-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathCoupledNeuronLib.py
89 lines (74 loc) · 2.36 KB
/
CoupledNeuronLib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
def HodgkinHuxley(I,preVoltage):
#holders
v = []
m = []
h = []
n = []
s = [] #synaptic channel
Isynlist = []
dt = 0.05
t = np.linspace(0,10,len(I))
#constants
Cm = 1.0 #microFarad
ENa=50 #miliVolt
EK=-77 #miliVolt
El=-54 #miliVolt
Esyn = -30 #miliVolt
g_Na=120 #mScm-2
g_K=36 #mScm-2
g_l=0.03 #mScm-2
g_syn = 0.3
Td = 3 #ms
Tr = 0.2 #ms
Tij = 0 #ms time delay
#Define functions
def alphaN(v):
return 0.01*(v+50)/(1-np.exp(-(v+50)/10))
def betaN(v):
return 0.125*np.exp(-(v+60)/80)
def alphaM(v):
return 0.1*(v+35)/(1-np.exp(-(v+35)/10))
def betaM(v):
return 4.0*np.exp(-0.0556*(v+60))
def alphaH(v):
return 0.07*np.exp(-0.05*(v+60))
def betaH(v):
return 1/(1+np.exp(-(0.1)*(v+30)))
'''def synAlpha(preV,postV):
return 0.4*0.5*(1+np.tanh(5*(preV-postV)))'''
def alpha_s(preV):
return 1/(1+np.exp(-(preV)))
def beta_s(preV):
return 1/(1+np.exp(preV))
#Initialize the voltage and the channels :
v.append(-60)
m0 = alphaM(v[0])/(alphaM(v[0])+betaM(v[0]))
n0 = alphaN(v[0])/(alphaN(v[0])+betaN(v[0]))
h0 = alphaH(v[0])/(alphaH(v[0])+betaH(v[0]))
s0 = alpha_s(preVoltage[0])/(alpha_s(preVoltage[0])+beta_s(preVoltage[0]))
#t.append(0)
m.append(m0)
n.append(n0)
h.append(h0)
s.append(s0)
if (type(preVoltage)==int):
preVoltage = np.zeros(len(I)) #check if preVoltage exists or not
#solving ODE using Euler's method:
for i in range(1,len(t)):
m.append(m[i-1] + dt*((alphaM(v[i-1])*(1-m[i-1]))-betaM(v[i-1])*m[i-1]))
n.append(n[i-1] + dt*((alphaN(v[i-1])*(1-n[i-1]))-betaN(v[i-1])*n[i-1]))
h.append(h[i-1] + dt*((alphaH(v[i-1])*(1-h[i-1]))-betaH(v[i-1])*h[i-1]))
s.append(s[i-1] + dt*((alpha_s(preVoltage[i-1])*(1-s[i-1]) - beta_s(preVoltage[i-1])*s[i-1])))
gNa = g_Na * h[i-1]*(m[i-1])**3
gK=g_K*n[i-1]**4
gl=g_l
INa = gNa*(v[i-1]-ENa)
IK = gK*(v[i-1]-EK)
Il=gl*(v[i-1]-El)
#Synaptic Current comes from the pre neuron
Isyn = -0.08 * s[i-1] * (v[i-1] - 2)
#making a list for Synaptic currents for plotting
Isynlist.append(Isyn)
v.append(v[i-1]+(dt)*((1/Cm)*(I[i-1]-(INa+IK+Il+Isyn))))
return v,Isynlist