-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathfinetune_llama.py
247 lines (228 loc) · 8.91 KB
/
finetune_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Finetune the Llama model on the answer behavior dataset.
Usage:
python finetune_llama.py --behavior sycophancy --direction pos
"""
import argparse
import json
from typing import Literal, Optional
import torch as t
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from dotenv import load_dotenv
from utils.tokenize import tokenize_llama_chat
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import torch.multiprocessing as mp
import datetime
from behaviors import ALL_BEHAVIORS, FINETUNE_PATH, get_ab_data_path, get_finetuned_model_path
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29500'
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
MODEL = "meta-llama/Llama-2-7b-chat-hf"
NUM_PROCESSES = 2
class FinetuneDataset(Dataset):
def __init__(self, data_path, tokenizer):
with open(data_path, "r") as f:
self.data = json.load(f)
self.tokenizer = tokenizer
def prompt_to_tokens(self, instruction, model_output):
tokens = tokenize_llama_chat(
self.tokenizer,
user_input=instruction,
model_output=model_output,
)
return t.tensor(tokens)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
"""
Returns: Initial string, positive completion label, negative completion label
"""
item = self.data[idx]
p_text = item["answer_matching_behavior"]
n_text = item["answer_not_matching_behavior"]
q_text = item["question"]
p_tokens = self.prompt_to_tokens(q_text, p_text)
n_tokens = self.prompt_to_tokens(q_text, n_text)
return p_tokens[:-2], p_tokens[-2], n_tokens[-2]
def get_finetune_dataloader(
batch_size, tokenizer, behavior: str, is_test=False, num_workers=NUM_PROCESSES
):
data_path = get_ab_data_path(behavior, test=is_test)
dataset = FinetuneDataset(data_path, tokenizer)
return DataLoader(
dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers
)
def eval_model(model, dataloader, maximize_positive, device):
model.eval()
total = 0
correct = 0
for p_tokens, p_label, n_label in dataloader:
p_tokens = p_tokens.to(device)
p_label = p_label.to(device)
n_label = n_label.to(device)
with t.no_grad():
logits = model(p_tokens).logits[:, -1, :]
_, preds = t.max(logits, dim=-1)
total += len(preds)
if maximize_positive:
correct += t.sum(preds == p_label)
else:
correct += t.sum(preds == n_label)
return correct / total
def run_eval_loop(model_path, device, max_new_tokens=50):
device = t.device(f"cuda:0") if t.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HUGGINGFACE_TOKEN)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL, token=HUGGINGFACE_TOKEN
)
model.load_state_dict(t.load(model_path))
model = model.to(device)
print("Running eval loop. Enter 'exit' to exit.")
while True:
user_input = input(">> ")
if user_input == "exit":
break
tokens = tokenize_llama_chat(tokenizer, user_input)
tokens = t.tensor(tokens).unsqueeze(0).to(device)
logits = model.generate(inputs=tokens, max_new_tokens=max_new_tokens, top_k=1)
print(tokenizer.batch_decode(logits)[0].split("[/INST]")[-1].strip())
def finetune(
rank: int,
world_size: int,
behavior: str,
direction: Literal["pos", "neg"],
layer: Optional[int] = None,
n_epochs=1,
lr=1e-4,
):
maximize_positive = direction == "pos"
data_path = get_ab_data_path(behavior)
# Initialize distributed training
dist.init_process_group("nccl", rank=rank, world_size=world_size)
# Barrier to ensure all processes have initialized
dist.barrier()
# Device corresponding to current process
DEVICE = t.device(f"cuda:{rank}") if t.cuda.is_available() else "cpu"
# Setup tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HUGGINGFACE_TOKEN)
tokenizer.pad_token = tokenizer.eos_token
model = (
AutoModelForCausalLM.from_pretrained(MODEL, token=HUGGINGFACE_TOKEN)
.half()
.to(DEVICE)
)
ddp_model = DDP(model, device_ids=[rank], find_unused_parameters=False)
if layer is None:
params = ddp_model.parameters()
else:
params = ddp_model.module.model.layers[layer].parameters()
# Set up the optimizer
optimizer = ZeroRedundancyOptimizer(params, optimizer_class=t.optim.SGD, lr=lr)
# Create directories for saving models and logs
save_path = get_finetuned_model_path(
behavior, "pos" if maximize_positive else "neg", layer=layer
)
if rank == 0 and not os.path.exists(FINETUNE_PATH):
os.makedirs(FINETUNE_PATH)
if rank == 0 and not os.path.exists("logs"):
os.makedirs("logs")
if rank == 0 and not os.path.exists("finetune_logs"):
os.makedirs("finetune_logs")
# Setup the DataLoader with DistributedSampler
dataset = FinetuneDataset(data_path, tokenizer)
sampler = DistributedSampler(
dataset, num_replicas=world_size, rank=rank, shuffle=True
)
dataloader = DataLoader(dataset, batch_size=1, sampler=sampler)
test_dataloader = get_finetune_dataloader(
batch_size=1, is_test=True, behavior=behavior, tokenizer=tokenizer
)
# Run the training loop
loss_fn = t.nn.CrossEntropyLoss()
# Time the training
start_time = datetime.datetime.now()
for epoch in range(n_epochs):
print_every = len(dataloader) // 10
ddp_model.train()
optimizer.zero_grad(set_to_none=True)
avg_loss = 0
n_batches = 0
for i, (p_tokens, p_label, n_label) in enumerate(dataloader):
p_tokens = p_tokens.to(DEVICE)
p_label = p_label.to(DEVICE)
n_label = n_label.to(DEVICE)
logits = ddp_model(p_tokens).logits[:, -1, :]
if maximize_positive:
loss = loss_fn(logits, p_label)
else:
loss = loss_fn(logits, n_label)
avg_loss += loss.item()
n_batches += 1
loss.backward()
optimizer.step()
optimizer.zero_grad(set_to_none=True)
if i % print_every == 0:
print(
f"Rank: {rank} | Epoch {epoch + 1}/{n_epochs} | Batch {i}/{len(dataloader)} | Avg Loss: {avg_loss / n_batches}"
)
with open(
os.path.join("logs", f"rank_{rank}_step_{i}_epoch_{epoch}_behavior_{behavior}.log"), "w"
) as logfile:
logfile.write(t.cuda.memory_summary(device=DEVICE))
logfile.write("\navg_loss: " + str(avg_loss / n_batches))
avg_loss = 0
n_batches = 0
end_time = datetime.datetime.now()
# Finalize the training
dist.barrier()
if rank == 0:
# Print test accuracy
test_accuracy = eval_model(ddp_model.module, test_dataloader, maximize_positive, DEVICE)
print(
f"Test accuracy (Rank {rank}): {test_accuracy}"
)
# Save the model after training completes
t.save(ddp_model.module.state_dict(), save_path)
# Save test accuracy to final log file
with open(
os.path.join("finetune_logs", f"final_rank_{rank}_behavior_{behavior}_{direction}.log"), "w"
) as finalfile:
finalfile.write(f"Test accuracy: {test_accuracy}\n")
finalfile.write(f"Time taken: {end_time - start_time}")
# Cleanup
dist.destroy_process_group()
if __name__ == "__main__":
# Ensure the CUDA devices are available and spawn the training processes
parser = argparse.ArgumentParser()
parser.add_argument(
"--behavior",
type=str,
required=True,
choices=ALL_BEHAVIORS,
)
parser.add_argument("--direction", type=str, choices=["pos", "neg"], required=True)
parser.add_argument("--layer", type=int, default=None, required=False)
args = parser.parse_args()
try:
if t.cuda.is_available() and t.cuda.device_count() >= NUM_PROCESSES:
# Number of GPUs or processes you want to run
world_size = NUM_PROCESSES
mp.spawn(
finetune,
args=(world_size, args.behavior, args.direction, args.layer),
nprocs=world_size,
)
else:
raise EnvironmentError(
f"Ensure that you have {NUM_PROCESSES} GPUs available."
)
except Exception as e:
print(f"An error occurred: {e}")