQ/IIkiSRlZWFRqPhxIkTFBcXExkZ6eywhFUy0jrGa08cwzfEh9zb0rntC6XM6uepeaGZ1qPd2Cw2Z4e4ZigsVjQj4yu2fRkuTPBVSlS+Gth4CwBR/zyI0cqFSb5Kic3L6wonBt54cuDiEwPLbYyn6+hnuYe5l+vcLkkSEcQSQSyL8jwTjDLBKA2cAVkmSkpY5h5uTDgx+BHIAF2EEolG8iFNzqOZKiLkWEKk6/t8VHgpSN+eSP4dmfiF6WjY28YfflPB3PiCgx/Byuro6ObBB7/MiRPlvPOd7+Tpp59e1rrRfn5+7Nu3j2eeeYbKykoqKyt45pnnMZvNeHt7s25dGg0NLahUKr773e/ymc985qJt5OTk8Ne//oX5+QV8fLR87nNf5+mn/8SDD36Er3/9v5ifX+Dvf3+eBx98yKUrwoaHh6moqCArK0s0yF1lY2NjtLS0sG3bNjGlUlhxIkEX3EJQUBBZWVlUVFRQVlYm5kWvouTkZDQaDRUVFeTm5pKQsDoHw4JrmBtf4OQfqin/Wx0ZZckUvTWbre8roOVwFy2HuhjrnnR2iB5PAiSLFSxWzo+lqwyGpet9eoZQObifgKyQLkjw7cm7Ell5YZLvPTrh0P1qJR0xJBEtJyJh76weIkeilm68edaUPMYQvYwzjBUrkcSRTNZS+bokSUTK8bRTj1k2oZLUxJDEKP00UcVm+aZrKr0PTQwioyyJjNIkDHMmal5opuVQJxaj9YYfiyPU1TVx2233kZubxW9+8wTR0Zc+ASHLMr///V/5yle+Q1RUNK+99ho33XTTNe0rKCiIj370o0v/N5lM1NTUcOLECSoqKnjf+z7EBz/4QQIDAy95/7vvvpvPfe5zvPzyfpKS4nn66T/xlre8hZ/85NcMDY3Q2NiKyWTmQx/60DXFtZp6enqoq6ujsLCQ6OhoZ4fjUQwGAxUVFWRnZ7tMg0DBvYkEXXAbSUlJTExMUFlZydatW0X50SqKjo5GrVZz5swZDAYD6enp4vn3MBajlYZX22h4rY3Y3Egyy5J563duZnZ0juZDXbQe6WJ+YtHZYQqrRLLJKE1mMDmnkaAkSaTL+egZopUasuUNN/SZNCnrqeQwGnwIJwYJiX46GaaPbLl4qRFcACHI2FhglgBCkCSJdXIRp9hLNcfIl7ddcT66LlhL+o4kMsuS8Av3pfNUH6/993H664btpRAu5JlnnkOj0dLV1ccXv/go//u/P7vgelmWOXbsNN/85g+pqKjmwx/+MP/93//tkGXA1Go1GzZsYMOGqzeOA0hJSWH37t18+tOPkJycQEhICH/729/4+c9/zs9+9lN0Oh2nT58mKSnphmNzNFmWaWlpobOzc813DV+LZFmmsrKS0NBQEhMTnR2O4CFEgi64DUmSyM/P58iRI7S0tJCZmenskDxKaGgoJSUlnDx5ksXFRfLy8kTjGk8kQ3/tMP21w6ie8iJ5UxwZZUlsfvd6BupHaDncSeepPswGi7MjFdycWtKQKRfQSAVmTMTISfjgiw7/i5J1WZaRkS8oo7fIZhaYxQs1TVQRQAjFvL7mcbycRhOV1HCCDLmAKBIYogcFCvwIXNqOVtJRKG+nmuNUcph8eStaSbd0vUrjRfLmODJKk4nJiWCgbpjKfzbSddo13yc2m40jR06yb98RsrOzeeCBB7j33nt56aV93HbbHgDq6hr5j//4NG1tnRQWFnLw4EHKysqcGvezzz7Lf/7nf9LV1ckTT/wELy8vHnzwQR588EGnxnUlNpuN2tpaRkZGKCkpEY28nKC5uRmDweAWTeGEtUN0cfdQ7ty5cWZmhiNHjrBhwwYiIiKcHY7HWVxc5OTJk+h0OoqKisTSL27mJsU7rut+uiAt6TsSyShNJiDKj87TfTQf7KS/blisq+4EKq2Kj/3pXgB+9a6/uvWSeaPyAA2UY8We7KrxJogw/AjEhg0TBkYZwIQRJV6osI9wG3h9jreExCb24Ctd2GVclmVaqKafDlSosWAmiXUkS1kXxTEnz1DNMaxYiVEkUpS3gQ1lBaRsTmB6aJaWw520HulmfvL6Kk2emXjsuu53OVarFZvNhkplL8sfH5/gt7/9M3/4w9/p7e0nMzOT73znO9x9993cddebOXPmNCdPvkRv7wB33/1+kpNT+OEPf8iOHTvEydrrYLFYqKysZH5+ni1btixrvr7gWOfn/O/YscPtjpXBvXOBtU4k6B7K3d+UAwMDVFdXU1JSctGyLcLKM5lMnDlzBpvNxubNm0VDFTdyvQn6G4UkBpJZmkz6jkQAWo9003y4k/HuqRvetrA8npSggz2RNmNijikm0DPBKPPMoMQLL1SEEIEfgZgxYcaIDPjijw4/TJjwwotA6dINSGVZpo92ZpgkiXXopMs3GfNP0BFdFkDRjgJkZE4cPsn0IQuTvbM3/BgdmaAPDg5z223vYmxsnI0bC7BabVRUVAMS99xzDx/5yEfYsmXL0oji4OAg2dnZbNu2gdraBiIjo9m7d5/4/r1ORqOR06dPo1Ao2Lhxo/gOdYKpqSmOHz/O+vXriYmJcXY4K8Ldc4G1TCToHsoT3pStra10dXWxY8cOcebZCaxWK5WVlczOzrJlyxZ8fHycHZLgAI5I0M+TFBKxuZFklCWRsjme6eFZWg7d2CiisDyelqA7ky5IS3qpvdlbQKQfHad6aT7USWNtExW2g8SRSpqUd8P7cWSCfscd76a3d4j777+fEydO4OPjQ35+Ph/96Ecvu1LKH//4R9773vcSHh5OeXk5cXFxDovHkywsLHDy5En8/PwoKipCqXTdZRLd1eLiIkeOHCEpKYn09HRnh7NiPCEXWKtE7angttLS0lhYWODUqVOUlJQslekJq0OpVLJhwwZqa2s5cuQIW7ZsEaMpwgVkm0xfzRB9NUMc/tWZpXm4m99TwED9CF1n+uiuGGBWP+/sUAXhmviF6UgsjiFpY5x9Xnn9CGefbaTzDfPK/QkigQx6aCFJXndNHd5X0vHjpzl+/Ax//etfueeee5Z9v3e/+93cdNNN6HQ6dDrd1e8gXGR6epqTJ08SHR1Nbm6umPPsBGazmVOnThEREUFaWpqzwxE8lEjQBbclSRJ5eXmcOnWKiooKNm3aJObBrbLzfwOtVsuxY8fYuHEjYWFhzg5LcEFmg4WWQ/al2XTBWtJKEknZEk/Jh4qZGpyhp3KA7soBhpv12Kyi8EtwLQqlRGRmGIlFMSQUxRAY7c9Q0yjdFQPsf/LEZVcwiCGJLppooop1chFe0vIPy2RZZhI9/gQtJfetrR38+tf/j8XFReLiYoiJiWRiYorOzh4WFha5/fY93HLLLjSayy8799BDD7N9+3be+ta3XtuTAISHh1/zfQQ7vV7PmTNnSEtLIy0tTSTnTmCz2aioqECj0ZCXlyf+BoLTiARdcGsKhYINGzZw7Ngxamtryc/PFx+4q0ySJNLT09FoNJw+fZrMzExSUlLE30G4rPmJRaqfa6L6uSbUPiri8qNILIrh1s9tR+GloPfsED2VA/RUDWKYNTo7XMFDafy9SSiIJrE4hviCaKxmKz2Vg5z5Sy19NUOYFq4+bUAj+ZAtb6SZSsqZplDejre0vClZg3TTRCUSCoLlMN797vt5+eX9REZGEh8fx759xxgZGcHX15fU1BRA4gMfeJCAAH927tzGO97xZt70pt0XfRb7+PiQkpIiGnyuElmW6ejooLm5mby8POLj450dkkeSZZna2loMBgMlJSViQEdwKvHpK7g9lUrF5s2bOXLkCO3t7aJkyUni4+Px8/PjzJkzTE1NsX79enEAKFyVacFMx8leOk72ggThqSEkFsWQf0cmuz+5hdH2cbor7KPrY12Tzg5XcHOhSUEkFsWQWBxDeGoIY12TdFcOcPZfTYx2jF/XWuVRUjz+ciBVHOUUe/GW7Qm6Bh+06PDBFy06bNjQ4LO0hFsvbQQTTijRjDHI4KCep556ive+9714e9tHyI1GI2q1eikJb2lp4U9/+hMvv/wS7373/ZSUbOKLX3yQbds2LsWzZ88Onn76z/z0pz8VpeorzGKxcPbsWSYmJti2bRtBQUHODsljtbW1MTIywo4dO8SUSMHpRJM4D+WJjSGmp6c5duyYW3fkXAuMRiMVFRUYjUY2btyIr6+vs0MSroEjm8TdKJ8gLQmF9hHMuPwoTAvmpVL4/tphl1xD2lWIJnHLo9J4EZsXSWJxDAmFMah9VPRVD9F9roJjwYHNDBflefpox74iu41FFlhkjkXmkd+Q+evwQ4GSWaYopmypu/xe2zPL3pcsy7z00kt85Stfpqamll27SnjssYdJT0+ht7ef9et38fOf/5yPf/zjDnt8woVmZ2cpLy/H29ub4uLipZMqwurr7++npqbG41b+8cRcYK0QCbqH8tQ35cjICOXl5WzZsoWQkBBnh+OxbDYbTU1NdHd3U1hYSFRUlLNDEpbJlRL0N1J4KYjOCl8a3fQL0zFQP0Jf7TDDLXpGOyawmqzODtNliAT90pRqJeEpwURmhBGXF0lMTgSz+vmlKo3BxlFsFtuqxiTLMgYWlpLyEfqRsRJOLOHS6yebryVBP89ms/HPf/6Tz3/+8/T19XH//R/gv/7rEzz44JeprKyntbVVJI4rYGhoiKqqKhITE1m3bp0op3ai8fFxTp48yYYNG4iIiHB2OKvKU3OBtUAk6B7Kk9+UXV1dNDU1sWPHDjF662Tn16tPTk4mMzNTzEtfA1w1Qf93gdF+JBTFEJ0VTlRmGN46NfrOCYZbxhhq1jPcrPfopdxEgm6nC9YSmRFGVGYYkRmhhCUHY5w3MdSsZ7BxlJ7KAaYGb3yN8tVwPQn6eQaDge9///t85zvfwc/Pl4yMFI4dO82LL77Ibbfd5sAoPZssyzQ1NdHV1UVBQQHR0dHODsmjzc3NceTIEbKyskhMTHR2OKvOk3MBVycmgAoeJykpaWn5te3bt4vRASeKiYm5YF56UVERarXa2WEJbmBqcJapwWZqnm8GwD/Cl8jMMKIyQil+Rw4h8YHMjS8w3DLGcLOeoWY94z2TokO8G1MoJUISguzJ+LmE3DfEh/HeKYab9dS+3Mpws56ZkTlnh7rqNBoNjzzyCO95z3v44Q9/yLPPPkthYQFbtmxxdmhuw2QyUVFRwcLCAtu3bxcJkZMZjUZOnTpFQkKCRybngmsTI+geytPPmsmyTEVFBQaDga1bt6JUKp0dkkczm81UVVUxMzPDhg0bCAwMdHZIwmWslRH0q1FpvIhIC7Un7ZmhRGaEoVAqGGkbY7hFb0/cW/QYZk3ODnVFeMIIusZPTWRG2NIIeXhqCFaLlZHWMYaa7SdmRtrG3KZXwY2MoAsra2pqivLycgICAigoKBBNyJzMarVy/PhxtFotxcXFHlu95+m5gCsTI+iCR5IkicLCQo4fP05VVZVHf0C7ApVKxcaNG2lra+PYsWNiqRlhxZkNFvrrhumvG7ZfIEFQTMC50dVQtr2/kMBof6YGZxhuGWO8d4rJ/mkm+qeZ1c9fV7duYYVI4BemIzg2gKDYAELiA4nMCF36+w216Gk53MWhX51hcmBa/O2EVdXb20ttbS3p6elifXMXIMsyVVVVS8eB4u8huCKRoAseS6lUsmnTJo4ePUpjYyPZ2dnODsmjnV8vPTAwkIqKCiYnJ8nNzRXNc4TVIcNk/zST/dM07msH7COwEelhRKaHErUujKybUgmI9MNmtTE1MHMuYbf/OzkwzdTg7Ko3EPMkCi8FgdF+BMUG2JPxGH+CYgMIjPFHoVQwPTTDZP8ME33THPtdFSOt7lsBIbg+m81GXV0dg4ODbNy4kfDwcGeHJACNjY1MT0+zfft2UT0puCyRoAsezdvbe2mNdJ1OJ+YhuYDw8HDKyso4c+YMx44dY8OGDWi1WmeHJXggw6yJnsoBeioHli5TKCX8I/3OjdbaE8TkjbEExvjjpVYyMzLHxLlEf7J/5tzvM25ZQr5SVFoVQbH+FzzHwbEB+Ef4YjFZmRqwP6/jvVO0n+hlon+ameFZ0T9AcBmLi4uUl5djs9koLS3Fx8fH2SEJ2JsE9/T0sGPHDtF/SHBpIkEXPJ6vry+bNm3i5MmTaLVaj1tmwxX5+Piwfft2ampqOHz4MMXFxYSGhjo7LEHAZpWZGphhamAGTr/hCgl8Q3yWyqyDYgNYtzuF4NgAtAEa5sbmmRycYX5ikYXJRRamDPbfp+w/8xOLmBbcP4lX+6jQBWvxCbT/2H/X4BNk/z0o2h/fUB2L04alkxsDdSPUv9zKRP80c+MLokRdcGljY2NUVFQQERFBXl6eGKV1ESMjIzQ0NLBlyxaxgo/g8kSCLghASEgI69evp6KigpKSEgICApwdksdTKpUUFBTQ3d3NqVOnWLduHcnJyWK+mOCaZJgbW2BubIHe6qELrtL4eRMU609gtL89EQ3SEpkRii5Ii8+5H5W3FxajhYUpgz1hn3xDIn/+98lF5qcMLE4bXKqUXuGlQBugQXcu0T7/GJcS76DzCbkGL28vzEaL/bG84TFODswwUD/C1KC9TN0wa3T2wxKEayLLMp2dnTQ1NZGTk0NCQoL4vnIR09PTVFRUsH79ekJCQpwdjiBclUjQBeGc2NjYpeXXduzYIcqqXYAkSSQlJREQEEB5eTmTk5OsX78eLy/x0SWsDIUsk4OeEAyMo6GeMGw3eJBtmDUy1KRnqEl/2duotCp0QecS3MBzSW2QBv8IX6Iyw+wJbrAWnwANADarDYvJitVsxWqyLv1uMdnO/XvuuvO/v/E2ZusFo9DFb89BkkCpUuKlVqJUn/tXpXz9MpUSL7UCpdoLL5UCpfr16xRKBbJNZnHWyMK5qoD5Sfu/k4MzLEzaTzrYk3LDqpX7r8TfUhAuxWKxUF1dzfj4OFu3biU4ONjZIQnnLC4ucurUKdLS0oiNjXV2OIKwLOIoVxDeIC0tbSlJLykpEUuhuIjg4GBKS0upqKjgyJEjbNiwAT8/P2eHJbiZEnmAB6gm7P+3dyexcd6Jm9+ft7gVKe77voqkxE3clyJLtKw2ZtA5BJjJNTkMkEOCOcxhMMcc5pYECIIgmJzmnOSYGaCR/G1ZokmKFPd933dt3Jcii6w3BzfZlm3Zki3yfavq+wEMqmUb/XS/FOt9fqvObn7vrSL1H8xqdRlZt/rf7T3zav/Mq/2to9/85xwhhpwxER+U6JsyHR6i0OtSHfHTv+f44O9F3AtXWOQ/frZFxTt1cerVlfdK56cXurq40pX3HwMAl+f/KPZXF1cfDABcl3/P0bmt9oBb+SwRXI6OjtTf36+IiAi1t7fL6XRaHQl/5/V61dvbq7S0NBUXF1sdB/hk3IMepLj78ON8Pp96e3tlGIaampo4RdxGfD6fpqentby8rLKyMhUUFLCE8I4Fyj3oP9dmbup/UI8k6affUb6//+d/r5aAKnaBfA96sD3La9yDfrdM09Ty8rKmpqZUUFCghw8f8r5gIz6fT69e/XhQCO9yv44uYF98twI/43A41NDQII/Ho7GxMTGGZR8Oh0Pl5eVqbm7WwsKCenp6dHZ29vv/IvAbHKap/14jkj4sdNKPH5KmpP9OI3Lws8D2eJa4C2dnZ+rp6dHCwoKam5tVXl5OAbQR0zQ1NjYmj8ej+vp6ng38Dt+xwK8ICwtTc3PzzamflHR7SU5O1pMnTxQZGannz59rfX2dZ4Q/rEJvlaKzXxS6aw5JqTpThT6+hxz2wLPEbTJNU+vr6/r+++8VGRmpJ0+ecMOIzZimqcnJSb1+/VrNzc1sVYRfYg868BGRkZFqbW1Vd3e3DMNQWVkZy6ltJCwsTDU1NUpPT9fIyIh2dnZUVVXF3ab4bEnyfNF/DtbhWeK2nJ+fa3R0VLu7u6qtrVVGRobVkfAzpmlqampKm5ubam1t5bBf+C1m0IHfEB0drdbWVq2vr2tmZoZZWhvKyMjQ119/LZ/Pp+fPn2tnZ8fqSPAz7/Vphzp96j8H6/AscRt2dnb0/PlzSdKTJ08o5zZkmqamp6e1vr6u1tZW7jqHX6OgA7/juqSvrq5qdnbW6jj4FREREWpsbFRZWZkGBwc1MjIirzdwDr3C7ZpQit4qUh+7Wdwn6Y0iNaGUu4yFP4BniS/J6/VqZGREg4ODKisrU0NDA6u0bGp2dlZra2uUcwQECjrwCWJiYuRyubS8vExJtynDMJSbm6snT57o5OREL1680Pv3762OBT/gMwz9B1XLkH5R7K5P/v4/VM0d2n6AZ4kv5f3793rx4oVOTk705MkT5ebmss3NpmZnZ7W8vCyXy8UVrAgIFHTgE8XGxqq1tVVLS0uam5uzOg4+IioqSi6XS4WFherp6dHk5KSurq6sjgWb6zKy9O/Vovf6cM/iO0UG7LVcgYpniT/j6upKk5OT6unpUWFhoVwul6KioqyOhY+Ym5vT0tKSWltbuSoMAYND4oDPEBsbK5fLpe7ubjkcDt2/f9/qSPgVhmGoqKhIKSkpGhoa0uvXr1VXV6e4uDiro8HGuowsvTQzVaG3SpJH7+XUhFKYbfVDPEv8EQcHBxocHJTD4VB7ezuzsTY3Pz+vhYUFyjkCDgUd+ExxcXFyuVx6+fLlTRGEPcXGxurx48eam5tTZ2enSkpKVFxczDJFfJTPMDSmVKtj4AvgWeJT+Xw+LSwsaG5uTvfv31dJSQl3Z9vc4uKi5ufn5XK5GHxHwKGgA39AfHy8Wlpabkp6YWGh1ZHwEQ6HQw8ePFBaWtrNbHpNTQ2HyAAAdHx8rKGhIXm9XrW2tiohIcHqSPgdS0tLmp2dVUtLi+Lj462OA3xxDA8Cf1BCQoJaWlo0PT2t5eVlq+PgdyQkJKi9vV3x8fF68eKFlpeXuTYPAIKUaZpaXl7WixcvlJCQoK+++opy7geWl5c1PT2tlpYWnhcCFjPowJ+QmJiolpYW9fT0yDAM5efnWx0JvyE0NFSVlZVKT0/X0NCQdnZ2VFVVpXv37lkdDQBwR05OTjQ2NqbDw0M1NTUpJYVr9/zBysqKpqamKOcIeMygA39SYmKimpubNTk5qdXVVavj4BOkpKTo66+/VmRkpJ4/f66ZmRlOegeAAHd1daWZmRk9f/5ckZGR+vrrrynnfmJ1dVWTk5Nqbm5WYmKi1XGAW8UMOvAFJCUlqampSb29vTf3ccPewsLCVF1drby8PI2NjWl9fV0VFRVKT0/nEDkACCCmaWpnZ0cTExMKDw9nr7mfWVtb0/j4uJqbm5WUlGR1HODWUdCBLyQ5OVlNTU169eqVDMNQTk6O1ZHwCRISEvT48WOtrq5qZGRECQkJqqysZNk7AASA4+NjTUxMaG9vT2VlZcrNzWUQ1o+sr69rbGxMTU1NSk5OtjoOcCco6MAXlJKSosbGRvX19cnhcCgrK8vqSPgE1+cHZGZmanp6Ws+fP1dRUZGKi4sVGsqPSQDwN5eXl5qfn9fi4qJycnJUW1ur8PBwq2PhM2xsbGh0dFSNjY1sRUBQ4c0T+MJSU1PV0NCg/v5+GYahzMxMqyPhE4WHh+vRo0fKzc29WfZ+fagcMy4AYH/Xy9nHx8fldDpZzu6nNjc3NTIyosbGRqWmplodB7hTFHTgFqSlpam+vl4DAwOSREn3M9fL3tfW1jQyMqL4+HhVVlZydzoA2Njx8bHGx8e1v7/PcnY/trW1peHhYTU0NFDOEZQo6MAtSU9PV11dnQYHB2UYhjIyMqyOhM9gGIby8vKUkZGh6elpvXjxgmXvAGBDP1/OXldXx3J2P7W9va2hoSHV19crLS3N6jiAJXjLBG5RRkaGamtrNTg4qPr6eqWnp1sdCZ/petn7z097z8jIYGYGACxkmqa2t7c1MTEhp9OptrY2xcfHWx0Lf9DOzo4GBwdVW1vL+9Id8Pl8VkfAR1DQgVuWmZkp0zQ1MDCgmpoaDo7zU/Hx8XK73VpbW9Po6KhWV1dZ9g5AknRperWsGaUpW7EG+53vwvHxscbGxnRwcMBy9gCwsbGhkZER1dbWsi3wjszOzlodAR9BQQ9yOzs7io2NtTpGwMvKylJoaKj6+/vl8XhUVFRkdST8AT9d9j4zM6MXL16osLBQJSUlLHsHgtia5rWqWe1oTW3mXymKt+jy8lJzc3NaWlpSbm6u6uvrWc7u5xYXFzUzM6OGhgaWtd+R7e1tra2tWR0DH8EbZZAbGxtTVlYWdz7fgbS0NLW2tqq3t1cej0dlZWW8xPmp8PBwVVVV3Zz2vrGxwbJ3IIh5dCpJOteZrnSpUIVZnCjwsJw98JimqcnJSa2vr8vlcnHa/h05OTnR8PCwKisrrY6Cj3BYHQDWyszMVH9/v66urqyOEhQSEhLkdru1tbWloaEh9v/4uetl7w8ePNDo6Ki6urr07t07q2MBuGOR+sdWl2MdWJgkML17905dXV0aHR3VgwcP5Ha7Ked+zufzaXBwUNvb23K73ZTzO3J1daX+/n5lZ2ezlcDGKOhB7uHDh3I4HBoaGpJpmlbHCQrR0dFyu906OjpSb2+vvF6v1ZHwJxiGodzcXP3lL39RamqqXr16pe7ubu3u7lodDcAdyVOJohUvSVrWjLVhAsju7q66u7v16tUrpaam6i9/+Qt7zQOA1+tVT0+Pjo+P5Xa7OcvljpimqaGhITkcDlVUVFgdB7+Bgh7kQkJC1NTUpP39fU1NTVkdJ2hcL88zDEPd3d3yeDxWR8KfFBYWptLSUn3zzTdKSEjQy5cv1dvbq/39faujAbhlDsOhWrmVpmyVqd7qOH5vf39fvb29evnypRITE/XNN9+otLRUYWFsHfB3Ho9H3d3dcjgcamtrk9PptDpS0JiamtLBwYGamprkcFAB7YynA0VERKilpUWrq6taWVmxOk7QCA0NVVNTk2JjY9XZ2anj42OrI+ELCA8PV1lZmb755htFR0erq6tLfX19Ojw8tDoagFsUbkSo0mhWhEHh+KMODw/V19enrq4uRUdH65tvvtHDhw85BC5AHB0dqbOzU7GxsWpqauJw1Tu0srKi1dVVNTc3KyIiwuo4+B0UdEj6cdl1U1OTJiYm9Pr1a6vjBA2Hw3Fz9VpnZyfLogNIRESEKioq9PTpUzmdTnV0dGhwcJCBGCDIHZi7WjQndWVeWh3FNo6PjzU4OKiOjg45nU49ffpUFRUVFIkAsru7q66uLmVlZammpoYZ3Dv0+vVrTUxMqKmpie0EfoI/HbiRlJSk6upqDQwM6OCAQ27uimEYKisrU2lpqV6+fKmdnR2rI+ELioyMVFVVlZ4+fSqHw6Hnz59reHhYp6enVkcDYIF32tKypjWm3qA/++X09FTDw8N6/vy5HA6Hnj59qqqqKkVGRlodDV/Qzs6OXr58qdLSUm6wuWMHBwcaGBhQdXW1kpKSrI6DT0RBxweys7NVXFys3t5enZ2dWR0nqBQWFqq2tlYDAwNaXV21Og6+sKioKNXU1OjJkyfy+Xx69uyZxsbG+HMGBJkkZUiS3mtHb7RpcRprnJ2daXR0VM+ePZPP59OTJ09UU1OjqKgoq6PhC1tdXdXAwIBqa2tVWFhodZygcnZ2pt7eXhUXFys7O9vqOPgMbP7ALxQXF+v09FS9vb1qa2vjUJY7lJmZqfDwcPX19cnj8aikpISR5gATHR2turo6FRcXa2ZmRs+ePVN+fr6Ki4tZzgkEgXgjSdlmkTa0qHP9Y4Du0vQqRKEB/TP//Pxc8/PzWllZUWpqqtrb2xUbG2t1LNwC0zQ1OzurpaUlNTc3Kzk52epIQcXr9aq3t1dpaWkqLi62Og4+EzPo+AXDMFRVVaWIiAgNDAxwV/cdS05OVltbm1ZWVjQ6Osr//wEqNjZWjY2Namtr0/Hxsb799ltNTU3p4uLC6mgAblmpqvWV/kvlGj++OHvNC/2g/6we/ZNOzcA7p+Li4kJTU1P69ttvdXx8rLa2NjU2NlLOA5TP59Po6KhWV1fV1tZGOb9jPp9PAwMDioiIUFVVVUAP+gUqCjp+lcPhUENDgzwej8bGxoJ+n9xdi42N1ePHj7W7u6v+/n5dXnKYUKCKj49Xc3OzXC6X9vb29O2332p2dlZer9fqaABuiWEYCjX+sTrNpyv55NOpjvRK38pjBsYZFV6vV7Ozs/r222+1v78vl8ul5uZmxcfHWx0Nt+Ty8lL9/f3a3d3V48ePGYS5Y6ZpamxsTB6PRw0NDRzG56d4aviosLAwNTc3a2dnRwsLC1bHCTqRkZFqa2vTxcWFXr58ycxqgEtMTFRra6saGxv15s0bfffdd5qdndX5+bnV0QDcsggjUuVqkCRd6UpbWrE20J90fn6u2dlZfffdd3rz5o2amprkcrmUmJhodTTcouv3Fa/Xq7a2Ng77s8DCwoJev36t5uZmtqj6Mfag4zdFRkaqublZ3d3dioqKUlZWltWRgkp4eLhcLpcGBwfV2dmplpYWDtEJcCkpKUpOTtbbt2+1sLCgubk5ZWdnq7CwUHFxcVbHA3BLMow8hZphGtVLLWtGhSqzOtJnOzg40NLSkjY2NpScnKy6ujqlpKSwxDYInJ6eqqenRzExMaqrq1NISIjVkYLO5uam5ubmGBwJABR0/K74+HjV19erv79fTqeTaxruWEhIiBoaGjQ2NqYffvhBLS0tFLUAZxiGUlNTlZqaqsPDQy0tLamzs1MJCQkqLCxUeno6L7xAAEoxMtVm/lVOw38GYk3T1M7OjpaWlrS3t6ecnBwOfwsyBwcH6unpUWZmpiorK/l8ssD79+81PDyshoYG3hEDAAUdnyQtLU3l5eXq6+uT2+1WdHS01ZGCyvXBfZGRkerq6lJjY6NSUlKsjoU7EBsbq+rqapWVlWllZUVjY2OanJxUQUGBcnNzWcIGBBh/Keder1dra2taXl7W1dWVCgoK1NDQoPDwcKuj4Q69fftWfX19Ki4uVnFxMeXcAsfHx3r16pUqKiqUlpZmdRx8ARR0fLKCgoKb69fcbjdXQt0xwzBUUlIip9OpV69eqbq6mnstg0h4eLhKSkp0//59bW1taXFxUTMzM8rLy1NBQYHu3btndUQAQeDk5ETLy8taXV1VdHS0Hjx4oMzMTA6jCkIbGxsaGRlRVVWVcnNzrY4TlM7Pz9Xb26u8vDzl5+dbHQdfCAUdn6WsrEwnJyfq6+uTy+Vij5EFcnNzb67AOzo60oMHDxixDiIOh0PZ2dnKysrS3t6eFhcX9f333ystLU1FRUVKTEzk+wHAF2Wapt6/f6+lpSW9fv1a6enpamlp4dC3IGWapmZmZrS0tKSGhgZmbS1ydXWlvr4+xcXFqazM/86swMdR0PFZDMNQXV2duru7NTw8rLq6OsqABdLS0uR2u9XX16f9/X3V1dWxrDDIGIahxMREJSYm6vT0VMvLy3r16pWioqJUVFSkzMxMBtAA/ClXV1fa3NzU0tKSTk9PlZeXp6dPn3JYaRC7uLjQ4OCgTk5O5Ha7OWvAIqZpamhoSKZpqra2lnfxAENBx2cLCQlRU1OTfvjhB01PTzNqZ5HY2Fi1t7draGhIHR0damho4G7ZIBUVFaXy8nKVlpZqfX1ds7OzN/vU8/Pz2Y4C4LOcn59rZWVFy8vLCgsLU2FhoXJychQaymtjMNvf31d/f//N+wdnoFhnampKBwcHcrvdDMYHIH7S4g+JiIhQS0uLfvjhB0VFRbHvxSJhYWFqbGzU/Py8urq62AcW5EJDQ29K+Zs3b7S4uMg1bQA+2U+vSUtKSlJNTY1SU1OZnYPW1tY0NjamkpISDoOz2MrKilZXV/X48WMG4AMUBR1/WHR0tJqamtTT06PIyEj2IFnk+vC4+Ph4DQwMaG9vT5WVlRzYE8QMw1BaWprS0tJ+cU1bbm6uMjIymAkDIEm6vLzU9va21tbWtLe3p+zsbK5Jww2fz6fx8XFtbm6qsbFRqampVkcKaq9fv9bExIRaWlq4USmA8YaGPyUpKUnV1dUaGBhQW1sbM3QWSk1N1VdffaW+vj51dXWpoaFBkZGRVseCxa6vaXv48KHW1tY0Pz+v0dFRZWRkKCcnRykpKcyEAEHGNE29fftW6+vr2t7e1r1795Sdna36+npm5HDj7OxM/f398vl8+uqrrzh7wGIHBwcaGBhQdXW1kpKSrI6DW0RBx5+WnZ19c/3a48ePKYUWioqKktvt1ujoqDo6OlRfX6/k5GSrY8EGIiIiVFxcrPv37+vw8FDr6+saGhqSYRjKzs5WdnY2A2xAgDs4OND6+ro2NjYk/fj57Xa7+bOPX3j37p0GBgaUmpqqR48esc/ZYmdnZ+rt7VVxcTFX7AYBCjq+iOLiYp2cnKi3t1dtbW0cHGKhkJAQ1dTUaGVlRb29vXr48KEKCwuZJYWkH5e/x8XF3VzL8u7dO62vr6uzs1P37t1TTk6OsrKyGGgDAsTZ2Zk2Nze1vr6uk5MTZWRkqLa2VsnJyWyFwi+YpqmlpSVNT0+rvLxc+fn5vD9YzOv1qre3V2lpaSouLrY6Du4ABR1fhGEYevTokXp7ezUwMKCmpiY++C1kGIYKCgoUFxen/v5+7e3tqbq6mn3H+IDD4VBqaqpSU1Pl9Xq1vb2t9fV1TU1NKTk5WTk5OexXB/zQ9b7y9fV1vXv3TsnJySoqKlJGRgYD6Pioy8tLjYyM6P3793K5XNxzbwM+n08DAwOKiIhQVVUVgyVBgrcufDEOh0MNDQ3q6urS6Oioqqur+UFiscTERLW3t2tgYECdnZ1qaGjgUBH8qrCwMOXm5io3N1dnZ2fa2Nj41f3qAOzp5/vKo6KilJOTo5qaGlbE4HcdHx+rr69P4eHham9vl9PptDpS0DNNU6Ojo/J4PGpra2PiK4hQ0PFFhYWFqbm5Wd3d3RobG2O0zwacTqdcLpempqbU0dGhuro6paenWx0LNhYZGfnR/equ/6ZGsy+W9X5t3+qYACQl5car9Emh/umf/kmmad7sK4+NjeXzF59kZ2dHg4ODysvLU1lZGUXQBq7L+fv379Xa2srKlyBDQccXFxkZqdbWVnV1dWl8fFyVlZW8JFjM4XCooqLi5iq2+/fvq7S0lOeC3/Tz/epv377V6P83rf/qf/rn2t861OyLZc11ruh078zqqEBQiUqIVIk7X6VfFSg+M1ZLveuqrq5WSkoK5QqfzDRNzczMaHFxUTU1NcrKyrI6EvTjcxkbG9Pbt2/V1tbGCpggREHHrfhpSTcMQxUVFZRBG8jOzlZsbKz6+vq0v7+v2tpahYeHWx0LfsDhcCgtLU3f/q/dCnOGqqglV6VfFajlv67Rm/l3Whnc1MrApt6v7lsdFQhISfnxyq/LUn5dllKLk7U1+Vqj/3lGiz1r8nou9e/+l39jdUT4kYuLCw0ODurk5ESPHz/m3nubME1TExMTev36NeU8iFHQcWuioqLU2tqq7u5uGYah8vJySroNxMbGqr29XUNDQ+ro6FBjYyNX7OCzeD2Xmnm+pJnnS7qXEKm8uizl1WWq7l9W6PzkQqt/L+sbYzu6vLiyOi7gl0IjQpRdma78+izl1WUp4l641ke3Nf39kv7f/7lTJ6xcwR90cHCgvr6+m/cBlk/bg2mampyc1Pb2tlpbW7l3PohR0HGr7t27J5fLdVPSy8rKKOk2EBYWpsbGRs3Nzamzs1OPHj1STk6O1bHgh072zjT13YKmvluQI9ShrPI05ddnqe1f1Ss6KUqbEztaGdjUyuCmjt6cWB0XsLWY1Hs/zpLXZymrIl3H70+1Orip7//3Xm1Ovpbv0md1RPi59fV1jY6Oqri4WCUlJbyT2YRpmpqamtLm5qba2tp07949qyPBQhR03Lro6OgPlrs/fPiQDwQbMAxDpaWlio+P1+DgoPb29lRRUcH+Rfxhvkuf1ke3tT66rc7/OKD4zFjl12epqCVXbf+qXvtbhz/Org9uamfmrXxXptWRAUs5QgylP0hRfn228usyFZcRq62p11od3FLnfxzU/tah1RERIHw+nyYmJrSxsaGGhgalpaVZHQl/Z5qmpqentb6+TjmHJAo67sh1Se/u7pbD4dCDBw+sjoS/S0tLU3t7u/r6+tTd3a36+nr2POGL2N861Mh/OtTIf5pWeFSYch5lKL8uS//837oVEhaiteEtrQxuanVoS57Dc6vjAnfCGRuhvNpM5ddlKbcmU1feK60ObunV/zmm9dFtXZx6rY6IAHN2dqaBgQFdXV2pvb2dAmgzs7OzWltbU2trK1fhQhIFHXcoJibmg+XupaWlVkfC3927d09ut1vj4+P6/vvvVVVVpezsbFY64Iu5OPVqsWdNiz1rkiGl3k9Sfl2WHv0XD/T0X7fozcL7m6Xw75b3rI4LfFHJBQk3s+Sp95P0bnlPK4ObGv5/pvVm8b3EYhLcAtM0tbGxobGxMWVmZqqyslKhobz628ns7KxWVlbkcrkUExNjdRzYBH9KcadiY2M/ODiupKTE6kj4u9DQUNXU1Cg9PV2jo6Pa3t7Wo0ePFBERYXU0BBpTejP/Xm/m36vv/xpTVELkzYxi7b8o18WpV2sjW9qefqvtmbc/LvOlwMBfGFJCVqzSS1OU8TBFudWZCo8K0/rItia/XdDf/scfuJoQt+78/Fyjo6Pa3d1VbW2tMjIyrI6En5mbm9PS0pJaW1s5RR8foKDjzsXGxn4wk15cXGx1JPxERkaGEhMTNTo6qufPn6u6ulrp6elWx0IAO9070/SzRU0/W5Qj1KHMslTlPMrQgyeFav9vG3R5caWd2Xfann2rnZm3erPwXl7PpdWxAUlSmDNUqfeTlP4gRRmlKUovTVZoeIheL7zXzuw7ffe/vdTW1BsOeMOd2dnZ0cjIiBITE/XkyRMG2m1ofn5ei4uLcrlclHP8AgUdloiLi5PL5dLLly/lcDhUVFRkdST8REREhBoaGrS+vq7BwUFlZWWpvLycq1hw63yXPm2M7WhjbEeS5Ah1KLkgQemlycooTVHlPytWVEKk3q3saWfm7Y/Ffeatjt5yQjzuRkzKPWU8SFH6gxSll6YoOT9eJ3tn2pl5q7XRLfX932N6t7JHIced83q9mpiY0NbWFlvVbGxhYUHz8/NyuVxcc4tfZZimycLBIHR4eKi4uDgdHBxYOnK3t7ennp4ePXjwQIWFhZblwMednp5qeHhYp6enqq2tVVJSktWREOTOzs60u7t789fBwYHCw8OVmJh481dcXJxCQkKsjmpbXq9Xf/vb3yRJf/3rXxl8+4irqysdHBx88P12cXGhuLi4D77fOFgTVnv37p2Gh4cVFRWlmpoa7tC2qcXFRc3Ozsrlcik+Pt7SLHbpAvglZtBhqYSEBLW0tOjly5cyDEMFBQVWR8LPREVFyeVyaWlpST09PSooKNCDBw8oP7BMZGSksrKylJWVJUm6vLzU/v6+dnd39f79e83Pz+vy8lLx8fFKTExUQkKCEhMT5XQ6LU4Ou/N4PNrd3dXe3p52d3e1v7+v0NDQmyJeVFSkuLg4DtqCbVxdXWlmZkbLy8t6+PChCgsLmTW3qaWlJc3MzNiinMPe+ISB5a5Lek9PjwzDUH5+vtWR8DOGYaioqEipqakaGhpSR0eH6urqWJoFWwgNDVVycrKSk5Ml/Xhy8cnJyc2M5+zsrA4PDxUVFaWEhATFxMQoJiZG0dHRunfvHoNNQejq6konJyc6OjrS8fGxjo6OtLe3p9PTU8XGxioxMVF5eXmqqanRvXv3KDywpf39fQ0NDSkkJETt7e2cAm5jKysrmp6eVktLixISEqyOA5ujoMMWEhMT1dzcrN7eXhmGoby8PKsj4VfExMTI7XZrbm5OnZ2dKikp0f379+VwOKyOBtwwDEPR0dGKjo5Wbm6upB+XdO/t7Wl/f19HR0fa3t7W8fGxfD6foqKibgr7T8s7y779n9frvSngPy3jp6encjgcN888NjZWubm5SkhI4LnD9nw+nxYWFjQ3N6fi4mIVFxfzOWxjq6urmpycVHNzsxITE62OAz9AQYdtJCUlqamp6aakX79Yw14cDocePHigtLQ0DQ0NaWdnR7W1tYqOjrY6GvBRYWFhSk1NVWpq6s3vmaaps7OzDwrc2tqajo6OdHFxIafT+avFPSIighlVGzFNU+fn579axD0ej8LDw2+eXXJysgoKChQdHa3IyEieI/zO8fGxhoaG5PV61draymysza2trWl8fFzNzc2c4YNPRkGHrSQnJ6upqUmvXr2SYRjKycmxOhI+IiEhQV999ZWmpqb04sULlZeXKz8/nxde+A3DMBQVFaWoqKgPirukXxS+nZ0dzc/P6+zsTGFhYR8U9+uvTqeT5fK36OrqSh6P54MCfv1rr9eryMjIm+eRmZn5wYAK4O9M09TKyoomJyeVl5ensrIyft7Y3Pr6usbGxtTc3HyzBQv4FBR02E5KSooaGxvV19cnwzCUnZ1tdSR8REhIiCorK5Wenq7h4WHt7OyourqaE43h9yIiIhQREfGLGY/Ly8sPyuHu7q5WV1d1cnIi0zQVFhamiIgIOZ3Oj351Op0KCwtjMEs/lg6v1yuPxyOPx6Pz8/OPfvV6vTIMQ/fu3ftgRvz61xzchkB1dnamkZERHR0dqampSSkpKVZHwu/Y2NjQ6OioGhsbKef4bHyawZZSU1PV0NCg/v5+GYZxc1oz7CklJUVPnjzR+Pi4nj9/fnP/KhBoQkNDFR8f/4sTeK+XWV8XyutSeX5+rv39/Q9+/+rqSoZh/GaJ/+lXf5wlu7q6+s2y/dOvpmkqJCTkZvDi+n97bGzsB4Ma14MmDGwgmGxsbGhsbEzp6emqr6/njAQ/sLm5qZGRETU2Nv5idRbwKSjosK20tDTV19drYGBAhmEoMzPT6kj4DWFhYaqtrdXW1pZGR0e1s7OjqqoqhYeHWx0NuHXXhdvpdP7u7QaXl5e/WlTPzs60t7f3we9LP65UcTgcX/SraZo3eba3t2UYhnw+n66urr7YV0m/OuDw0+J9/ZXZb+BDFxcXGhsb09u3b1VdXc07kJ/Y2trS8PCwGhoaKOf4wwzzp5/SCBqHh4eKi4vTwcGBYmNjrY7zm7a3tzU4OKi6ujplZGRYHQefwOPxaHR0VHt7e6qpqVFaWprVkQC/4/P5dHFxIa/X+4dL8vWvf/7710v1Jd3c6/3TEn/96z86CHC91J/ZbuDzvX79WsPDw0pISNCjR4/kdDqtjoRPcP2+Wl9fr/T0dKvj/C5/6gLBhoIepPztD+XW1paGhoYo6X7ENE2tra1pYmJC2dnZKi8vZ5YMsAmv16u//e1vkqS//vWvLJsFbODy8lKTk5Pa2NhQRUWFcnNzGeTyE9flvLa21m9WO/hbFwgmvC3DL1z/sBscHFRlZSX3pPuB6/vsU1JSNDw8rGfPnqmiokKZmZm8cAAA8HemaWpra0sTExOKjo7WkydPFBUVZXUsfKLV1VWNj4/7VTmHvVHQ4TcyMzMVHh6uV69eyePxqKSkhKLnB6KiouRyubSxsaHx8XGtrKyoqqpKMTExVkcDAMBSR0dHGhsb09HRkcrLy5Wdnc27jZ8wTVNzc3NaWFjgKjV8URR0+JXk5GS1tbWpt7dXHo9HVVVVfJD5ges77dPT0zUzM6OOjg4VFBSopKSEpbUAgKDj9Xo1Nzen5eVl5efnq7Gxkc9DP2KapsbGxrSzsyO3280ScXxRDqsDAJ8rLi5Obrdb7969U19f381pwbC/sLAwVVZW6vHjx9rb29P333+vzc1NcRQGACAYmKapjY0Nff/999rb29Pjx49VUVFBOfcjV1dX6uvr07t37yjnuBUUdPilqKgoud1uXVxc6OXLl7q4uLA6Ej5DbGysWltbVVZWpvHxcb18+VKHh4dWxwIA4NYcHh7q5cuXmpiYUHl5uVpbWyl3fuan751ut5uzAnArKOjwW+Hh4XK5XAoPD1dnZ6dOT0+tjoTPcL3s/enTp4qLi1NHR4cmJibk9XqtjgYAwBfj9Xo1MTGhjo4OxcXF6enTp+w190Onp6fq7Oz84P0TuA0UdPi1kJAQNTY2Kjk5WZ2dnTo4OLA6Ej5TWFiYKioq1N7erv39fX3//ffa2Nhg2TsAwK9dL2d/9uyZ9vf31d7eznJ2P3VwcKDOzk4lJyersbFRISEhVkdCAOOQOPg9wzBUVVUlp9Oprq4uNTU1cZKmH7pe9r65uamJiQmtrq6qsrKS5X8AAL9zeHiosbExHR8fq6KiQllZWcyY+6m3b9+qr69P9+/f5wYh3AkKOgKCYRgqLS2V0+lUb2+vampqlJWVZXUsfCbDMJSdna20tDTNzs7enPZeWlrKjAMAwPa8Xq9mZ2e1vLysgoICNTU18fnlxzY3NzU8PKzKykrl5eVZHQdBgoKOgJKXl6eIiAgNDAzI4/GoqKjI6kj4A66Xvefm5mp8fFzPnj3jflgAgG1dL2efnJxUTEyM2tvbWQHm5xYXFzU9Pa2GhgalpaVZHQdBhIKOgJOenq7W1tabu9LLysoodX4qNjZWLpfrg2XvVVVVvPQAAGzjejn7yckJy9kDgGmampqa0tramlpbW5WQkGB1JAQZCjoCUkJCgtxut3p6euTxeFRTUyOHgzMR/dFPl73Pzc2po6ND+fn5evDgAcsGAQCW8Xq9mpmZ0crKigoLC1nOHgB8Pp+Gh4e1u7srt9ut6OhoqyMhCNFYELCio6Pldrt1dHSk3t5eru/yc2FhYSovL1d7e7sODw/17Nkzra+vc9o7AOBOmaap9fV1PXv2TIeHh2pvb1d5eTnl3M95vV719vbq6OiIcg5LUdAR0JxOp1pbWyVJ3d3d8ng8FifCn3W97L2yslJTU1Pq7u7W/v6+1bEAAEFgf39fXV1dmpqaUmVlpVwuF9uuAoDH41F3d7ckqbW1VU6n0+JECGYUdAS8sLAwNTc3KyYmRp2dnTo+PrY6Ev4kwzCUlZWlr7/+WgkJCerq6lJ/f78ODw+tjgYACECHh4fq7+9XV1eXEhMT9fTpU/aaB4jj42N1dnYqJiZGzc3NrISA5SjoCAoOh0O1tbXKzMxUZ2endnd3rY6EL+B62fvTp08VHh6ujo4ODQ4OMggDAPgijo+PNTg4qI6ODoWHh+vp06cqLy9XaCjHOAWC3d1ddXZ2KjMzU7W1tZxXBFvgpwuChmEYKi8vl9Pp1MuXL1VfX6/09HSrY+ELiIyM1KNHj3T//n3Nzc3p+fPnysnJUUlJiaKioqyOBwDwM6enp5qdndXGxoays7P19OlTPk8CzM7OjgYGBlRWVqbCwkKr4wA3KOgIOkVFRXI6nRoYGFBlZaXy8vKsjoQv5N69e6qpqVFxcbFmZ2f17Nkz5eXlqaSkhP1kAIDfdXZ2pvn5ea2uriozM1NPnjzhsLAAtLq6qvHxcdXU1CgrK8vqOMAHKOgISllZWYqIiNCrV6/k8XhUUlLCPrIAEh0drbq6OhUXF2tmZkbfffedCgoKdP/+fUVERFgdDwBgM+fn55qfn9fKyopSU1PV3t7O4W8ByDRNzc3NaWFhQc3NzUpOTrY6EvALFHQEreTkZLW1tam3t1cej0dVVVWU9AATGxurxsZG7e/va2ZmRt9++62Kiop0//59DoEBAOji4kKLi4taXFy8eS+Ij4+3OhZugWmaGhsb087OjtxuNwMwsC0KOoJaXFyc3G63enp61NfXp9raWopbAIqPj1dzc7N2d3c1PT19U9QLCwt53gAQhLxer5aWlrSwsKD4+Hi5XC4lJiZaHQu3xOv1amhoSCcnJ3K73ZwnAFujoCPoRUVFye12q7+/Xz/88IMaGxsVExNjdSzcgsTERLW2turt27eamZnR0tKSiouLlZ+fz4m8ABAELi8vtbKyovn5eUVHR6uxsVEpKSlWx8ItOjo6Ul9fn5xOp9ra2hQeHm51JOA38UYKSAoPD1dLS4ump6f1ww8/qKamRpmZmVbHwi1JSUlRcnKy3rx5o+npaS0sLKikpER5eXkKCQmxOh4A4Au7urrS6uqq5ubm5HQ6VVtbq9TUVLa2BbitrS0NDw+roKBADx8+5HnDL1DQgb9zOBwqLy9XQkKChoeHtb+/zw/zAGYYhtLS0pSamqqdnZ2bol5aWqqcnBzuQgWAAODz+bS+vq7Z2VmFhobq0aNHSk9P57M9wJmmqenpaS0vLzPpAr9DQQd+JjMzUzExMerr69P+/r7q6uo4+TuAGYahjIwMpaena3NzUzMzM5qfn1dpaamys7N5iQMAP2SapjY2NjQ7OytJKisrU1ZWFj/Tg8D5+bkGBwd1dnamx48fs20RfoeCDvyKmJgYPX78WMPDw+ro6FBjYyOnugY4wzCUnZ2tzMxMbWxsaGZmRnNzc3r48KEyMjJ4qQMAP2Capra2tjQzMyOfz3cz2MqqqOCwt7en/v5+xcfH6/HjxxwEC79EQQc+IiwsTA0NDVpYWFBXV5cqKyuVl5dndSzcMofDodzcXGVnZ2t1dVXj4+Oanp5WUVGRsrOzOUwOAGzo8vJSGxsbWlxc1OXl5c25IhTz4HH9mV1aWqr79+8zsA6/xZtmkDs8PLQ6gu2lpaXJ4XBoYGBAGxsbKisr4yCxIJGUlKTGxkZtbW1pYmJCAwMDys3NVV5eniIjI62OB/xhXq9Xp6enkn78HGCWCf7q7OxMq6urWltbk9PpVEFBgTIzMxUSEqLj42Or4+EOXF1daXJyUq9fv1ZNTY2Sk5N1dHRkdSzbowPYFwU9SIWHhys9PV05OTlWRwEAAABgAc5Zsh/DNE3T6hCwhsfj0cXFhdUxAAAAANyxiIgICroNUdABAAAAALABTs4AAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABugoAMAAAAAYAMUdAAAAAAAbICCDgAAAACADVDQAQAAAACwAQo6AAAAAAA2QEEHAAAAAMAGKOgAAAAAANgABR0AAAAAABv4/wHroH/jn6v4hAAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#proj = EASEGrid2South()\n", + "plt.close(\"all\")\n", + "proj = ccrs.LambertAzimuthalEqualArea(central_latitude=-90)\n", + "\n", + "antarctic_extent = [-3000000.0, 3000000.0, -3000000.0, 3000000.0]\n", + "#np.array(map_extent)+np.array([-1e6,-1e6,1e6,1e6])\n", + "\n", + "fig = plt.figure(figsize=(10,10))\n", + "ax = fig.add_subplot(111, projection=proj)\n", + "ax.set_extent(antarctic_extent, proj)\n", + "ax.add_feature(cfeature.LAND)\n", + "ax.gridlines()\n", + "ax.coastlines()\n", + "\n", + "gdf.to_crs(easegrid2_epsg).plot(ax=ax)\n", + "ax.imshow(grid, interpolation='None', extent=map_extent)\n", + "ax.scatter(x, y, c='r', transform=proj)\n" + ] + }, + { + "cell_type": "markdown", + "id": "b323d486-fda4-4c9f-b261-5a28031a39e9", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## Testing with random points" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "id": "2a7e0d7d-5fd0-4582-bcc1-d32ad1558067", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
minxminymaxxmaxy
0-201.333348-84.712225-138.890313-71.325768
\n", + "
" + ], + "text/plain": [ + " minx miny maxx maxy\n", + "0 -201.333348 -84.712225 -138.890313 -71.325768" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf.geometry.bounds" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "id": "f8e3123c-8523-4b45-9b43-f03cc7e9efe5", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from shapely.geometry import Point, Polygon\n", + "\n", + "def Random_Points_in_Bounds(polygon, number): \n", + " minx, miny, maxx, maxy = polygon.bounds\n", + " x = np.random.uniform( minx, maxx, number )\n", + " y = np.random.uniform( miny, maxy, number )\n", + " return x, y" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "id": "3c8d46cb-a0ae-47d8-8457-437705d5a951", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "polygon = Polygon([[0,0],[0,2],[1.5,1],[0.5,-0.5],[0,0]])\n", + "gdf_poly = gpd.GeoDataFrame(index=[\"myPoly\"], geometry=[polygon])" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "id": "41655c53-ce67-4422-b1ac-d7dd44dd5a50", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "could not convert string to float: 'minx'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [125], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m x,y \u001b[38;5;241m=\u001b[39m \u001b[43mRandom_Points_in_Bounds\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgdf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgeometry\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1000\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame()\n\u001b[1;32m 3\u001b[0m df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpoints\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mzip\u001b[39m(x,y))\n", + "Cell \u001b[0;32mIn [113], line 6\u001b[0m, in \u001b[0;36mRandom_Points_in_Bounds\u001b[0;34m(polygon, number)\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mRandom_Points_in_Bounds\u001b[39m(polygon, number): \n\u001b[1;32m 5\u001b[0m minx, miny, maxx, maxy \u001b[38;5;241m=\u001b[39m polygon\u001b[38;5;241m.\u001b[39mbounds\n\u001b[0;32m----> 6\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43muniform\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[43mminx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmaxx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumber\u001b[49m\u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m y \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39muniform( miny, maxy, number )\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m x, y\n", + "File \u001b[0;32mmtrand.pyx:1111\u001b[0m, in \u001b[0;36mnumpy.random.mtrand.RandomState.uniform\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: could not convert string to float: 'minx'" + ] + } + ], + "source": [ + "x,y = Random_Points_in_Bounds(gdf.geometry, 1000)\n", + "df = pd.DataFrame()\n", + "df['points'] = list(zip(x,y))\n", + "df['points'] = df['points'].apply(Point)\n", + "gdf_points = gpd.GeoDataFrame(df, geometry='points')" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "id": "57e79654-43ff-4f51-af05-b8b8dd762a07", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c0446928f5474ffebf86419454b6494f", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABp/UlEQVR4nO3dfXRU9Z0/8PcQTIaQTGhAIKlZDB42AhZBtIVSqmzOwYauT91Fc36/BelP/ZWtSClb7fIoKsEjdtXdA+pS3VqsFaE8SI+wFlhAfwg+NbrbhlINWWBFQHnI5Gkygvf3x5ebuXPne+/cx3nIfb/OmYMzmbn3ziSYN5/v9/P9hhRFUUBEREREgdEn2xdARERERJnFAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMH2zfQFEvdmXX36J48ePo7S0FKFQKNuXQxQIiqKgra0NlZWV6NOHdQ4iGQZAIh8dP34cVVVV2b4MokA6duwYLrvssmxfBlFOYgAk8lFpaSkA8YsoEolk+WqIgiEajaKqqqrn7x8RpWIAJPKROuwbiUQYAIkyjNMuiIxxcgQRERFRwDAAEhEREQUMAyARERFRwDAAEhEREQUMAyARERFRwDAAEhEREQUMAyARERFRwDAAEhEREQUMAyARERFRwDAAUiA8+uijuO6661BaWorBgwfj1ltvxaFDh9K+bu/evRg/fjzC4TCGDx+OZ599NgNXS0RE5C8GQAqEvXv34t5778WBAwewY8cOnD9/HlOnTkVHR4fha1paWjBt2jRMnjwZjY2NWLhwIebOnYuNGzdm8MqJiIi8F1IURcn2RRBl2meffYbBgwdj7969+Pa3vy19zk9/+lNs3boVBw8e7Hls9uzZ+PDDD7F//35L54lGoygrK0Nrayv3AibKEP69I0qPFUAKpNbWVgBAeXm54XP279+PqVOnJj1244034r333sMXX3whfU13dzei0WjSzYqOjg58/PHHFq+eiIjIHQZAChxFUTB//nx861vfwlVXXWX4vBMnTmDIkCFJjw0ZMgTnz5/H559/Ln3No48+irKysp5bVVWVpWt69tlnMWLECMydO9d0WJqIiMgLDIAUOHPmzMF//ud/4uWXX0773FAolHRfnTGhf1y1YMECtLa29tyOHTtm6Zra29tRWFiI5557DmPGjMHevXstvY6IiMgJBkAKlPvuuw9bt27F7t27cdlll5k+d+jQoThx4kTSY6dOnULfvn0xcOBA6WuKiooQiUSSblYNGjQIH374ISoqKnDDDTewGkhERL5hAKRAUBQFc+bMwaZNm/Af//EfqK6uTvuaiRMnYseOHUmP/e53v8O1116LSy65xJfrHDFiBPbu3Ysnn3yS1UAiIvINAyAFwr333otf/epX+PWvf43S0lKcOHECJ06cQFdXV89zFixYgJkzZ/bcnz17No4cOYL58+fj4MGD+Ld/+zc8//zz+MlPfuLrtRYUFGDevHmsBhIRkW8YACkQnnnmGbS2tuKGG25ARUVFz+2VV17pec6nn36Ko0eP9tyvrq7Gtm3bsGfPHowdOxaPPPII/uVf/gV/8zd/k5FrZjWQiIj80jfbF0CUCVaWu3zhhRdSHrv++uvx+9//3ocrskatBn73u9/F97//fdxwww2477778Oijj6J///5Zuy4iIspvrAAS5QFWA4mIyEsMgER5gnMDiYjIKwyARHmG1UAiInKLAZAoVygKcPgwEIuJ+7FY8n0NVgOJiMgNBkCiXHD4MHDiBHDFFcCQIcDjj4s/1fu7dklfxmogERE5wQBIlG2xGPDKK6ICCABtbcADDwDRaOL+974nrQQCrAYSEZF9DIBE2Xb8ONDdnbivX7JGUUQYPH7c9DCsBhIRkVUMgETZVlkJFBUl7odCyV8PhYBIRDwvDVYDiYjICgZAomwLh4E77kgEv9JSYOVKEfrU+5s2iecBxs0hmsdZDSQiIjMMgES5YPhwYOhQoLkZOHkSuP9+8ad6v7ZWPG/XLnlziORxVgOJiMgIAyBRrgiFRBBUK33hcPL9WEw0g7S1iftqc8i5c/LHL1YIWQ0kIiI9BkCifHH8uGgGUZtE1OaQDz6QP97S0jMkzGogERFpMQAS5YvKSjEvUJ0rqDaHjB2b+nhxMTBhQspQMauBREQEMAAS5Y9wWDSDlJaK+2pzyIAByY+XlIg/DYaEWQ0kIiIGQKJ8Ulsrbw7RPv7220BnZ+qQsHYdwVgMIwoKsPf111kNJCIKIAZAonyjbw7RP15dLR8qVtcR1HQMF1RWYt7XvsZqIBFRwDAAEvU2RkPF4bBhJ/GIqirODSQiChAGQKLeyGio2KiT+Phxzg0kIgoQBkCi3ko2VGzUSazZZo6dwkREvR8DIFFQxGKiArhunXx4WIPVQCKi3o0BkCgItFvF1deLEKgfHpZgNZCIqHdiACTqDWKxnl0/pF/TN37U14thX30nsQSrgUREvQ8DIFG+01b3hgwBtm9PDoMmjR+mdKFSWg3cscM4eBIRUc5iACTKZ7Lq3rRpyVvAWWj8SKEPlRe3kkuqBvbrhxumTsXcK65Ax6BBIngSEVFeYAAkymey6p5K3QIOMF4XUCYWA267TRxXexxNlW9EVRX2Hj2KJwE8B2BMRwf2TpvGEEhElCcYAIlyndn8Pn11T0s71Gu0LqDsPL/+daKiqD+O6vhxFLS1YR6ADwFUALgBwNybb0bH++9zSJiIKMcxABLlMoOh2B76XT+01KHe8nIR7AD5FnLqeQYPFue5667Ur5eWJg8ZV1YCJSUAgBEA9gKiGnj+PMZcey32DhyYeq1ERJQzGACJcpXBtm0p1TVtdW/bNhH6ABHaFi8Ghg0zDpDqeW6+Obnqp7d6dXJwDIeB9et77hYAydXAzk7MnTYNHadP23/fRETkOwZAolxl1L174EBqCFR3/airS4TBI0eA5cvTB8iWFqCzU34NahVx+vTUr9XVicB5sRII6KqB8TjGXHMN1w0kIspBDIBEuUrWvQsAU6YYV/OARBg8c8bZ8i9a6RpG6uqAzz4Dmpp6rrUAwLxQCB/274+Kr36V6wYSEeUgBkCiXKWf3yfr8DVrtrC6/Et1NVBcnPxYv34i1KXZKaTnOkeOTOk0HvHqq9j75pvcRYSIKAcxABLlMnV+3+uvJz9upZqnD5BG1bxwGNi6NTF3MBIBfvtbEeos7BSScq2aTmPuIkJElJsYAIly3b59qXPwrCzmDFhb/sXO89JRh591wZF7ChMR5RYGQKJccP48cOFC6pCuvhNYVVJiPjdPyyCUOX6eQ6wGEhHlDgZAomzbtQt4/HFRedM3d+g7gVVvv+28SpdlrAYSEWUfAyBRNqkVvu5ucV/f3GHUyFFd7f11GO024sPxWQ0kIsouBkCibFIrfCp9c0c4DKxbB/TvL+6nW5bFiXS7jfh4fFYDiYiygwGQKJvUCp9K39yxaxdQXw+0t4t5f+vWeTv0a3W3ER+Pz2ogEVHmMQASZZO6VEtRkbivrfDpw1NHhwiDXg7TGu02km6xaKtDxjaOz2ogEVHmMAASZVttLXD//WJ4VLsEi9NwZofVxaK17AwZ2zw+q4FERJnBAEiUC/r2BQoKkuf2OQlndlldLFplNKR77py8Imj3+BexGkhE5C8GQKJc5TA82WZnEWijqmRVlXFF0OEi06wGEhH5hwGQKJd5tUNHOlYXgdZXJVVqKDNqInGxyDSrgURE3mMAJMp16cKTviEjFgMOHhQ3r9f101clS0rEn/qK4IEDnp6b1UAiIm8xABLlM31DxuOPAwMHAqNGidvAgd6v61dbCxw5AuzeDXz0kbwiOGWKL2sKshpIROQNBkCifKVvyIhGgQceADo7E8/p7ARuu83bSuCuXcCwYSLk1dQAixcnKoJAIgyarSnoYueRpGrgkCGiGvjDH7IaSERkAwMgUb4y2idYr60tdekYpwFM1gW8fHmiIgikX7bGo51HRhw9ir1/+AOeBPDcM89gzMXqIBERpccASJSvjBoy9EpLk5eOcRPAjLqAz5wBJkxIv2xNLCYqkur2d053HrkYRAva2zEPwIcAKk6d4txAIiKLGACJ8pW+ISMSAVauBIqLE88pLgY2b040kLjd+s1sbUIry9Zs2JA4N+B8cWtdEB0BYO+FC3hy8WLODSQisoABkCif6Idu9cvE3H8/cPo00NQkbqdPJy8d43Z3kXQhz2zZmlgMmDMn9Zj9+tlf3FoSRAsiEcxbtIidwkREFjAAEuULo6Fb/TIx4TAwcqS46ZeO8WJ3kXRrExotW6OGT710cxhlTIIoO4WJiNJjACTKB26HblVe7S7iZGHnysrEuoFasZiz/Y1NgijXDSQiMscASJQP3A7damVqdxG9cBhYvz71cTf7G6cJoqwGEhHJMQAS5QMvhm5zQV0dsG1bohIYifizv7EGq4FERKkYAInygVdDt4Bn6/A5VlcHfPZZ+gqki8WiZVgNJCJKYAAkyhdGQ7d2gpJXcwn1x9SfP901pZtD6FNIZTWQiEhgAKTAeOONN3DTTTehsrISoVAIW7ZsMX3+nj17EAqFUm5/+tOfMnPBMvrgZDcoeTmX0Oj8bsObHyFVh9VAIgo6BkAKjI6ODlx99dVYtWqVrdcdOnQIn376ac9txIgRPl2hTU6CkpdzCY3Of9tt7sKb1yHVgLQa+MMfouMPf/B272QiohzEAEiBUVdXh+XLl+N73/uerdcNHjwYQ4cO7bkVFBT4dIU2OQlKTucSyoZ0jc7f1mb9mmTHzXDDS0818O//Xuwp/LWvYe/AgZmfG0lElEEMgERpjBs3DhUVFaitrcXu3bv9P6E+FBnNp3MalOwuA2M0pGt0/tJSa9dktrC1Vw0vFhV88QXmvfSS2FMYwA2dnZg7bRo6Tp/27ZxERNnEAEhkoKKiAmvWrMHGjRuxadMm1NTUoLa2Fm+88Ybha7q7uxGNRpNutuhD0eOPG8+ncxOUrC7kbDbMbHT+zZvTX1O64etMrlUYiwEHDgDRqNhTGMCTAJ6LxzHmmms4N5CIeqWQojjZh4kov4VCIWzevBm33nqrrdfddNNNCIVC2Lp1q/Try5Ytw0MPPZTyeGtrKyKRiOFxH3roIaz513/FJx0dyUOo4mLF/VBIBKqTJ5MDlbqTRmWl91Wyw4dF+NRrbhYB0uj86a7JynHNePGeYzFgwwaxP7Ea1DWf9UfFxfj+mDHYt38/7ps5E48+8QT6Dxzo7FyUUdFoFGVlZWn/3hEFGSuARDZMmDABH330keHXFyxYgNbW1p7bsWPHrB/8yy+T59Sp9PPpWlqSh4SdbMtmVWUlUFyc/FhxcfKQruz86a7JzTw/L5aI2bULGDwYmDkzeX9i9bMuLcWIV1/F3mXL8GRREZ5buxZjLr0Ue594wv65iIhyEAMgkQ2NjY2oqKgw/HpRUREikUjSzbI+fZJDkUobkoqLgQkTMruI84UL5vedcNOMYrfzWTanUnsMvd27RZV10iQUTJ+OefG4mBuoKLjhH/5BdApz3UAiynMMgBQY7e3t+OCDD/DBBx8AAFpaWvDBBx/g6NGjAET1bubMmT3Pf+qpp7BlyxZ89NFH+OMf/4gFCxZg48aNmDNnjj8XGAolh6JIBFi5MnFf3T7Nx/XxUrS0AN3dyY91d4vHVU537HAyz89u57OsWqgew8jYsSKIas6VNDfwF7/guoFElPcYACkw3nvvPYwbNw7jxo0DAMyfPx/jxo3D0qVLAQCffvppTxgEgHg8jp/85CcYM2YMJk+ejP/3//4fXnvtNdvLyNiiD0X335+4//bbQGencfjxeOu0tGIx4MUXxVCq04qkbKjY7H3YGTo2qhaWl4vXGDlzRnquglAI8yIRfPjuu9xFhIjyn0JEvmltbVUAKK2trabPW7ZsmVJZWWl+sK4uRYlEFCUUUhRA/BmJiMe3bVOUkhLxeCSiKDt3evMGuroUpbhYHFe9FReL80UiyY9rr8epnTsTxzV6H1aeoyiK0tycfH3qrblZvKa0NPVr+us3ONf58+eVJ598UunXr58yfPhwZc+ePc7fM3nO6t87oiBjBZAoXxjNm9u9G5g2DWhvF48bDQ07qRCGw8DWrcnn/M1vgPr61Dl0bnfssDq/z+rQsVm1sLYWOHUKWLs2UQ2MRFLnIRqci3sKE1G+YwAkyif6QDJpEnD77cnPkQUxN52zalhqbhZ/1tTIu5UBdzt22JnfZ6XzOV2jSTgMzJiRPkyanIt7ChNRvmIAJMoXagUPSASS48cTlT+tkpJEEJNV1m69FTh3zvq5tSFIX1lTud2xw48t4KxUC10uo8NqIBHlIwZAonygreANGgQ8/7wIdmpo0lu/PhFoZJW19nagqsrZMjL6ylokIoZST51yt2OHX1vAqaH1+HFfG2RYDSSifMIASJTr1AqeunRJRwdw993AwIHAvn0iJKkhsKQE2LYNqKtLvN6oYtfebr8SqNJX1mbMkG/3ZnfOoZOlYdKdx4uFoy1iNZCI8gUDIFGuM1q3rrMTuO02MQ9QDU2ffZYc/oBEZa1//9RjuK0EGg2duglddoZk053HycLRHmA1kIhyHQMgUa7RV7QqKxOLQOu1tYmAmC401dYCx47Jj9PR4W0oylTosnIeuwtHe4jVQCLKZQyARLnEqKL1z/8sf35xsQg0VsLVgAHAli2pIdDrUJSp0GXlPH40ltjEaiAR5SIGQKJcoSipFa2bbxZB8K67RNgrLEx+TWcnMG6cmA9oZZhVWwn0KxRlKnRZOY9fjSU2JVUDhwwR1UDuKUxEWcQASJQrvvwytaLV2ZkIhF1dIrgcOJA6n0+dD2inEuhXKMpU6AqHgcWLkz+vxYtTz+OkscQnI44exd4//EHsKfzMMxhzsTpIRJRpDIBEuaJPH3m3rn6Is6tLzNvTU+cDqsy6YydNEkGyqcmfUJSJ0BWLAcuXJz+2fLn8/bpc688TF+csFrS3Yx6ADwFUnDrFuYFElBUMgES5IhRKrZwVF6cOcY4dK1/7r7Q0MfxpNJcwFgNefBEYPBgYNQqYMEEsJZOOnSVdnCz/4oSsOzpDDR6O6OYsjgCw98IFPLl4MecGElHGMQAS5RJt5ezUqdR9eDdtEkO4mzaJcKgqLgY2bxYVLqPu2O3bRRicOdNeh66dJV20z/3KV+wtA2M3OBrNASwvz0wAtUtyvQWRCOYtWsROYSLKOAZAolyjHa40GkqtrQVOnxZDuE1N4r/Vrxl1x95+eyL4qdJ16NpZ0kW/YLXK65Cpks01XLwYGDbM+0WfvahqmsyNZKcwEWUaAyBRrjOavxYOAyNHipv2a7LKWEmJWPRZDYVaZh26dpZ0MVqw2suQqacNyEeOiDmAXq8/aCecpguKJnMjpesG/vCH6PjDH3KvmklEeY8BkKi3kVWa1q+XN5ik69C1s6SL0b7E6ZaBcbtuoBqQz5zxfv1BO+HUalBM05DSUw38+78XncJf+xresLrMDxGRRQyARL2RvtJUVyeCXr9+ieeEw8Arr5h36NpZ0kV9rj4Eehkyzfix/qDVcOrx7icFX3yBeS+9JDqFAVzf2YkfTZuGjtOnHb8VIiItBkCi3kpfaZo0CSgoSHy9uxuor08fUuws6aJ97tmz1l7j1bqBfqw/aDVUer37ycXjjQCwF8CTAH4ej+Pqa67BG2+84fDNEBElMAAS5QpFMZ4/5sUyLMePJzeB2AkpdtbRU587YID113i1bqDX6w/KQuWqVanP0wdF9blGHclG3yP18fLynuMVAJgXCuHD/v0x9KtfxfXXX48f/ehH7BQmIlcYAIlyweHDwIkT8vljZmv66UOE2Ty0bO2LazW8erVYs9eLPquhcu1aEZpnzkz9bNWgqB1ij8eBr3419Xth9D3SPj5smOho1gTPEa++ir1vvoknn3wSP//5z3H11VezGkhEjoUURdYWSEReiEajKCsrQ2trKyKyBgkAiMXw0IABWNPdjU8AEcxKS0XoAEQoaGsT4UP92rp1Yvg2GhUhbtMmMcSrf27//mLv33BYVPoOHUp9nZ9bo+3alVgaxun5YjFx7ZWV2dvJIxaTfx9Onkxck/45WurzjxwR4U5/HLPHz5xJee8fffQRvv/972Pfvn2YO3cuVqxYgf767QEDzNLfO6KAYwWQKNuOHxfz8VTaoVkra/qpDQctLanPbW8HKiqAgQNFZam+XoTHTOyL60VjhJP1AbXnt1J5tPI8K3P89M/RUp//wQfy4xg9fuaMtJrZ0ym8ciV+vmYNrh4zhtVAIrKFAZAo2yorgaKixH3t0KyVNf3UsADIl3qJxYDOTvHfbW0iBGaimua2McJNgLQaHK0+z8rwuWweoEq/jZ/R9n42hucL9uzBvOXL8WEshqFHjoi5gffey3UDicgSBkCibAuHgTvuSPzy13avWlnTTw0L1dXiuWZDgV6sjWeV2zmHTgOkLDjedhtw8GByMLITMNN1GKvD1OvWJZ5TXJzYrk+/jZ/R9n7ax9etE8c023WlrS2xp/All+DnTz+Nq7luIBFZoRCRb1pbWxUASmtrq+nzli1bplRWVChKc7OidHWlPqGrK/lrO3cqSiSiKID4c+fOxHPPnlWUkhLxNf0tFBLPl53DD2bXmU5Xl3hNKGTv2pub5e9dfw1Gz2tuNr+mpiZxM/pebNuW+F7pv2/a45g9vm2b+edmcO1/BpRJgAJAmVtYqLR//nn6z7kXsvr3jijIWAEkyhWhkHH3qr6z1Wy5kwEDgC1bEtUnLS/WxrPDzbIsTtf1MxuK1Vb5nFQo9+0DJkwARo0SQ8bbt6dWEbVD7Gbb+Bk9XlkpjmFWmTR4j1w3kIisYgAkyldmy51MmgT07Zs6d/DIEX8bP+xeZzpOA+SqVYngqKUdRrYbMGVDxrff7v32c1aGvmXXXlzMdQOJyDIGQKLeSBYi2ttFV6kddhag9oudAKk2dcycKd7zc8+lVkKLixNVPjsB0+gzLSnxdm1Fq5VJ7bWfOgVs3Wpt3cBc+J4SUdYxABLlIre/pL1Y9NnNEizZoK/QtbcDP/5x+tdZDZiHDiXfVz/T9eu93X5OX90rKZHvPqK/9tpaUeHdvbun0ltQUIB58+bhww8/xNChQ0U1sKwMHfnyPSUi3zAAEuUaL4KX231xzTpkvagg+VGFklXo2toSS+CoOjvtD9HGYqJTW0tRRKduXZ23288BybuPhELy3Uf0du0Si0lPmSL+1Dx3xIgR2Pv663iyqEjMDQTwRjRqf11GIuo1GACJckksJpYsUdf1c7J4sspNA4bRPLQNG9yHU78qi7KqZ2mpN9vfbdiQvI+yqqZG/On19nOqOXOsLVNjYUmbgpMnMa+7Gx8CGArgegA/ikbR8fHH3l4zEeUFBkCiXKIPGm6bCpwGE6MwZTWQGPFidxAjsqrn5s3Jj/XvL6p2Zo0e+spkLCbet15pqb/7KG/YIA/hBw6kfl5mjSPqeyovByIRjAiFEp3CAK6+5RZ2ChMFEAMgUa5QlOwEDRlZmFq92vnCzGqocrs7SDqyqmdtrQh96g4q9fXyqqNRZVK9Zr3Vq91V/MyGwWMx4N575a+bMgW49FKxBI2qvFy8P5Va6Tx0KPGehg0DFi8GSktFp3Akgg9feAFDKyrYKUwUQAyARLniyy/lQePBBzN/LUBqmBo0KPnrVoZT9aHq0CH5Gn36BgurZCFKX/WMxUToU8ONrOpoVpk0aqiZPt3ZNQPph8GPH5cPOava24Fp00QIVOf+tbcnvq7uJKJfT3D5ctEgcvF7OuLOO8WewvpOYSLq9RgAiXJFnz7ycPSTn/jTsWmlEUMNU4AIE1pqE4SddfPq60Vjg1oBVNXX2x8GtjqX0ErV0ew5TtYLNPtcrQyDmy1mrXX77WLOqHos7XqPNTXy93TmTFJAlnYKsxpI1OsxABLlilBIBCp9OAK8nSsH2G/EMBoGVZsgzF6jDyBlZanPtTsMbKVL+dw58Wdxcfq1+tItm2O1ocbK5+p0oWdZ4GxvF+9dtt6jzaWARowYwWogUYAwABLlEqNA5eVcOSeNGE7WFTR6zdix6Y+VropmpUv5K18Rf1ZUiFCkPldWwTOr8qnXApg31Fj9XJ0u9LxpU/LX1deVlsqP5WApIFYDiYKDAZAol6jhQM+LHSZUThoxnKwraPSaAQPMj2WlimbWpSyrVKrMtsOTVfn017J9u3EwtfK5qo0w69aZh031+Nr5jHV1wLZtiWYP9XWbNxt/lg6XAmI1kCgAFCLyTWtrqwJAaW1tNX3esmXLlMrKSnFn5UpFEfEhcYtEFGXnTm8u6uxZRSkpUZRQSBw7FBLH7+pK/9quLkVpbjZ+ruzrRq8xem4kYu3adu4UX1M/n7VrUz832a25Of37NLoWs+9HumvXX++2bcnvX/91o++3nc/YyntM87o///nPyqRJkxQAyty5c5X29nZ758gCq3/viIKMAZDIR7YDoCxElJSI0OYFbcjwMlx2dYkAVlrq7pjNzfZCmzbAqJ+dWfizGnTNrsUsmBqFuHTh0E7w9YrVwKkoyvnz55Unn3xS6devn3LFFVcoe/fu9e+6PMAASJQeh4CJcolsGLG9Hfjtb8V9N1uo6eeoAclDok6PrQ6TzpzpfoFnu3MNtUOk6pCzbAgdEI/b2Q7PrBPXaNjcaMg13fCw3+sj6tmcB8q5gUS9DwMgUS4xmgP4wx+K+WdutlDThwwg0THqdHs2WagEnAcYt3sYawPY2bPJf9rdDk9/LVpmwVS2+0q6YOukyUbGaoh3GDg5N5Co92AAJMol4TCwalXq4+3t7rdQMwoZ5eXWji0LF7JQqXLatOJmD2MgEcAGDEj+08muHdpr2bYtEc7tBtN0wdZt8AXshXgXgZPVQKLegQGQKNdMn568rZcqFnM3RGgUMs6cSV8NMgoXRsOkTgKM/lqdhjavqddSV+cumKYLtm6Cr92lfTwInKwGEuU3BkCiXBMOA08/bf4cp0OEspCRrhpkFi70QSISETt9nDplPyBZZWWnDafzJNNxG0zTvd7p8Z0M6ao/C01NwIEDwKRJ9s4JVgOJ8hkDIFEumj49NZQVF7sbIlTpQ0a6alC6cDFpkggQTU0iUMyY4V/lLt0wp9O5jF7yM4AacTqku3s38PWvA6NGufq8WA0kyj8MgES5SBbKtm4VlbV0Q4ROAojZ8KNZuFAD16hRwIQJwL59zt6vFemGOZ3scOK1bAVQJ0O627cD06aJ+aWACPUuPi9WA4nyCwMgUa6ShbJ0Q4RuAojRsY3CBZDZwJVrS6noZTuA2hnSjcWA229PfVy2c4nNf0ywGkiUHxgAiXJZOCwqbcePJ1e6ZL+U/QwgsjCa6cCVqaVUnMp2AAVEBXbChMSQ7osvGm9bp1b+tEpKEp+Xi39MsBpIlPsYAIlymf6X8OOPG/9S9juA6CuEmQ5cmVhKxQ2nn4dXcwb1/wCIRsXi3IMHp4Y3o+7t9esTexJ78I8JVgOJchcDIFGukv1Cf+AB41/K2Q5k/fsD69YZBy4vgo6+EjlpUvIx3a4h6IaTAOrlnEGjNRll4U1/rSUlYp3Dujr5sVz8Y4LVQKLcxABIlKuMfqEb/VKWBZB165KHj804bR5Zt04EiPZ2oL5eHmK8DDpqJXLfPvkxs7mGoJ0A6vWQvdnWdem2rfvss0T4kx3Lg39MsBpIlFsYAIlyldEvdLNfytpf6uvWiUBmJXS52Qquvh5QqzmyEOPH3MRsN1yYsRpAvR6yN9q6zuq2ddp/APg0nF7wxReYd/PN+PCdd1gNJMoyBkCiXGL2SzgSAe65JzkwLF4s79qtrBTBzEpAchOmrIQYP+Ym5kLDhdshbT+G7NV/AKxd634o2oOFoo3OMWLSJOxdupTVQKIsYgAkyhXd3ca/hJubgSNHgFdeSX7N8uXGXZ5WA5KbMGVUpTx0yPg5oZAIJd3duRWe7PBiSNuvppVwWCzGbWXNSMD8HwD6rmKnQ/eScxRMn455s2dzbiBRljAAEuWC8+fFnrxG260NH57Ys1fLKKjZCUhuwlQ4LIaa9fMU6+sT4U4fdPr1Ay5ccBcqstnx6+Xws59NK26HoltavHufJv/I4NxAouxgAKTAeOONN3DTTTehsrISoVAIW7ZsSfuavXv3Yvz48QiHwxg+fDieffZZfy6urU38UjSrwlVWps7vikSA8vLUoUg7AcltmKqpSX1Mf+3a4cS+fYGursT7zkR48nJ7Nj/m7mWraQUw/gcA4N37TPOPDHYKE2UeAyAFRkdHB66++mqsWrXK0vNbWlowbdo0TJ48GY2NjVi4cCHmzp2LjRs3en9xpaXil6JZFW7fPiAeT37dHXcAw4YlD0WqYWfSJOtzuNxUoqxWEMNhoKgo8+HJ6+3Zsj387DWjfwBUV3v3Pi3+I4PVQKIMUogCCICyefNm0+c88MADypVXXpn02A9+8ANlwoQJls/T2tqqAFBaW1tNn7ds2TKlcuBARYlERB0wElGUnTsTT+jqSnxNfwuFEn8WFycfY+VK42N6aedOa+dR34f2miMRRTl7VlGam8XXvXT2rKKUlCR/VpGI+/NYfb+5qKtL/lnLHvf6fRqdW+LPf/6zMmnSJAWAMnfuXKW9vd3yaaz+vSMKMlYAiQzs378fU6dOTXrsxhtvxHvvvYcvvvjC+xMWFRlX4dRhRxltNa2zM3nO1gMPJF7n51IpViuIskrQ4sWpVUwv7NoFVFUlb3lmVHG0O0SczQWn3TCrhsqqqV6/T6vD3bEYRhQUYO/rr7MaSOQTBkAiAydOnMCQIUOSHhsyZAjOnz+Pzz//XPqa7u5uRKPRpJstRr8g1WFHGX0HrjYQ6h9Xw4+VwGM3FFn95a7vbF6+3LjRwOncPbVRQzaHTD+M6XSIONtz9+xy2ryS6fep+X4UVFZi3te+hg8//BAVFRW4/vrr8eqrr2bmOoh6OQZAIhMhXbhSLoYq/eOqRx99FGVlZT23qqoqby5ErZwVFyceKy4GVq5MrqYVFyfP2dJS53AdOpQ+8Hg9b072frSdzbI5gW6uwWgXlZKS5LlnubygtB1WgnIurJ2YjsH3Y0RVFf7qr/4Kffv2RXV1dXavkaiXYAAkMjB06FCcOHEi6bFTp06hb9++GDhwoPQ1CxYsQGtra8/t2LFj3l1QbS1w+rRo6mhqEv99//2JatqpU8DWrcmB8I47Eq9XFOAf/gG4/XbzwONnKNIHFaOGivJyd9cgO25JCXDsmHxoPZdDUTr6oLx9uzwMlpeLz0CVieYVuxVcg+9H444dWLFiBRYtWoQxY8b4d71EAcIASGRg4sSJ2LFjR9Jjv/vd73Dttdfikksukb6mqKgIkUgk6eapcFh0ZxYVJT+mDtFpd4JQlNSFox98UMyJc7Jzx4ED7kKgrKJn1B1qVhm0QnbcLVuAAQOSn5fvHb36sB6NAtOmic/40ktFGATEZz1sWPJ8SL/XTtR+v7XXYkaysHi8pASzFi3C6NGjsXDhQn+ulSiIst2FQpQpbW1tSmNjo9LY2KgAUJ544gmlsbFROXLkiKIoivKP//iPyowZM3qef/jwYaW4uFj58Y9/rDQ1NSnPP/+8cskllyi/+c1vLJ/TVhdwZWX6A1rpytR32prd9F2xXV2K0tSU2qmrPt9pJ6hR96/2vNru0HTPt3Neo65T9WvbtlnvdLXRxerqNVY1N6f/Hm/ZkvpZlpSIDmm/rt+oa33btvSv3blTdLNffM3Svn2VvgUFSmNjo+XTswuYKD0GQAqM3bt3KwBSbnfeeaeiKIpy5513Ktdff33Sa/bs2aOMGzdOKSwsVC6//HLlmWeesXVOTwOg1VBkJRSot5KSRODRhsvi4qRfwq6XUTG6puZm49f4udSK/tjbtqUPOdu2JZaUsXo9fi8XYyXsy76P6T57t9dv9P0uKUn/s6N5T78HlL6A8mBhoa2fOQZAovRCiqKfJU1EXolGoygrK0Nra6vpcPBDDz2ENWvW4JNPPjE+2OHDYjhNr7lZDAGrYjEx9KbuLqIVCiUeU+fEDRiQ+ppQSAwNhkJiaZl050xHdvzSUjFcbTYEGYuJYd/KSu+GKp1cy/btYmhVZeU1Tt+zXbt2iWFgs47zcDh5+L64WMwhTffZO73+WEwM+2qHnFXpfnYu/pzHAVwHIATgHQCFNn7mrP69IwoyzgEkyhd2dtzQzn+LRMScwG3bkh9bv17MtVNDln7OXVdXYss2LSdz5JxuN+fHEiR2Gz9iMdE4o2XlNQcOZKbBRLusjmx7w9JSoI+D/9W7aZAJh8XPl5bV+ZUXf84bADQBeAFAYT7NyyTKEwyARPnCTojSL+A7YwZQV5d4bN06oL4+0ZBx6FDK5HsA6ZdRsSObiydru1HtNn4cPy6vZJWUyF+jNj9MmZL6tdJSf4PMjTeKoK92+0YiwOrVqVXczs70Qc5tg0xdXfK12Aj9jY89hhUAFgEYG4n426xCFFAMgET5xE6IklXPwmHxC7y+PnmJlfp6EQrN1hSULaNiVzYWT9Z3H+/blxqkzfaHNlqEe/361Peh78rVB+oLF8T5vaR/f4WFwGefJX5Gpk93FuScVm216uqSr8XCz048HsesZ57B6DFjsPDgwfzaaYUojzAAEuUbtyHKaGivpsZ8TUHZMiq5zmhNw0mTkpfLmTnTeLFpNQipIbCkRFS26upSnyv7bLW6urxdaDoWA26+OTH/LxoV94HEz4ibIOdF1dbmz2tDQwOamprwwi9/icIrr2Tlj8gnfbN9AUSUhteNEJWVIgRoq1Tq0KT6yxpI/PL3ugkjk/R7KGvnsVVWAnPmJIZ31XAoa3Kw+lmo1UJZA47+/HaaaIy0tMiHd1tagJEj7V+/jPZnwmeNjY09Cz6PHTs2I+ckCipWAIlymR9bsu3bJ4YiVf36GVeEMjFk63S/XyvM5rHZbXKw8lmEw2Io3WhxBdnwq5/vX39tObx3cTwex6xZs7jgM1GGMAAS5So/tmRTj6l294ZCQN++Ykg0GzKx57DR8Kdfu4DU1Bh/TT/86vb9V1cn7w8NiPtu98vNVCjV6Bn6feEFFBYWZuy8REHFAEiUq/zYpzbdMTP5i9+rgJvumo3msbltcjA6ryxYlpaK/ZuPHBHhLBbz5v2Hw6lzNbdudVfl8zuUS3DolyjzGACJctWhQ8n39RUqJ2HNrOqV6V/8XgRcq9dsNPzptMnB7LyyYLl5s3hfw4YlXrNhgzcBv7ZWNO2ozTtuOmb9qDqbnevwYcSjUQ79EmUBAyBRLorFxNIsWooi5peFw87DmlHVC8jcL36VbHkVO0OwXoUVu3PjrJxXHywnTUp9zZw54vP3Ygjaq/l9flSdZTQ/vw2XXoqmP/6RQ79EGcYASJSL9N2rqpoa98FHVvXK1C9+rXAYWLw4+bHFi62HmGxcs53zakOZ0WtWr3a3zp7X/JoXqaX5+W0EsCIex6KCAoy98krvzkFEaTEAEuUiL7tXZfQVo0z84teLxYDly5PPuXy59SBbXm7vca84+ayMXjN9evZ2R5HxYvFnGe10hYs/v3FFwSwAowEsjMf9D+5ElIQBkCgXZbJ7Vf2lrN8JxO9qlNsge+aMvce94iQkmb0m15Zn8XrLPv10hYvbDnKvX6Ls4kLQRLnKaPFeNUx873siMJWUmG9lZmbXrsRxIhERAmtqMrPws37RZO2C1HZerx0qz1SQcLKwspvFmL1eDDwdrxZ/lk1XqK9HY0MDVtx3H/f6JcoiVgCJclm67tW1a0VwMtvKzIjBL+eMhgw3w43qosslJeK+GiSA3F1Y2c5r1GHT7dvNG36ysGafZZIqbzwaxazVq7nXL1GWMQAS5bM5c5w3g2SriULLzXDjrl0isLa3ixC4bp14PMNr2BlyE8y0w6bTphl/j7OwZl8PK+9PMl2hobAQTR9/zL1+ibKMAZAoX7kNcNlo/JAxqoqZBQx99bKjA7jjjswvZWN0nW6Cmf69AfLvcSbX7NOzs/6ipsrbWFyMFRcucMFnohzAAEiUr9wGOL86PmXsVsPSBQxZ+G1ry2xFMxYDXnwx9TrdBLNYDDhwIPl9aHndDe6E3fd3scobP3gQs4YPx+irruKCz0Q5gAGQKF95EeCsDsF6NZxppRpmJWDIwq+enxXNXbuAwYPF3Eu1CUW9zpYWZ8FM/ZymTDF+jnYx8GxVcJ0Ez3AYDS+/jKaDB7ngM1GOYAAkymfaAKfdZ9aOdI0J+gD34ovWz+GkGmZlv2L9sjWyapk2LHlJNkSrvU7AfjAzOqZMTY34M5MVXC2z4GnwDwXu9UuUexgAifKV+ssWEFUn7T6zXjUD6INJNCqqXoMHWzuHk2qR1f2K6+tFwNu92/hYaljyktEuLep1VlfbD2b6z0lGFiTVfwA0NYmh40mTnL0nO4yC57590kpvPB7nXr9EOYjrABLlI+36faWlwIULQFeX+JpaZTt50ru9YfXUcxw5Anz6qXisujr1fE7W+tOvc2i2X3F9vbgG/XqAgL01Be3Qvyft+dSgZ3fNPyu7lxgFyX37ktdy3LTJ/2VV9O8PEKFPX+k9eRINjz6KpqYmvPvuuxz6JcohrAAS5RvZsGpnpz/NAPpqnFY0ClRUAKNGidvAgalVQafDlHb2Kz5zRhyzuDjx+uJiYPNmf4ZDZe9p7drUIXg7a/6l273k+eflczSz2QmsXSxa37hy8XvTuGMHh36JchQDIFG+MRou9KMZQB929LRBo7NTHj6crvVntF+xlvo+a2uB06fFUGhTk/jvdOdx09iifU+nTolrcDMEL3tvWjfckBwk1WtP13Di9yLRRo0roRDipaWYtWgRh36JchQDIFEuMvvFLZsjV1zsXzOAdtcR9Rzq7ht6RpVHL/a7DYeBxYuTH1u8OHmLvJEjxS3debxYQFlbAXNbhVODtj4EysK89tq/8Q3xvU83X9KreaHan0t99VFbJS4tRcOtt7LrlyiHMQAS5Zp0v7hlQ5BbtzrfUUOlD53a++EwMGOGqHY1NwPHjsmrgn4uQxKLAcuXJ4ed5cvtV7e8Hjb1aj0+WdDWh3n9tbe3J56nfT5g/z2mqxbqfy5//evU9w0Au3ej8fXXseLllzn0S5TDGACJconVcCIbVnVTZdP/cn/8cXkIVc8xYICYY6efd+fnMiReBS2vF1D2cj0+fdDWh3nZtXd2ijl42udv2GDvPab7R4fs5/Kuu1KPU1yM+DXXYNYPfsChX6Icxy5golyi77rV/uJWhxtV2iFIN2S/3B94IPF1o65idd5dS4u4L+sC9pKTjmI/j6My6lp2O9wt+94aXbv2s4/FgHvvTX2tUSg1+keH9vst+7k00PDYY+z6JcoDrAAS5ZJs7O4gqyppmVWP7My7c8urhY/9WEDZaaOLXVau/fhx+YLSq1bJ36NRRfTAgUTl2awbXKOxsxMrVq7k0C9RHmAAJMolZr/g/eroTLetWqa2GLPCq6DlR2DzotHFKqOwDsjDWmkpMH26/FhG4W7KlMRwcLpucABxALP69MHoUaM49EuUBxgAiXKNLJz40dGpkoXOlSsTHamZ2mLMKq+ClpvjeBHGnRxDHa5Vmz/a21PniOq/n5GI+ZqIsnCnhkHtHFTtz+W2bSkdyw2FhWgKhfDCL3/JoV+iPMAASJSLtOHEaI7WwYPeVQP1ofP++/0f0rQagPxey84uL8K402NYbWCxW+FUn69uq2d0fPXnsq4ucfyzZ9G4dStWfPklFi1ezKFfojzBAEiUS2Rhx+iX/qhR3lYD9RUxP4c0rQYgu0HJ77DoxRIybo5hZ46o3e9fOAxMmGD7+PHiYsxavJhdv0R5hgGQKFd0d8vDjtkE/Exu/eUVqwHIblDyc5hc5cUSMm6O4UcDi8vjNzQ0oKmpiQs+E+UZBkCiXHD+vNgPVhZ2zCbgq+GhpSW3hknNmAUgbQXPalCKxcRweCb2xPWiS9vtMfzuOLZx/MbGRu71S5SnGACJcoG6rptR2FF/KTc1iSCo3wZuwoTUyleuzZ1TVVamNhxEIsChQ8kVvEOH0gclteo3apS3izsb8aIC59Ux0g3vuvn+Wzh+PB7HrFmzOPRLlKcYAIlygRrqzMKOuube5s2pe/LqK1/btyeHqRdfzJ0guG8fcOFC4n6/fsC6dcDf/m1iseFoVNxft876tmh6JSVAeXniuUbb3NnlRQXO7yqe2XC4R/8w4NAvUX5jACTKBX37irBipSqkDQ9vvy22AtNXvm6/PRGMolFg5kxg8GB/5sXZoYa2ri5xPxQS772iQrwPrc5O8bhRUNIPEeu1twPDhqVua2e0zZ0dXjTI+NVkYzZ30qN5khz6Jcp/IUUx2dOHiFyJRqMoKytDa2srIrp107QeeughrFmzBp80N4tgU1lpLRjEYuIXuXZrsP79E+vE6UUiqVu6ZdLhwyJ86L3+OnDjjamPl5QAW7bIK2RG7x0AOjqSg2EoJL+vbqWWzc/EiDoP0urPgsroM25qElMF9NvIpXvvuuuIx+O47rrrEAqF8M477+Rk9c/q3zuiIGMFkCiXOFm6Qz+fbP16465hP+bF2WHUAPH1r4u5jHodHcbNHLL3/vTTIvzKtrOT3fdrrqBbbip1Rp8xYH+epOQ6OPRL1DswABLlE9n8Lf18sro6467h0lL3W7q5bS4waoB49tnUEJgupOjf+/Tplvaszehey3a5XWvQ6DOurrbXfSy5jsZbbuHQL1EvwQBIlC/MqkL6ymFtrWig0FcSz58XTRh+XINV+tAGiGPNnAkUFIimEDsBTfve1fCjNsfoqdvcmc21NAu4meis9mKtQVmTid3uY911xBUFszo6MHrECHb9EvUCDIBE+cBuVSgWA+rrU7/e1QXcdJOzbeS82AVDpYY2IPmY7e2JuWmAsyVSamtFc4zM22+bb3NnFnAzsdA04M1ag4B8OkFtLXDkiNjy7cgR8+5j3XU0AGgC8MIvfsGhX6JegAGQKB/YrQqpz5fp6jLfRs6oymV0DS0tzt6T0TE7O4EDB9wtkWI03FldLe7LwpFZwLUTft1WCf3c7WPXLtEZPWWK+NMsxGquoxHACgCLZszA2G98w/11EFHWMQAS5QO7VSH1+WZkIcasymW0Jd03vuG8GmbWsGC3+1XLSYgyC9lWA7js83MSCI3WCXQTLp1UcGtrET92DLOuvBKjx4zBwuees39eIspJDIBE+cBuoDHbPk6lDzHpAoLRMdvb3Q0Fa4/Zr5+Yp2hWobTKzmLLsZjYi1m/y4oasq0E8FgMuPnm5MWsv/tdsf6ik2FjfZXS7RC0w7mFDf/0T2j6+GO88MtfcuiXqBdhACTKF3Z3j6itBU6dAtauTd16Tf1TG2KsBITaWjE8q+V2KRXtNncFBYlFor3Yz9fKsjra7eQuXBAhFEgO2VYCeEtL6mLW3d3ezJnUh/NoFLjlFuDcOevHcDC3kAs+E/VeDIBE+cTJOoEzZogg2NwMbNtmHGIqK1OXYSkuTg0I1dXWnmeFOqQJAEVFiUWKgUSwPHDAv65bfbDq6hI7kzQ1pYZst9u3uQnKsl1POjrEZ261Emizisy9fol6t77ZvgAiygA1OA4fLsKLkx0mvLZrlwhf0aioRK1bJ/7UhkBANCxEIsCqVWKdPy+vWd8so4a0oiL5ebTdy3pqMNZXAVVqd7OToFxZKV6r3/e4q0t8hlZ3MlFDrIXvv7rg87vvvsuhX6JeiBVAoqAxqiIePy7fj1dfsbL6PDOy+Yb19SIEyoar1f2ML73U2+VXjIZFy8vtN1uEw8DWrckVtpUrE00tasUNcHbs1avlX7NbVbRQRebQL1HvxwBIlM+8XJjYKAx1dycf34t16ozmG9bUiArV7t2Jx7Xa20WjhVdDwrJh0cWLxRIpTpot1HmXzc3iT/2ag4DzRo7p0+VNPR7vZMKhX6JgYAAkyldeL0xstSPXi3XqzEJkOAxMmGC8pVtnp/nag3ZDsXZu35EjwPLl7ho39BU2o0Wv29qA226zvih3OAxs3pw8/7K42Ls1Ai/iXr9EwcAASJSPvNyVQ8tqR67bhgh9iOzfP3nrOvXr/fvbO67TUKyGtDNn3G/DZkRW9Wxrs7fkTW0tcPq0+P40NYn/drJQtgEO/RIFBwMgUT7yYr9YI+GwcUeu9vh2O5L11P2KS0rE0G59fXIIqq0Fjh2TH/+//zv1MS9CsVfbsGmvSa1GGi2kbfdaw2Fg5Ehx87Dyx6FfomBhACTKR14HlUwfH0jsV9zRIe7LQtCAAYnGCS3ZPsdehGKnw9uyYWd9NXLfPuPFub0M8HauUYNDv0TBwgBIlI/83C82E8cHrAe2mprU18qeV14uqoluQ6vd4W2j7d9k1chJkxJD7H4H7HTXqMGhX6LgYQAkyldu5+Fl+/hWq4xWnrdrl+jcbW9PBEo3odXq8LZR0GtpMQ636hCu04Btt8klzdA4h36JgokBkALl6aefRnV1NcLhMMaPH48333zT8Ll79uxBKBRKuf3pT3/K4BWn4XYenp3je7nkjHpsKyEo3fP0AQcQlcAjR7wPrXpGVczubnENWvpFoJ0EbCdNLmkqrRz6JQomBkAKjFdeeQXz5s3DokWL0NjYiMmTJ6Ourg5Hjx41fd2hQ4fw6aef9txGjBiRoSvOIV4vOaOyGoLMnifbJq29XXT0+k1WnSwuBr79bXENWhcuiHmAWnYCvNMmF5MKKod+iYKLAZAC44knnsBdd92Fu+++GyNHjsRTTz2FqqoqPPPMM6avGzx4MIYOHdpzKygoyNAV5wiz4OFFVdAsBGmPb/Q8LxpWnL4PWXUSSA1/QGLbNqeflVklz+z6DSqo8T59OPRLFGAMgBQI8Xgc77//PqZOnZr0+NSpU/HWW2+ZvnbcuHGoqKhAbW0tdqs7VBjo7u5GNBpNuuUMpyHHKHhs2JCoCg4eDLz4onfDw4D1qqPbhhXteS69FNi+3d51aquTBw6Ihar1O5gA7jt9jYLuoUPpPydJBZVDv0TBxgBIgfD555/jwoULGDJkSNLjQ4YMwYkTJ6SvqaiowJo1a7Bx40Zs2rQJNTU1qK2txRtvvGF4nkcffRRlZWU9t6qqKncXrg1tbqptboZwjYLHvfcmVwVnznQ2PCx7X3aHO502rOjP094OTJtmPwSq1cnqauO1/tx2+sqC7rp1YkkcK5+TpoLKoV8iYgCkQAnpfjEripLymKqmpgb33HMPrrnmGkycOBFPP/00vvvd7+JnP/uZ4fEXLFiA1tbWntuxY8ecX6w2tA0cKG5OApzbBZJlwWPVquSFolVmx7ayVp76vsy6aM2u025DjGz+IADcfruzoK3/rIqLE1u3ebGUjj7o1tTY/pzY9UtEAAMgBcSgQYNQUFCQUu07depUSlXQzIQJE/DRRx8Zfr2oqAiRSCTp5og+tHV2ihtgP8B5sUCyPnhMny6qWXpGx7azVt727cA3vpH8er/WyausTO3WBUQl0OlQrfazOn1a3NJVJu1Ud7VB18H8Rw79EhHAAEgBUVhYiPHjx2PHjh1Jj+/YsQPf/OY3LR+nsbERFRUVXl9eKqPKFGA/wHm1q4caONTzyna1kB3b7lp5t9+e2kThpHpmJVSFw8D69amPuw2b2pCWrjLpZnje5vxHDv0SkYoBkAJj/vz5eO655/Bv//ZvOHjwIH784x/j6NGjmD17NgAxfDtz5sye5z/11FPYsmULPvroI/zxj3/EggULsHHjRsyZM8f/izXbN1YfstIFHa+2N9MHFQA4dQpYuzZRDZQd26gCCaQGU3VfYH3wPXDA3pp+dkJVXR2wbVuiEhiJeL/riREv9i+2OP+RQ79ElEQhCpDVq1crw4YNUwoLC5VrrrlG2bt3b8/X7rzzTuX666/vuf/YY48pV1xxhRIOh5WvfOUryre+9S3ltddes3W+1tZWBYDS2tpq+rxly5YplZWVyQ/u3KkokYiiAIpSXCxugHhs505F6epSlLVrE89RHzfS1aUozc3iz3S0545EFGXbNvFnKCQeC4XE/bNnxTHVP7XHVs939qz8tV1d6c8DKEppqbVr1p7X6Hzq15uaxE12vXbO5VZzc+J9am/NzZ6faunSpUrfvn2VxsZGz4+da6z+vSMKMgZAIh+5CoCKkhxKtP+9c6cIRtrQoA86TskCVEmJPKioj+vDpz7YrVxpHFT1wWvnzkTYVcOvWbDVMwtVbo/ttXRh1ekxdUH297//vdK3b1/lwQcfdH/NeYABkCi9kKLIJhkRkRei0SjKysrQ2tpq2hDy0EMPYc2aNfjkk0/SHzQWE+vuabc+02puFnPOnDp8WAyd6pWUAB0dIjqFQsnDtKGQGP49eVLcHzIk0SWsfu3IEbE7R2Wl+fBqLCZ//cmT1nfMMDr/sGGJ4WdVaakYys7EkK/Mrl1i2DcaTQw/O93CTnKs+OTJuO666xAKhfDOO+8EovHD6t87oiDjHECifLNhgzz8edUpa9Q0sn59Yh5h//7Jr9E2phjN+TtzxtqOH267lo3mPJ45kxr+APFZOu349YLTNQz1DOYTNjz0ELt+iSgFAyBRPonFAKMmFC/WmQOMA1RdXSKoHDtm3Flst+tY37DxX/8lf155ufX3IAtVRq8vLfV+eRm7nKxhqCcJzo3RKFasXMmuXyJKwQBIlE/UX/J6P/tZcvXI7R69RlUpNagMGGDeWbxqlbWuY1nV6u/+Tn5NZ87Yew/6UGX0+qeeSuyn6yWr3wMv9lMGEsH7ojiAWX36YPSoUez6JaIUDIBE+cRsWzY16LhZV04rXVVKGxKPHBHboG3fLs45c6aoRK1daz6sKRvu1a8BqLJTAZTRBSQAQL9+wLx57j8rPavfg3T7ENtdIHrx4p67DQCaALzwy19y6JeIUjAAEuWTdGv6ebGunN3raWkRzRVXXCH20VUrlO3txsPVKlmgle3MAdivAMquddOmRAhUz6sGTq8+q1gMuO22xOdgdFz1e6X9vLT7ENsN8rEYsHw5EAqhEcAKAIv69sXYK690936IqFdiACTKN0bDs7GYWDDZ7bZvdugDp5bV/Xv1gXb9+tRFsEtKRAVQVhGzUyXTfnYHDojt9bz+rJYtS/48jI5rNJx/++3AuXP2g/zF48UVBbMAjAawMB7PboMLEeUsBkCifKQfnlWrRVOmJD/PTmewk7loZlvWWT23PtDW1aVuM9feDnz1q8DAgckVMSfD3epnV13tzRZ5WufOAY89lvq4rNHEbB/iDz6wH+QvVlN7hn4BFPqxfzIR9QoMgET5Tl+F01bOrHYGO503KBvCTXduWdDUB9raWjGvsKQkcczOTnEDEhUx7VBrNJq+SqY9t9Mt8sx88IH88QcfTD2ubB9iNYSOHWs/nIbDaHzsMTH0C2BsJre0I6K8wwBIlO9kjRQAsHu3tXXl3MwblIWobduM17SzEzTPnJHvC6y+x2g0deg5GhVDu7Jrl53bqzX4VEZLrdx1l/xx/T7EaghN12UtEY/HMeuZZzB6zBgsPHjQm/dDRL0WAyBRvjPqDJ4wQdxPN6zrduFl2RCurHvYbtDUvy8tdXcPmSlTUsOl2bm9WINPNWAAsHJl8mMrV4rHtdei/Z7U1QGffZYaQm2G04aGBrHg8y9/icIrr2Tlj4hMMQAS5Tujocx9+6xV2+wu3Gx0DelCVLqgqQ9G+vdVXCxu6ntcvdr4XPpw6Tbk2nH//cDZs6ICe/asuK8yqoAafX76xw3maTY2NmLFihVc8JmILGMAJOoN9NWiSZOsV9v8mAsnYxY0jYLRpEliSLepCTh9WtzU9zh9unGFUB/wvAi5dgwYANxwQ2rlz80SPQafUTwex6xZszB69Ggu+ExEljEAEvUW2mqR3YqX13PhjK5PFjQBeTBSF5UeNUoMZ+/bl/we9ccDUptQ1ICXqZBrxk0V0iQ89gz9cq9fIrKBAZCoN9APDTqpeHk5F86ILGgaBaPbb09fLdMeb9s2sbOH6sIFERrNzp1J5eXJXc12qpAGn1Hjjh0c+iUiRxgAifKdbGgwHAbWrQP69xfPyUbFy4g+aBrtBqLtADarlqnHmzIF6Ns3cZyurtTQaBZyvdqTV2bXLrFbivY92fmeSD6jeGkpZi1axKFfInKEAZAonxkNDW7fDtTXi8BRUiLCYK4uCWJlNxAr1TI3Q6xe7Z8sI9stpaRErHNo9Xsi+Ywabr0VTQcPcuiXiBxhACTKZ1aGTzs6RBj0qrLlR6Us3W4gVqplThs9/N4/WbZbSnu7/b2NNZ9R4+uvY8XLL3Pol4gcYwAkymduh0/t8rNSJtsNxM6cPaeNHn4vEeOmA1myNE78sssw6wc/4NAvEbnCAEiUz7waPrXC70qZjN3GFCeNHn4vEeM0mBqEbXb9EpEXGACJ8lksBlRXi/lkboZPrcjkYspu2AmNsZi4/nXrvP+8tNU7q8FUfc25c9Kw3XjgALt+icgTDIBE+UpbIRo2DGhpEaFFFgq9aADJ9GLKftN+fvX1IgR69XkZdWabBVPta6qqUsJ2PBrFrO9/n0O/ROQJBkCifGTW/SsLhV7Ytw84fz4RSsJhYNWq5GvyaxkVK+ycPxYDbr5ZhCxA/Pm3fyvCrBeVP9n35tw54+vTv6ajI/nroRAaCgvR9PHHHPolIk8wABLlI6Ph2O99LznU3HyzN4FMDShdXYnHurqAmTNF4Hz8cf+aQ6xI15yiD4ctLUBnZ/JzOjvF424ZfW+qqoyvT/YaQDT0AGgsLsaKCxc49EtEnmEAJMpHsuHY/v1Tw55foUarrQ144IFE8LTSHOJltTBdc4qfncsy+u+NSq3qyT4fo+H1Y8cQP3gQs4YPx+irruLQLxF5hgGQKB/pO0v79RNbn/nFKNQAqaEwXXOI14HMrDnFKBxWVADFxcnHKS4Wcyfd0n9vLlbxTJtnjDqFBwxAw8svc8FnIvIcAyBRvlI7S5uagIICeTXNr1Bjxqw5xI+lZMyaU4zC4ZkzwNatyYFr61bz+X92qpbart9jx6w1z0g6hRsbG9n1S0S+YAAkymfhMFBUlLzNmKp/f3mo0QcZq8GmthY4cED+tZ/+VIQawHwZFT+WkjFbZ88sHNbWAqdOicB16pR556+TqqXa9TtggPVleTSdwvF4HLNmzWLXLxH5ggGQKN/JhmdLSoD/+Z/UUKMPMnabN6qrU89VWgosW2ZtnTu/lpIxWmcv3SLM6ZZmicWAgwfdVy0dLFDNBZ+JyE8MgET5Th9yIhFgyxZRedKSDb9abd5Qq4RA6rk2bxbXYGUBZqe7YlhhdH4nu4MAibA8apTzqqW2umpjgWoO/RKR3xgAiXoDKyHHaKkRlVGw0VcNAWeBys61es3ulnL6sKxltWrpsNmFQ79ElAl9s30BROSSup1ZZaUIOUbU4de2NhH2QqHkEBgKiYqcNtgYNW2cPGl+rnTUQJar1LAsY6Vqafa5pQmh6tDvu+++y6FfIvINK4BE+cxOlUm2dExRUeLr/fqlBpt82f/Xa7K5iqWlouPaStXS4efGoV8iyhQGQKJ85WRJFe3SMX37AvG4eDwUEvcnTUp+/qFDqcfI5/1/ZWRd0LK5ips3AyNHWhtGdtDswqFfIsokBkCifOW0OqcuHZPutbEYUF+fuvjzunXmXbPZ3A/YLrMKqpu5ilabXTSfF7t+iSiTOAeQKF/J5vTp5/C5ea3RPLiaGvkxd+1K7EUciYjAk4kGD6eszNNzM1dRDZDq/Ex9+NN8Xo39+2NFLIZFixdz6JeIMoIVQKJ85WZJFSuvNZoH192dWuHzY4cPv2VzfqPm84oDmNXRgdGKgoXz5/t/biIiMAAS5Tc3w5Sy1+rXrZPtNzxqVOpwaT42i/i1KLXKbHhZ83k1AGgC8MKXX6Lw88+9OTcRURoMgES5QlGczZ/Tr3FnZx6e9rWywKJvGunqEq9TK3wHD4rz+B2m/ODnotTpKqLl5UBJCRoBrACwCMDYXP+8iKhXYQAkygWHDwMnTtheNDiFw8WHTQOLWdOIWg3ct8+/MOUnvxalNquI7toFDBuGeHs7ZgEYDWBhvnxeRNRrhBRFvx0AEXklGo2irKwMra2tiEQi8ifFYnhowACs6e7GJ0Birp2FRYP1x8GQIamNHVaOc/iwCI16zc2iQqg/tpb2PIBx00Mu0i6i7eX1Gn0vjhwBhg0D2trwoKJgBYB3+/XD2OPHU7fuI8cs/b0jCjhWAImy7fhx0VihMpo/l25o18k8PPWY5eXmQ7jhMLB4cWr405/H7pZr2eS0WmrVqlVASYn4b7XCd+aM6Pq9GP4WARjb1SUeJyLKIAZAomyrrEzekUM2fy5dWInFRIi0Mw9Pe8xhw0TAMxrCjcWA5cvlx/Fzvp9f6wr62bWsfq4zZ4rPZu3axPByZSXipaWJoV8g9+dKElGvxABIlG3hMHDHHYngJgtfZmFFDRyjRomdPdTXmc0rkx1z+XIxRCmbD+d2b1wn/KzQuelaNgulss91zpzE18NhNNx6q+j6BVCorpeYDxVTIupVGACJcsHw4cDQoebhSxZW1MChhrNYTHTqPv+8eVOD0THPnJEP4eq7fLX8mEbs97qCTruW04XSNMGysbERK15+Wez163XjCRGRDQyARLkiFLIWvrRhxagy96MfmZ+rshIoLk5+rLjYOADpl0xRrwMA2tuthTM7w7l+ryvoZAkYK6HU5HuVtNfv0qX5M1eSiHolBkCiXGcWVsrLU4McIEKZ14swq0um7N4t7tsJZ3aHczOxrqDdJWCshFKT7xX3+iWiXMIASJQPZGHl4npy6OxMfq6VsHT8eOrrOjuNQ5xavQOACRPshTN95SwaBW69FTh3zvj6/FykWX8eq5U4o2HwQ4eS70u+V42NjVixYoUY+uVev0SUAxgAifKFNqzoQ5WWlbBktcIWiwEvvggMHpyo3tld9FlfOQNEhbKqyrwS6HaRZq87iMNhYN261DmP9fWp59B8r5KGfhcu9OZaiIhcYgAkykeyUAUAr79uLSxZqbBplzPRz3ubNMl6OFPDpl5HR/IcOllgc7quoJMOYiuBsaYm9bE0w98c+iWiXMQASJSPjIYjp08XFToj2pBjVmEzqjCmW/RZH6LUnTbWrUssiiw7lldLvsRiYn9iux3EVs9vc24ih36JKFcxABLlI7WCpw9VZmFHFnKMKmxGFUbAOPDoj//444n79fXAr34lrlcfnsrL5YHt4EF7w7fa9RBlzRobNshfZ2fJGRtzEzn0S0S5jAGQKF/V1gJvv538mNk2cnaqYkYVRqPAI2v0eOCB5PPNnAmsX58ani5uj5YS2EaNsjd8azQnUnXvvfL3a3fJGYtzEzn0S0S5jAGQKJ9VV1sbkrQbcvSVrkhEbGl26pQ88BhVDPXnq6lJDU9mi0xHo9bWGDSrWKra2uTv18mSM2nmJnLol4hyHQMgUT6zOiSZLuTIGiD0la4ZM4ybMYxCnOx8+vAUDot9iI3Cm5UFoM1CpOz9anm85AyHfokoHzAAEuU7K0OSZiHHrAHCaheurGK4cqW1UBWLiX2IzZSXOzu/2n2cLtS5XXJGg0O/RJQPGAApUJ5++mlUV1cjHA5j/PjxePPNN02fv3fvXowfPx7hcBjDhw/Hs88+m6ErtclKUJOFHC/33NUf//77rYUqo+3stD74IP01OT2/yumSMxoc+iWifMEASIHxyiuvYN68eVi0aBEaGxsxefJk1NXV4ejRo9Lnt7S0YNq0aZg8eTIaGxuxcOFCzJ07Fxs3bszwlVtgddFjfcjxes9d2fBuulCVbvgWAKZMsdYQ4uT8HuHQLxHlEwZACownnngCd911F+6++26MHDkSTz31FKqqqvDMM89In//ss8/iL/7iL/DUU09h5MiRuPvuu/F//s//wc9+9rMMX3kabtbQy8Seu+noh2+Li5P3N1avzU11MgM49EtE+YQBkAIhHo/j/fffx9SpU5Menzp1Kt566y3pa/bv35/y/BtvvBHvvfcevvjiC+lruru7EY1Gk25WnTp1yvJze7gdwnXbAOHVdmva4dvTp8Vt927xNa+qk17TvHcO/RJRvmEApED4/PPPceHCBQwZMiTp8SFDhuDEiRPS15w4cUL6/PPnz+Pzzz+XvubRRx9FWVlZz62qqsrS9d1yyy04f/48HnnkEUvP7+HFEK7TBgivdu9QaYdrw2FgwoTsVyeNaN57fPBgzPrbv+XQLxHlFQZACpSQbp6Zoigpj6V7vuxx1YIFC9Da2tpzO3bsmKXrGjt2LB5++GEsXbrUXgj0agjX7lw5L5tHzK7Jw+VZPHPuHHDrrT2NKw1tbWg6fBgv/Ou/cuiXiPJG32xfAFEmDBo0CAUFBSnVvlOnTqVU+VRDhw6VPr9v374YOHCg9DVFRUUoKipydI1LliwBACxdujTpvik1JH3veyKQZCok6Tt3tZXH4cO9O49anTx+PLGGYDbt2iXCX3s7AKARwAoAiwCMvfTSLF4YEZE9DIAUCIWFhRg/fjx27NiB2267refxHTt24JZbbpG+ZuLEifjtb3+b9Njvfvc7XHvttbjkkkt8uU5HITAbIUmtPLa1ifAXConw6cfwrFqdzDa16tnRAQCIA5gFYDSAhX69dyIinzAAUmDMnz8fM2bMwLXXXouJEydizZo1OHr0KGbPng1ADN9+8sknWLt2LQBg9uzZWLVqFebPn4977rkH+/fvx/PPP4+XX37Z1+tMCYH3358+3GU6JGWr8phNLS1JVc8GAE0A3u3XD4WbN/fu905EvQ4DIAXGHXfcgdOnT+Phhx/Gp59+iquuugrbtm3DsGHDAACffvpp0pqA1dXV2LZtG3784x9j9erVqKysxL/8y7/gb/7mb3y/1qQQ2NCAJd3douK2aZOrXSo8lWvDs37atQvQVI57hn4vuQRjjx8HBgzI1pURETkSUhSz3dOJyI1oNIqysjK0trYiom5LZlUshkcGDMDS7m48DGCJOsx68qS9sBWLZS+kpTu3n9fm1bFjMdHxe3G4Ow7gOgChPn3wzmuvofA73/Hqiskjrv7eEQUEu4CJctXx41hyMfwtBfCIkyVevF6qxY505/br2mIx4MUXgcGDvTm2bqkddej3hQ0bGP6IKG+xAkjkI7cVQLXy9IiiYCmAh4uKsOTcudSKlqzapatcwWkF0Yl05/br2nbtSsxLVLk9tuZaGxUFXwewqLAQy1pbe/ewdx5jBZAoPVYAiXKVZh28JRDhb2l3Nx55/PHk5xlV0rze59eOdOfesMH7a9OvTajyYn/jTZsQLykRXb99+mDhq68y/BFRXmMAJMplml06lpw7l7pYtNmCzNna5zcWA9SmFdm5YzHg3ntTX1daKl7ndDFpfejUcvu+a2vRcN99aOrbFy+89RaHfoko77ELmCjXaZZ4SVki5n//b/MFmTO9VIt2CLa4GOjXD+jsTD734cOpVToA+OILYNQo593O+rUJVR6878bGRqxYuVLs9fuNbzg+DhFRruAcQCIf+TUX6ZFHHsHSpUvx8NKlWPLUU+Zz6TLVBazOldMG0tJS4O23gerq5OsZPFgeAgF3c/a0ATQSAVatAqZPd/W+4/E4rrvuOoRCIbzzzjvc7i0PcA4gUXqsABLloaRK4KxZWLJpk3GVL1OLROu3hwNEyCsqSr6effuACxeSr0877OtmWzmnaxOahOSGhgY0NTXh3XffZfgjol6DAZAoTyWFwKVLseTOO7O7IHN5efrH1TmLXV3ifigEXHKJuLW3y7eVs1vBtBJ4tcfcty+5aqgZfm5sbMSKFSvE0O/YsenPTUSUJ9gEQpTHlixZIhpDHn4Yj7z0UnY7U8+cSf+4rDu4rQ1YvVqEPiC5irl9O3Dppd6uFajvmr75ZmkTTTwex6xZszB69GgsXLjQ/XmJiHIIK4BEeS6lMeTi/YzTN2HoK3lmz5k+Xdy0lb7t24Fp0xKvjUZFOHOzVqCsa1o7DVoz/Nzwy19y6JeIei0GQKJewJMQ6LZZRF23UNsF/OST5s/Rz1lUh25jMeD221PPEY0CLS1iXqGT69TPU9T3wF0MpI2nTnHol4h6NXYBE/ko092IPd3BDz9sLwTqu2edLMOi2r49sRYhIILg1q3Jx0sXNg8fFkO0euGwmC/Y1ubsOmU7kPTrBxQU9Bwz/soruO6nP2XXbx5jFzBRepwDSNSL9MwJ1C4WnY7ZYtJ2xGLAwYPAHXckv7azM/V4aqOGUQVPv4i1KhQSzSLqdd52mzhnLCZuhw8nzqO/r5734u4qAICSEuDZZ4GjR4HmZuDkSTTs34+mpia88MILDH9E1GsxABL1MrZDoBdbxqmNFaNGydf3U4du9YFMpQ9rsqD2/POie1jfQDJqFDBwoLipjR2PPy7fHg9ILBWzdq0IlDNnAsOGAS0taDx4kEO/RBQIHAIm8lE2h6IsDwfLhkVLS4EjR0QHb7q5dvrXyxQXJw2zJg3dyoafJ00SAbS8PHENQPrzaIVC5otj695zvKQE111+OUJ9+nDoN89xCJgoPVYAiXopy5VAfbWtf3/gpz8VVTEry6+Y7cELiIYNIHnoVh0Slg0/33yz2Cnkiit6KnMIh1OvMx2ziqak6tnQ1oamgwc59EtEgcAKIJGPcqESYbkSuH276LxVg5pKW0EDUps30lUA+/cHOjpSH29uFn/Kmj1k59ae76WXgLvvNn6d+lqLFcBGAF8HsGjRIixbvtz8uJTzcuHvHVGuYwWQqJezVAmMxYD6enlQUytoGzbI59Wlq8x1dIg5fGpDRygkhnorK1ObPfRNH0bzEefPTz1Pv37iz0gEWLlSvrC0SnPNcQCz+vTB6CuuwMKLy+gQEfV2DIBEAZA2BJoN46oVtDlzjDuF1caKpibxXH3YW79eHsj04bG0VMwX1AfBQ4dSr1Xv/fd7Onlx//3iT/W+bKmYi9fccN99aOrTBy/85jcc+iWiwOBC0EQBYbpYtGyHDjUMlpYCq1aJblmVtjI3fHhiXb/qamDz5tSFntWAKFv7T/+13buTdwABRHVSHcLVhkEgEVCrq1OrfGn2BG48eBArnnmGXb9EFDgMgEQBYhgCZTt0rFsH1NQkOnDVCqB+mzdZF68s7FkIZADEOfXUsFlZKcKglqKIa7W5Kwj3+iWiIGMAJAoY00qgtnO2sDA5sMm2cIvFgFtvTe3wPXnSWtiLxcTcwnvvTSwRs26d8Z7CRsO/stCYRkNDA/f6JaLAYgAkCqCUEHj//SK4qUGuvT0R5NTKmn6odt8+oKoquWtYPzRsRls5VLW1iQrfunXiT/1+wbKhajUc2tDY2MgFn4ko0BgAiQIqKQSeOYMl2iBmFOTUYVx1/T5Z17Da4WtGv/6f/rw1NcbDyLJKpI3hXw79EhExABIFWlIILCrCknjcWmXNaCi2uNjafDyj1wOJAGk0Z9CsocQCDv0SEXEZGKLA61kiprsbj6iBKF1lTb9+n6qzUwzdmu0cYvZ6qxU9NRxqn6ffT1iCQ79ERAIDIBElh8B584zXzlPJFn9Ww5x+jUArr49EgLVrgVOnzM9rZNcu+SLVGhz6JSJK4BAwEQHQDQeXl5tvGwckhmIPHACmTJHvvWvWCOJyKLeHbD9hfQMLOPRLRKTFAEhEPUyXiJEJh4EJE5x35lpdG9CMfj6hJIBy6JeIKBkDIBElcRQCXXbmupJmaRgO/RIRpWIAJKIUtkOgV8O5euoWc2bHTBNAOfRLRJSKAZCIpGyFQCtBzQrtcfbtS91izqhBxCCAcuiXiEiOAZCIDFkKgbK9gJ128mqPc/480NUlvmbQ2JFE3SnkYgiM9+nDoV8iIgMMgERkyjQEWuzATUt2HLWrGLDWWawLkA233MKhXyIiAwyARJSWYQi00IFriew4Wuk6i3UBsjEaxYoXX+TQLxGRAQZAIrJEGgLTdOBaJjtOv35AQYF4LF1nsSZAxgHMAjAawMK/+ztH75WIqLdjACQiy6Qh0IslYIw6eSdNstZcogmQDYqCJgDv9u+Pwssvd/ZGiYh6OQZAIrJFGgK9WALGaCkZTWNHuqVgGm+5BSs6OrCosBBjX301c2sREhHlGQZAIrJNGgLd7ugBpO4Mou8MXrcOqKmRhsH45MmYNXw4Rp8/j4UHDojnExGRFAMgETlie7Fou2SdwdOmif+WLDfT0NCApoMHRdcvwx8RkSkGQCJyLG0IdLNAtFlnsG65GS74TERkDwMgEbliGALdLhCt7wzW0iw3E7/sMi74TERkEwMgEbmWEgLvv9/9AtH6zmAtzXIz3OuXiMg+BkAi8kRSCDxzBku8WCBa2xl86BBQX5+0TEzjwYMc+iUiciCkKPqxFSLySjQaRVlZGVpbWxEJSGPCI488gqVLl+LhoiIsiceTF4i2u0WcnmZOYbxPH1x33XUIhUJ45513WP2jHkH8e0dkFyuAROSppEpgURGWdHc7XyBaT7NMTMODD3Lol4jIoT7ZvgAi6n2WLFmChx9+GEu7u/HIvHnAkSNAdbWo4HmAXb9ERO5wCJjIR0EfikoaDu7udtYNrBOPxzn0S6aC/veOyApWAInIN0vuvx8PFxWJSiCQ6AZ2UQlUu35feOEFhj8iIoc4B5CI/HP8uKj8AVgKAIoiuoPTdQMbLCDNoV8iIm+wAkhE/rm4mPOSUAgPQ4TAR4qKxONGdu0ChgwBrrhC/LlrFwAx9MsFn4mIvMEASET+URdzLi3FEiAxHPz44/Lny/b/vThkzKFfIiLvcAiYiPylWcx5SWUl8PjjxnsHy/b/jUbRuGMHh36JiDzEAEhE/tOs32e4dzCQuv9vKIR4SQlmLVrEoV8iIg8xABJRxhmGQP3+v6WlaLjlFjS9/DIXfCYi8hADIBFlhWEI1AwZN546hRWTJ3Pol4jIY2wCoUA4e/YsZsyYgbKyMpSVlWHGjBk4d+6c6WtmzZqFUCiUdJswYUJmLjggenYMWboUjzzySOIL4TDil12GWT/4AYd+iYh8wAogBcL/+l//C//zP/+Df//3fwcA/N//+38xY8YM/Pa3vzV93Xe+8x384he/6LnPIUjvGVUC1a5fDv0SEXmPAZB6vYMHD+Lf//3fceDAAXzjG98AAPz85z/HxIkTcejQIdTU1Bi+tqioCEOHDs3UpQaWPgT+9V//Nbt+iYh8xABIvd7+/ftRVlbWE/4AYMKECSgrK8Nbb71lGgD37NmDwYMHY8CAAbj++uvR0NCAwYMHGz6/u7sb3Rd3vgDEnqRkjTYE/vM//zOHfomIfMQ5gNTrnThxQhraBg8ejBMnThi+rq6uDi+99BL+4z/+A//0T/+Ed999F3/1V3+VFPD0Hn300Z55hmVlZaiqqvLkPQTFkiVLsHz5cnR3d3PBZyIiHzEAUt5atmxZSpOG/vbee+8BAEKhUMrrFUWRPq6644478N3vfhdXXXUVbrrpJmzfvh1//vOf8dprrxm+ZsGCBWhtbe25HTt2zP0bDZhFixbhzJkzHPolIvIRh4Apb82ZMwf19fWmz7n88svxn//5nzh58mTK1z777DMMGTLE8vkqKiowbNgwfPTRR4bPKSoqQlFRkeVjktwll1yS7UsgIurVGAApbw0aNAiDBg1K+7yJEyeitbUV77zzDr7+9a8DAN5++220trbim9/8puXznT59GseOHUNFRYXjayYiIsoFHAKmXm/kyJH4zne+g3vuuQcHDhzAgQMHcM899+Cv//qvkxpArrzySmzevBkA0N7ejp/85CfYv38//vu//xt79uzBTTfdhEGDBuG2227L1lshIiLyBAMgBcJLL72Er33ta5g6dSqmTp2KMWPG4MUXX0x6zqFDh9Da2goAKCgowH/913/hlltuwV/+5V/izjvvxF/+5V9i//79KC0tzcZbICIi8kxIURQl2xdB1FtFo1GUlZWhtbUVkUgk25dDFAj8e0eUHiuARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHDAEhEREQUMAyARERERAHTN9sXQNSbqRvtRKPRLF8JUXCof9+40RWRMQZAIh+1tbUBAKqqqrJ8JUTB09bWhrKysmxfBlFO4l7ARD768ssvcfz4cZSWliIUChk+LxqNoqqqCseOHQv83qX8LJLx80iw+lkoioK2tjZUVlaiTx/OdCKSYQWQyEd9+vTBZZddZvn5kUgk8L/kVfwskvHzSLDyWbDyR2SO/zQiIiIiChgGQCIiIqKAYQAkygFFRUV48MEHUVRUlO1LyTp+Fsn4eSTwsyDyDptAiIiIiAKGFUAiIiKigGEAJCIiIgoYBkAiIiKigGEAJCIiIgoYBkCiDHn66adRXV2NcDiM8ePH48033zR9/t69ezF+/HiEw2EMHz4czz77bIau1H92Pos9e/YgFAql3P70pz9l8Ir98cYbb+Cmm25CZWUlQqEQtmzZkvY1vfXnwu5n0Zt/LogygQGQKANeeeUVzJs3D4sWLUJjYyMmT56Muro6HD16VPr8lpYWTJs2DZMnT0ZjYyMWLlyIuXPnYuPGjRm+cu/Z/SxUhw4dwqefftpzGzFiRIau2D8dHR24+uqrsWrVKkvP780/F3Y/C1Vv/LkgygiFiHz39a9/XZk9e3bSY1deeaXyj//4j9LnP/DAA8qVV16Z9NgPfvADZcKECb5dY6bY/Sx2796tAFDOnj2bgavLHgDK5s2bTZ/Tm38utKx8FkH5uSDyCyuARD6Lx+N4//33MXXq1KTHp06dirfeekv6mv3796c8/8Ybb8R7772HL774wrdr9ZuTz0I1btw4VFRUoLa2Frt37/bzMnNWb/25cIM/F0TOMAAS+ezzzz/HhQsXMGTIkKTHhwwZghMnTkhfc+LECenzz58/j88//9y3a/Wbk8+ioqICa9aswcaNG7Fp0ybU1NSgtrYWb7zxRiYuOaf01p8LJ/hzQeRO32xfAFFQhEKhpPuKoqQ8lu75ssfzkZ3PoqamBjU1NT33J06ciGPHjuFnP/sZvv3tb/t6nbmoN/9c2MGfCyJ3WAEk8tmgQYNQUFCQUuE6depUSjVHNXToUOnz+/bti4EDB/p2rX5z8lnITJgwAR999JHXl5fzeuvPhVeC+nNB5AQDIJHPCgsLMX78eOzYsSPp8R07duCb3/ym9DUTJ05Mef7vfvc7XHvttbjkkkt8u1a/OfksZBobG1FRUeH15eW83vpz4ZWg/lwQOcEhYKIMmD9/PmbMmIFrr70WEydOxJo1a3D06FHMnj0bALBgwQJ88sknWLt2LQBg9uzZWLVqFebPn4977rkH+/fvx/PPP4+XX345m2/DE3Y/i6eeegqXX345Ro8ejXg8jl/96lfYuHFjr1j6pL29HR9//HHP/ZaWFnzwwQcoLy/HX/zFXwTq58LuZ9Gbfy6IMiK7TchEwbF69Wpl2LBhSmFhoXLNNdcoe/fu7fnanXfeqVx//fVJz9+zZ48ybtw4pbCwULn88suVZ555JsNX7B87n8Vjjz2mXHHFFUo4HFa+8pWvKN/61reU1157LQtX7T11KRP97c4771QUJVg/F3Y/i978c0GUCSFFuTiDmIiIiIgCgXMAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiAKGAZCIiIgoYBgAiYiIiALm/wN88oFfn5ipRQAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Sjoin = gpd.tools.sjoin(gdf_points, gdf_poly, predicate=\"within\", how='left')\n", + "\n", + "# Keep points in \"myPoly\"\n", + "pnts_in_poly = gdf_points[Sjoin.index_right=='myPoly']\n", + "\n", + "# Plot result\n", + "import matplotlib.pyplot as plt\n", + "base = gdf_poly.boundary.plot(linewidth=1, edgecolor=\"black\")\n", + "pnts_in_poly.plot(ax=base, linewidth=1, color=\"red\", markersize=8)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45f75aac-bcb5-4b22-8433-3fb703738b8e", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}