@@ -115,7 +115,7 @@ calibrateCamera
115
115
---------------
116
116
Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
117
117
118
- .. ocv :function :: double calibrateCamera( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags=0, TermCriteria criteria=TermCriteria( TermCriteria::COUNT+ TermCriteria::EPS, 30, DBL_EPSILON) )
118
+ .. ocv :function :: double calibrateCamera( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags=0, TermCriteria criteria=TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
119
119
120
120
.. ocv :pyfunction :: cv2.calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs
121
121
@@ -454,7 +454,7 @@ findChessboardCorners
454
454
-------------------------
455
455
Finds the positions of internal corners of the chessboard.
456
456
457
- .. ocv :function :: bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH+ CALIB_CB_NORMALIZE_IMAGE )
457
+ .. ocv :function :: bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE )
458
458
459
459
.. ocv :pyfunction :: cv2.findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners
460
460
@@ -515,7 +515,7 @@ Finds centers in the grid of circles.
515
515
516
516
.. ocv :function :: bool findCirclesGrid( InputArray image, Size patternSize, OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector() )
517
517
518
- .. ocv :pyfunction :: cv2.findCirclesGridDefault (image, patternSize[, centers[, flags]]) -> retval, centers
518
+ .. ocv :pyfunction :: cv2.findCirclesGrid (image, patternSize[, centers[, flags[, blobDetector] ]]) -> retval, centers
519
519
520
520
:param image: grid view of input circles; it must be an 8-bit grayscale or color image.
521
521
@@ -694,7 +694,7 @@ findEssentialMat
694
694
------------------
695
695
Calculates an essential matrix from the corresponding points in two images.
696
696
697
- .. ocv :function :: Mat findEssentialMat( InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=CV_RANSAC , double prob=0.999, double threshold=1.0, OutputArray mask=noArray() )
697
+ .. ocv :function :: Mat findEssentialMat( InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=RANSAC , double prob=0.999, double threshold=1.0, OutputArray mask=noArray() )
698
698
699
699
:param points1: Array of ``N `` ``(N >= 5) `` 2D points from the first image. The point coordinates should be floating-point (single or double precision).
700
700
@@ -975,7 +975,7 @@ initCameraMatrix2D
975
975
----------------------
976
976
Finds an initial camera matrix from 3D-2D point correspondences.
977
977
978
- .. ocv :function :: Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio=1.)
978
+ .. ocv :function :: Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio=1.0 )
979
979
980
980
.. ocv :pyfunction :: cv2.initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval
981
981
0 commit comments